1,625 research outputs found

    Evaluation of a method for time-of-flight, wavelength and distance calibration for neutron scattering instruments by means of a mini-chopper and standard neutron monitors

    Full text link
    Accurate conversion of neutron time-of-flight (TOF) to wavelength, and its uncertainty, is of fundamental importance to neutron scattering measurements. Especially in cases where instruments are highly configurable, the determination of the absolute wavelength after any change must always be performed. Inspired by the manner with which neutron spectrometers determine the absolute wavelength, we evaluate for the first time, in the author's knowledge, a commonly used method for converting TOF to neutron wavelength, the distance of a monitor from the source of neutrons and we analytically calculate the uncertainty contributions that limit the precision of the conversion. The method was evaluated at the V20 test beamline at the Helmholtz Zentrum Berlin (HZB), emulating the ESS source with a pulse of 2.86 ms length and 14 Hz repetition rate, by using a mini-chopper operated at 140 Hz, beam monitors (BMs) and data acquisition infrastructure. The mini-chopper created well-defined neutron pulses and the BM was placed at two positions, enabling the average wavelength of each of the pulses created to be determined. The used experimental setup resulted in absolute wavelength determination at the monitor positions with a δλmean/λmean\delta \lambda_{mean} / \lambda_{mean} of ∼\sim1.8% for λ>4\lambda >4 \r{A}. With a modest increase of the distance between the reference monitor positions a δλmean/λmean\delta \lambda_{mean} / \lambda_{mean} of below 0.5% can be achieved. Further improvements are possible by using a thinner monitor, smaller chopper disc openings and a higher rotational speed chopper. The method requires only two neutron measurements and doesn't necessitate the use of crystals or complex fitting, and could constitute a suitable addition to imaging, diffraction, reflectometers and small angle neutron scattering instruments, at spallation sources, that do not normally utilise fast choppers

    Inter-cultural differences in response to a computer-based anti-bullying intervention

    Get PDF
    Background and purpose: Many holistic anti-bullying interventions have been attempted, with mixed success, while little work has been done to promote a 'self-help' approach to victimisation. The rise of the ICT curriculum and computer support in schools now allows for approaches that benefit from technology to be implemented. This study evaluates the cross-cultural effects of a computer-based anti-bullying intervention on primary school-aged children's knowledge about bullying and relevant coping strategies. Programme description: FearNot! is an interactive computer-based virtual learning environment designed for use as an anti-bullying intervention. It includes interactive virtual agents who assume the most common participant roles found in episodes of bullying. FearNot! was used by children over three consecutive weeks to allow its effectiveness to be evaluated in a longitudinal in situ programme. Sample: Two comparable samples were drawn from the UK and Germany. In the UK, 651 participants (aged 8-11) were recruited from primary schools in Hertfordshire, Coventry and Warwickshire, whereas the 535 German participants (aged 7-10) were sourced from Grundschulen in the Bayern and Hessen regions. Because of lack of parental consent, late joiners and absences/missing responses, data from 908 participants (UK 493; Germany 415) were analysed. Design and methods: A quasi-experimental, pre/post-tests control group design employed pre-published and bespoke questionnaires to collect data. Descriptive and inferential analyses were conducted. Results: UK students possessed higher coping strategy knowledge scores than German participants, but German children's scores improved over time and as a result of the FearNot! intervention. Conclusions: Overall, while not effective at increasing children's coping strategy knowledge in this study, the FearNot! intervention could prove a useful classroom tool to approach the issue of bullying as part of a wider initiative. Cultural differences at baseline and reactions to the intervention are discussed

    Simulation of the Response of the Solid State Neutron Detector for the European Spallation Source

    Full text link
    The characteristics of the Solid-state Neutron Detector, under development for neutron-scattering measurements at the European Spallation Source, have been simulated with a Geant4-based computer code. The code models the interations of thermal neutrons and ionising radiation in the 6Li-doped scintillating glass of the detector, the production of scintillation light and the transport of optical, scintillation photons through the the scintillator, en route to the photo-cathode of the attached multi-anode photomultiplier. Factors which affect the optical-photon transport, such as surface finish, pixelation of the glass sheet, provision of a front reflector and optical coupling media are compared. Predictions of the detector response are compared with measurements made with neutron and gamma-ray sources, a collimated alpha source and finely collimated beams of 2.5 MeV protons and deuterons.Comment: Preprint 22 pages, 12 figures, published in NIM

