50 research outputs found

    Plastic in the European Arctic

    Get PDF

    Antarktis - kort fortalt

    Get PDF

    Monitoring microplastics in the atmosphere and cryosphere in the circumpolar North: A case for multi-compartment monitoring

    Get PDF
    The atmosphere and cryosphere have recently garnered considerable attention due to their role in transporting microplastics to and within the Arctic, and between freshwater, marine, and terrestrial environments. While investigating either in isolation provides valuable insight on the fate of microplastics in the Arctic, monitoring both provides a more holistic view. Nonetheless, despite the recent scientific interest, fundamental knowledge on microplastic abundance, and consistent monitoring efforts, are lacking for these compartments. Here, we build upon the work of the Arctic Monitoring and Assessment Programme’s Monitoring Guidelines for Litter and Microplastic to provide a roadmap for multi-compartment monitoring of the atmosphere and cryosphere to support our understanding of the sources, pathways, and sinks of plastic pollution across the Arctic. Overall, we recommend the use of existing standard techniques for ice and atmospheric sampling and to build upon existing monitoring efforts in the Arctic to obtain a more comprehensive pan-Arctic view of microplastic pollution in these two compartments

    The power of multi-matrix monitoring in the Pan-Arctic region: plastics in water and sediment

    Get PDF
    Litter and microplastic assessments are being carried out worldwide. Arctic ecosystems are no exception and plastic pollution is high on the Arctic Council's agenda. Water and sediment have been identified as two of the priority compartments for monitoring plastics under the Arctic Monitoring and Assessment Programme (AMAP). Recommendations for monitoring both compartments are presented in this publication. Alone, such samples can provide information on presence, fate, and potential impacts to ecosystems. Together, the quantification of microplastics in sediment and water from the same region produce a three-dimensional picture of plastics, not only a snapshot of floating or buoyant plastics in the surface water or water column but also a picture of the plastics reaching the shoreline or benthic sediments, in lakes, rivers, and the ocean. Assessment methodologies must be adapted to the ecosystems of interest to generate reliable data. In its current form, published data on plastic pollution in the Arctic is sporadic and collected using a wide spectrum of methods which limits the extent to which data can be compared. A harmonised and coordinated effort is needed to gather data on plastic pollution for the Pan-Arctic. Such information will aid in identifying priority regions and focusing mitigation efforts.publishedVersio

    MOSJ statusrapport 2011 miljøgifter

    Get PDF
    Denne rapporten gir en oppdatering av status for miljøgifter som inngår i overvåkningssystemet MOSJ. Miljøgiftene er avgrenset til organiske miljøgifter, tungmetaller og radioaktive stoffer. Rapporten tar for seg status, trender og effekter for miljøgiftene og gir råd for videre overvåkning. Geografisk er rapporten avgrenset til Svalbard og Jan Mayen med omkringliggende havområder

    Moving forward in microplastic research: A Norwegian perspective

    Get PDF
    Given the increasing attention on the occurrence of microplastics in the environment, and the potential envi-ronmental threats they pose, there is a need for researchers to move quickly from basic understanding to applied science that supports decision makers in finding feasible mitigation measures and solutions. At the same time, they must provide sufficient, accurate and clear information to the media, public and other relevant groups (e.g., NGOs). Key requirements include systematic and coordinated research efforts to enable evidence-based decision making and to develop efficient policy measures on all scales (national, regional and global). To achieve this, collaboration between key actors is essential and should include researchers from multiple disciplines, policy-makers, authorities, civil and industry organizations, and the public. This further requires clear and informative communication processes, and open and continuous dialogues between all actors. Cross-discipline dialogues between researchers should focus on scientific quality and harmonization, defining and accurately communi-cating the state of knowledge, and prioritization of topics that are critical for both research and policy, with the common goal to establish and update action plans for holistic benefit. In Norway, cross-sectoral collaboration has been fundamental in supporting the national strategy to address plastic pollution. Researchers, stakeholders and the environmental authorities have come together to exchange knowledge, identify knowledge gaps, and set targeted and feasible measures to tackle one of the most challenging aspects of plastic pollution: microplastic. In this article, we present a Norwegian perspective on the state of knowledge on microplastic research efforts. Norway’s involvement in international efforts to combat plastic pollution aims at serving as an example of how key actors can collaborate synergistically to share knowledge, address shortcomings, and outline ways forward to address environmental challenges.publishedVersio

