9,322 research outputs found
Adapting software testing techniques to enhance software security
Bos, H.J. [Promotor]Giuffrida, C. [Copromotor
Persistent Transport Barrier on the West Florida Shelf
Analysis of drifter trajectories in the Gulf of Mexico has revealed the
existence of a region on the southern portion of the West Florida Shelf (WFS)
that is not visited by drifters that are released outside of the region. This
so-called ``forbidden zone'' (FZ) suggests the existence of a persistent
cross-shelf transport barrier on the southern portion of the WFS. In this
letter a year-long record of surface currents produced by a Hybrid-Coordinate
Ocean Model simulation of the WFS is used to identify Lagrangian coherent
structures (LCSs), which reveal the presence of a robust and persistent
cross-shelf transport barrier in approximately the same location as the
boundary of the FZ. The location of the cross-shelf transport barrier undergoes
a seasonal oscillation, being closer to the coast in the summer than in the
winter. A month-long record of surface currents inferred from high-frequency
(HF) radar measurements in a roughly 60 km 80 km region on the WFS off
Tampa Bay is also used to identify LCSs, which reveal the presence of robust
transient transport barriers. While the HF-radar-derived transport barriers
cannot be unambiguously linked to the boundary of the FZ, this analysis does
demonstrate the feasibility of monitoring transport barriers on the WFS using a
HF-radar-based measurement system. The implications of a persistent cross-shelf
transport barrier on the WFS for the development of harmful algal blooms on the
shoreward side of the barrier are considered.Comment: Submitted to Geophysical Research Letter
Reduced-order Description of Transient Instabilities and Computation of Finite-Time Lyapunov Exponents
High-dimensional chaotic dynamical systems can exhibit strongly transient
features. These are often associated with instabilities that have finite-time
duration. Because of the finite-time character of these transient events, their
detection through infinite-time methods, e.g. long term averages, Lyapunov
exponents or information about the statistical steady-state, is not possible.
Here we utilize a recently developed framework, the Optimally Time-Dependent
(OTD) modes, to extract a time-dependent subspace that spans the modes
associated with transient features associated with finite-time instabilities.
As the main result, we prove that the OTD modes, under appropriate conditions,
converge exponentially fast to the eigendirections of the Cauchy--Green tensor
associated with the most intense finite-time instabilities. Based on this
observation, we develop a reduced-order method for the computation of
finite-time Lyapunov exponents (FTLE) and vectors. In high-dimensional systems,
the computational cost of the reduced-order method is orders of magnitude lower
than the full FTLE computation. We demonstrate the validity of the theoretical
findings on two numerical examples
Germanium:gallium photoconductors for far infrared heterodyne detection
Highly compensated Ge:Ga photoconductors have been fabricated and evaluated for high bandwidth heterodyne detection. Bandwidths up to 60 MHz have been obtained with corresponding current responsivity of 0.01 A/W
Quantum Gauge Equivalence in QED
We discuss gauge transformations in QED coupled to a charged spinor field,
and examine whether we can gauge-transform the entire formulation of the theory
from one gauge to another, so that not only the gauge and spinor fields, but
also the forms of the operator-valued Hamiltonians are transformed. The
discussion includes the covariant gauge, in which the gauge condition and
Gauss's law are not primary constraints on operator-valued quantities; it also
includes the Coulomb gauge, and the spatial axial gauge, in which the
constraints are imposed on operator-valued fields by applying the
Dirac-Bergmann procedure. We show how to transform the covariant, Coulomb and
spatial axial gauges to what we call
``common form,'' in which all particle excitation modes have identical
properties. We also show that, once that common form has been reached, QED in
different gauges has a common time-evolution operator that defines
time-translation for states that represent systems of electrons and photons.