    Vanadium based neutron beam monitor

    Get PDF
    A prototype quasiparasitic thermal neutron beam monitor based on isotropic neutron scattering from a thin natural vanadium foil and standard 3He proportional counters is conceptualized, designed, simulated, calibrated, and commissioned. The European Spallation Source designed to deliver the highest integrated neutron flux originating from a pulsed source is currently under construction in Lund, Sweden. The effort to investigate a vanadium based neutron beam monitor was triggered by a list of requirements for beam monitors permanently placed in the ESS neutron beams in order to provide reliable monitoring at complex beamlines low attenuation, linear response over a wide range of neutron fluxes, near to constant efficiency for neutron wavelengths in a range of 0.6 10 , calibration stability and the possibility to place the system in vacuum are all desirable characteristics. The scattering based prototype, employing a natural vanadium foil andstandard 3He proportional counters, was investigated at the V17 and V20 neutron beamlines of the Helmholtz Zentrum in Berlin, Germany, in several different geometrical configurations of the 3He proportional counters around the foil. Response linearity is successfully demonstrated for foil thicknesses ranging from 0.04 mm to 3.15 mm. Attenuation lower than 1 for thermal neutrons is demonstrated for the 0.04 mm and 0.125 mm foils. The geometries used for the experiment were simulated allowing for absolute flux calibration and establishing the possible range of efficiencies for various designs of the prototype. The operational flux limits for the beam monitor prototype were established as a dependency of the background radiation and prototype geometry. The herein demonstrated prototype monitors can be employed for neutron intensities ranging from 103 1010 n s

    A Very Intense Neutrino Super Beam Experiment for Leptonic CP Violation Discovery based on the European Spallation Source Linac: A Snowmass 2013 White Paper

    Full text link
    Very intense neutrino beams and large neutrino detectors will be needed in order to enable the discovery of CP violation in the leptonic sector. We propose to use the proton linac of the European Spallation Source currently under construction in Lund, Sweden to deliver, in parallel with the spallation neutron production, a very intense, cost effective and high performance neutrino beam. The baseline program for the European Spallation Source linac is that it will be fully operational at 5 MW average power by 2022, producing 2 GeV 2.86 ms long proton pulses at a rate of 14 Hz. Our proposal is to upgrade the linac to 10 MW average power and 28 Hz, producing 14 pulses/s for neutron production and 14 pulses/s for neutrino production. Furthermore, because of the high current required in the pulsed neutrino horn, the length of the pulses used for neutrino production needs to be compressed to a few μ\mus with the aid of an accumulator ring. A long baseline experiment using this Super Beam and a megaton underground Water Cherenkov detector located in existing mines 300-600 km from Lund will make it possible to discover leptonic CP violation at 5 σ\sigma significance level in up to 50% of the leptonic Dirac CP-violating phase range. This experiment could also determine the neutrino mass hierarchy at a significance level of more than 3 σ\sigma if this issue will not already have been settled by other experiments by then. The mass hierarchy performance could be increased by combining the neutrino beam results with those obtained from atmospheric neutrinos detected by the same large volume detector. This detector will also be used to measure the proton lifetime, detect cosmological neutrinos and neutrinos from supernova explosions. Results on the sensitivity to leptonic CP violation and the neutrino mass hierarchy are presented.Comment: 28 page