    A review of the scientific knowledge of the seascape off Dronning Maud Land, Antarctica

    Get PDF
    Despite the exclusion of the Southern Ocean from assessments of progress towards achieving the Convention on Biological Diversity (CBD) Strategic Plan, the Commission for the Conservation of Antarctic Marine Living Resources (CCAMLR) has taken on the mantle of progressing efforts to achieve it. Within the CBD, Aichi Target 11 represents an agreed commitment to protect 10% of the global coastal and marine environment. Adopting an ethos of presenting the best available scientific evidence to support policy makers, CCAMLR has progressed this by designating two Marine Protected Areas in the Southern Ocean, with three others under consideration. The region of Antarctica known as Dronning Maud Land (DML; 20 degrees W to 40 degrees E) and the Atlantic sector of the Southern Ocean that abuts it conveniently spans one region under consideration for spatial protection. To facilitate both an open and transparent process to provide the vest available scientific evidence for policy makers to formulate management options, we review the body of physical, geochemical and biological knowledge of the marine environment of this region. The level of scientific knowledge throughout the seascape abutting DML is polarized, with a clear lack of data in its eastern part which is presumably related to differing levels of research effort dedicated by national Antarctic programmes in the region. The lack of basic data on fundamental aspects of the physical, geological and biological nature of eastern DML make predictions of future trends difficult to impossible, with implications for the provision of management advice including spatial management. Finally, by highlighting key knowledge gaps across the scientific disciplines our review also serves to provide guidance to future research across this important region.Peer reviewe

    A review of the scientific knowledge of the seascape off Dronning Maud Land, Antarctica

    Get PDF
    Despite the exclusion of the Southern Ocean from assessments of progress towards achieving the Convention on Biological Diversity (CBD) Strategic Plan, the Commission for the Conservation of Antarctic Marine Living Resources (CCAMLR) has taken on the mantle of progressing efforts to achieve it. Within the CBD, Aichi Target 11 represents an agreed commitment to protect 10% of the global coastal and marine environment. Adopting an ethos of presenting the best available scientific evidence to support policy makers, CCAMLR has progressed this by designating two Marine Protected Areas in the Southern Ocean, with three others under consideration. The region of Antarctica known as Dronning Maud Land (DML; 20°W to 40°E) and the Atlantic sector of the Southern Ocean that abuts it conveniently spans one region under consideration for spatial protection. To facilitate both an open and transparent process to provide the vest available scientific evidence for policy makers to formulate management options, we review the body of physical, geochemical and biological knowledge of the marine environment of this region. The level of scientific knowledge throughout the seascape abutting DML is polarized, with a clear lack of data in its eastern part which is presumably related to differing levels of research effort dedicated by national Antarctic programmes in the region. The lack of basic data on fundamental aspects of the physical, geological and biological nature of eastern DML make predictions of future trends difficult to impossible, with implications for the provision of management advice including spatial management. Finally, by highlighting key knowledge gaps across the scientific disciplines our review also serves to provide guidance to future research across this important region.publishedVersio

    Microplastic in sediments from Kongsfjorden, Svalbard

    Full text link
    Svalbard is known to be a place where macroplastics accumulate on beaches.[1] Besides those yearly clean-ups, very little is known about the (micro)plastic levels at other locations and in other compartments. Kongsfjorden is a relevant place to study microplastic pollution since it has been studied for decades with regard to sedimentation processes, hydrodynamics and plankton communities for example. [2,3] During the Kongsfjorden cruise in the summer 2018, more than forty sediment samples have been collected using a box corer at five different locations, defining a transect inshore-offshore through the fjord. At each location, between 4 and 12 replicates have been collected, which is quite uncommon in Arctic studies. The potential microplastics have been extracted thanks to a density separation protocol using saturated saltwater. Particular precautions regarding contamination have been taken and different blank samples have been run. The samples have now to be analysed through Raman spectroscopy. That will allow us to clearly determine the plastic nature of the particles as well as their polymer. Those analyses will be performed this winter and the final results will be available in late February. We expect a gradient of contamination increasing from the inner to the outer part of the fjord. We also think that fibers will be the major shape because the main source of microplastics in certainly the sewage outlet that releases washing machine effluents, among other wastewater. Given that, we expect a majority of polyethylene, polypropylene and polyester fibers in our samples. This study will provide one of the first results on microplastic levels in sediment around Svalbard
    corecore