By combining gauge transformations with changes of representation from
standard to common form, the entire apparatus of a gauge theory can be
transformed from one gauge to another.Comment: Contribution for a special issue of Foundations of Physics honoring
Fritz Rohrlich; edited by Larry P. Horwitz, Tel-Aviv University, and Alwyn
van der Merwe, University of Denver (Plenum Publishing, New York); 40 pages,
REVTEX, Preprint UCONN-93-3, 1 figure available upon request from author
Topology of the gauge-invariant gauge field in two-color QCD
We investigate solutions to a nonlinear integral equation which has a central
role in implementing the non-Abelian Gauss's Law and in constructing
gauge-invariant quark and gluon fields. Here we concern ourselves with
solutions to this same equation that are not operator-valued, but are functions
of spatial variables and carry spatial and SU(2) indices. We obtain an
expression for the gauge-invariant gauge field in two-color QCD, define an
index that we will refer to as the ``winding number'' that characterizes it,
and show that this winding number is invariant to a small gauge transformation
of the gauge field on which our construction of the gauge-invariant gauge field
is based. We discuss the role of this gauge field in determining the winding
number of the gauge-invariant gauge field. We also show that when the winding
number of the gauge field is an integer , the gauge-invariant
gauge field manifests winding numbers that are not integers, and are
half-integers only when .Comment: 26 pages including 6 encapsulated postscript figures. Numerical
errors have been correcte
SlowFuzz: Automated Domain-Independent Detection of Algorithmic Complexity Vulnerabilities
Algorithmic complexity vulnerabilities occur when the worst-case time/space
complexity of an application is significantly higher than the respective
average case for particular user-controlled inputs. When such conditions are
met, an attacker can launch Denial-of-Service attacks against a vulnerable
application by providing inputs that trigger the worst-case behavior. Such
attacks have been known to have serious effects on production systems, take
down entire websites, or lead to bypasses of Web Application Firewalls.
Unfortunately, existing detection mechanisms for algorithmic complexity
vulnerabilities are domain-specific and often require significant manual
effort. In this paper, we design, implement, and evaluate SlowFuzz, a
domain-independent framework for automatically finding algorithmic complexity
vulnerabilities. SlowFuzz automatically finds inputs that trigger worst-case
algorithmic behavior in the tested binary. SlowFuzz uses resource-usage-guided
evolutionary search techniques to automatically find inputs that maximize
computational resource utilization for a given application.Comment: ACM CCS '17, October 30-November 3, 2017, Dallas, TX, US
On the Lagrangian Dynamics of Atmospheric Zonal Jets and the Permeability of the Stratospheric Polar Vortex
The Lagrangian dynamics of zonal jets in the atmosphere are considered, with
particular attention paid to explaining why, under commonly encountered
conditions, zonal jets serve as barriers to meridional transport. The velocity
field is assumed to be two-dimensional and incompressible, and composed of a
steady zonal flow with an isolated maximum (a zonal jet) on which two or more
travelling Rossby waves are superimposed. The associated Lagrangian motion is
studied with the aid of KAM (Kolmogorov--Arnold--Moser) theory, including
nontrivial extensions of well-known results. These extensions include
applicability of the theory when the usual statements of nondegeneracy are
violated, and applicability of the theory to multiply periodic systems,
including the absence of Arnold diffusion in such systems. These results,
together with numerical simulations based on a model system, provide an
explanation of the mechanism by which zonal jets serve as barriers to
meridional transport of passive tracers under commonly encountered conditions.
Causes for the breakdown of such a barrier are discussed. It is argued that a
barrier of this type accounts for the sharp boundary of the Antarctic ozone
hole at the perimeter of the stratospheric polar vortex in the austral spring.Comment: Submitted to Journal of the Atmospheric Science
Flow and magnetic structures in a kinematic ABC-dynamo
Dynamo theory describes the magnetic field induced by the rotating, convecting and electrically conducting fluid in a celestial body. The classical ABC-flow model represents fast dynamo action, required to sustain such a magnetic field. In this letter, Lagrangian coherent structures (LCSs) in the ABC-flow are detected through Finite-time Lyapunov exponents (FTLE). The flow skeleton is identified by extracting intersections between repelling and attracting LCSs. For the case A = B = C = 1, the skeleton structures are made up from lines connecting two different types of stagnation points in the ABC-flow. The corresponding kinematic ABC-dynamo problem is solved using a spectral method, and the distribution of cigar-like magnetic structures visualized. Inherent links are found to exist between LCSs in the ABC-flow and induced magnetic structures, which provides insight into the mechanism behind the ABC-dynamo
- …