    Psychopolitics: Peter Sedgwick’s legacy for mental health movements

    Get PDF
    This paper re-considers the relevance of Peter Sedgwick's Psychopolitics (1982) for a politics of mental health. Psychopolitics offered an indictment of ‘anti-psychiatry’ the failure of which, Sedgwick argued, lay in its deconstruction of the category of ‘mental illness’, a gesture that resulted in a politics of nihilism. ‘The radical who is only a radical nihilist’, Sedgwick observed, ‘is for all practical purposes the most adamant of conservatives’. Sedgwick argued, rather, that the concept of ‘mental illness’ could be a truly critical concept if it was deployed ‘to make demands upon the health service facilities of the society in which we live’. The paper contextualizes Psychopolitics within the ‘crisis tendencies’ of its time, surveying the shifting welfare landscape of the subsequent 25 years alongside Sedgwick's continuing relevance. It considers the dilemma that the discourse of ‘mental illness’ – Sedgwick's critical concept – has fallen out of favour with radical mental health movements yet remains paradigmatic within psychiatry itself. Finally, the paper endorses a contemporary perspective that, while necessarily updating Psychopolitics, remains nonetheless ‘Sedgwickian’

    Light-yield response of liquid scintillators using 2–6 MeV tagged neutrons

    Get PDF
    Knowledge of the neutron light-yield response is crucial to the understanding of scintillator-based neutron detectors. In this work, neutrons from 2–6MeV have been used to study the scintillation light-yield response of the liquid scintillators NE 213A, EJ 305, EJ 331 and EJ 321P using event-by-event waveform digitization. Energy calibration was performed using a GEANT4 model to locate the edge positions of the Compton distributions produced by gamma-ray sources. The simulated light yield for neutrons from a PuBe source was compared to measured recoil proton distributions, where neutron energy was selected by time-of-flight. This resulted in an energy-dependent Birks parameterization to characterize the non-linear response to the lower energy neutrons. The NE 213A and EJ 305 results agree very well with existing data and are reproduced nicely by the simulation. New results for EJ 331 and EJ 321P, where the simulation also reproduces the data well, are presented

    Response of a Li-glass/multi-anode photomultiplier detector to collimated thermal-neutron beams

    Get PDF
    The response of a position-sensitive Li-glass scintillator detector being developed for thermal-neutron detection with 6 mm position resolution has been investigated using collimated beams of thermal neutrons. The detector was moved perpendicularly through the neutron beams in 0.5 to 1.0 mm horizontal and vertical steps. Scintillation was detected in an 8 X 8 pixel multi-anode photomultiplier tube on an event-by-event basis. In general, several pixels registered large signals at each neutron-beam location. The number of pixels registering signal above a set threshold was investigated, with the maximization of the single-hit efficiency over the largest possible area of the detector as the primary goal. At a threshold of ~50% of the mean of the full-deposition peak, ~80% of the events were registered in a single pixel, resulting in an effective position resolution of ~5 mm in X and Y. Lower thresholds generally resulted in events demonstrating higher pixel multiplicities, but these events could also be localized with ~5 mm position resolution.Comment: 23 pages, 8 figure

    Time- and energy-resolved effects in the boron-10 based Multi-Grid and helium-3 based thermal neutron detectors

    Get PDF
    The boron-10 based Multi-Grid detector is being developed as an alternative to helium-3 based neutron detectors. At the European Spallation Source, the detector will be used for time-of-flight neutron spectroscopy at cold to thermal neutron energies. The objective of this work is to investigate fine time- and energy-resolved effects of the Multi-Grid detector, down to a few μ\mueV, while comparing it to the performance of a typical helium-3 tube. Furthermore, it is to characterize differences between the detector technologies in terms of internal scattering, as well as the time reconstruction of ~ μ\mus short neutron pulses. The data were taken at the Helmholtz Zentrum Berlin, where the Multi-Grid detector and a helium-3 tube were installed at the ESS test beamline, V20. Using a Fermi-chopper, the neutron beam of the reactor was chopped into a few tens of μ\mus wide pulses before reaching the detector, located a few tens of cm downstream. The data of the measurements show an agreement between the derived and calculated neutron detection efficiency curve. The data also provide fine details on the effect of internal scattering, and how it can be reduced. For the first time, the chopper resolution was comparable to the timing resolution of the Multi-Grid detector. This allowed a detailed study of time- and energy resolved effects, as well as a comparison with a typical helium-3 tube.Comment: 37 pages, 21 figure
    • …
    corecore