2,225 research outputs found
Developing a practice-based research agenda for grief and bereavement care
We aimed to identify practitioners’ perspectives on current research priorities in grief and bereavement care. Grief and bereavement care providers were invited to participate in a three-phase Delphi study to create expert consensus on the top priorities for grief and bereavement research. A total of 140 participants completed Phase 1, 84 completed Phase 2, and 70 completed Phase 3. These top 10 research priorities form the basis of a practice-based research agenda for grief and bereavement care to enable researchers to respond to key issues in grief and bereavement care that will ultimately improve the lives of bereaved people
Restoration of tropical seagrass beds using wild bird fertilization and sediment regrading
Shallow water seagrass meadows are frequently damaged by recreational and commercial vessels. Severe injury occurs where propeller scarring, hull groundings and mooring anchors uproot entire plants, excavate sediments, and modify the biophysical properties of the substrate. In climax tropical seagrass communities dominated by Thalassia testudinum (turtlegrass), natural recovery in these disturbances can take several years to decades, and in some environmental conditions may not occur at all. During the recovery period, important ecological services provided by seagrasses are absent or substantially diminished and injured meadows can degrade further in response to natural disturbances, e.g. strong currents and severe storms. To determine if we could accelerate rehabilitation and prevent further degradation of injured turtlegrass meadows, we evaluated a restoration method called “modified compressed succession” using the fast-growing, opportunistic species Halodule wrightii to temporarily substitute ecological services for the slower-growing, climax species T. testudinum. In three experiments we showed statistically significant increases in density and coverage rates of H. wrightii transplants fertilized by wild bird feces as compared to unfertilized treatments. In one experiment, we further demonstrated that regrading excavated injuries with sediment-filled biodegradable tubes in combination with wild bird fertilization and H. wrightii transplants also accelerated seagrass recovery. Specific recommendations are presented for the best practical application of this restoration method in the calcium carbonate-based sediments of south Florida and the wider Caribbean region
Do cognitive aids reduce error rates in resuscitation team performance? : trial of emergency medicine protocols in simulation training (TEMPIST) in Australia
Background: Resuscitation of patients with time-critical and life-threatening illness represents a cognitive challenge for emergency room (ER) clinicians. We designed a cognitive aid, the Emergency Protocols Handbook, to simplify clinical management and team processes. Resuscitation guidelines were reformatted into simple, single step-bystep pathways. This Australian randomised controlled trial tested the effectiveness of this cognitive aid in a simulated ER environment by observing team error rates when current resuscitation guidelines were followed, with and without the handbook. Methods: Resuscitation teams were randomised to manage two scenarios with the handbook and two without in a high-fidelity simulation centre. Each scenario was video-recorded. The primary outcome measure was error rates (the number of errors made out of 15 key tasks per scenario). Key tasks varied by scenario. Each team completed four scenarios and was measured on 60 key tasks. Participants were surveyed regarding their perception of the usefulness of the handbook. Results: Twenty-one groups performed 84 ER crisis simulations. The unadjusted error rate in the handbook group was 18.8% (121/645) versus 38.9% (239/615) in the non-handbook group. There was a statistically significant reduction of 54.0% (95% CI 49.9–57.9) in the estimated percentage error rate when the handbook was available across all scenarios 17.9% (95% CI 14.4–22.0%) versus 38.9% (95% CI 34.2–43.9%). Almost all (97%) participants said they would want to use this cognitive aid during a real medical crisis situation. Conclusion: This trial showed that by following the step-by-step, linear pathways in the handbook, clinicians more than halved their teams’ rate of error, across four simulated medical crises. The handbook improves team performance and enables healthcare teams to reduce clinical error rates and thus reduce harm for patients
From Isotopes to TK Interviews: Towards Interdisciplinary Research in Fort Resolution and the Slave River Delta, Northwest Territories
Evolving research in Fort Resolution and the Slave River Delta, Northwest Territories, aims to improve understanding of how the natural ecosystem functions and responds to various environmental stressors, as well as to enhance the stewardship of natural resources and the capacity of local residents to respond to change. We seek to integrate approaches that span the natural and social sciences and traditional knowledge understandings of change, employing a research design developed in response to the concerns of a northern community. In doing so, we have strived for a research process that is collaborative, interdisciplinary, policy-oriented, and reflective of northern priorities. These elements characterize the new northern research paradigm increasingly promoted by various federal funding agencies, northern partners, and communities. They represent a holistic perspective in the pursuit of solutions to address complex environmental and socioeconomic concerns about impacts of climate change and resource development on northern societies. However, efforts to fulfill the objectives of this research paradigm are associated with a host of on-the-ground challenges. These challenges include (but are not restricted to) developing effective community partnerships and collaboration and documenting change through interdisciplinary approaches. Here we provide an overview of the components that comprise our interdisciplinary research program and offer an accounting of our formative experiences in confronting these challenges
Drift Macroalgal Distribution In Northern Gulf of Mexico Seagrass Meadows
Drift macroalgae, often found in clumps or mats adjacent to or within seagrass beds, can increase the value of seagrass beds as habitat for nekton via added food resources and structural complexity. But, as algal biomass increases, it can also decrease light availability, inhibit faunal movements, smother benthic communities, and contribute to hypoxia, all of which can reduce nekton abundance. We quantified the abundance and distribution of drift macroalgae within seagrass meadows dominated by turtle grass Thalassia testudinum across the northern Gulf of Mexico and compared seagrass characteristics to macroalgal biomass and distribution. Drift macroalgae were most abundant in areas with higher seagrass shoot densities and intermediate canopy heights. We did not find significant relationships between algal biomass and point measures of salinity, temperature, or depth. The macroalgal genera Laurencia and Gracilaria were present across the study region, Agardhiella and Digenia were collected in the western Gulf of Mexico, and Acanthophora was collected in the eastern Gulf of Mexico. Our survey revealed drift algae to be abundant and widespread throughout seagrass meadows in the northern Gulf of Mexico, which likely influences the habitat value of seagrass ecosystems
Recommended from our members
Phase-Coherent Synthesis of Optical Frequencies and Waveforms
Precision phase control of an ultrawide-bandwidth optical-frequency comb has produced remarkable and unexpected progress in both areas of optical-frequency metrology and ultrafast optics. A frequency comb (with 100 MHz spacing) spanning an entire optical octave (\u3e300 THz) has been produced, corresponding to millions of marks on a frequency “ruler” that are stable at the Hz level. The precision comb has been used to establish a simple optical clock based on an optical transition of iodine molecules, providing an rf clock signal with a frequency stability comparable to that of an optical standard, and which is superior to almost all conventional rf sources. To realize a high-power cw optical frequency synthesizer, a separate, widely tunable single-frequency cw laser has been employed to randomly access the stabilized optical comb and lock to any desired comb component. Carrier-envelope phase stabilization of few-cycle optical pulses has recently been realized. This advance in femtosecond technology is important for both extreme non-linear optics and optical-frequency metrology. With two independent femtosecond lasers, we have not only synchronized their relative pulse timing at the femtosecond level, but have also phase-locked their carrier frequencies, thus establishing phase coherence between the two lasers. By coherently stitching the optical bandwidth together, a “synthesized” pulse has been generated with its 2nd-order autocorrelation signal displaying a shorter width than those of the two “parent” lasers
Genome sequence of an Australian kangaroo, Macropus eugenii, provides insight into the evolution of mammalian reproduction and development.
BACKGROUND: We present the genome sequence of the tammar wallaby, Macropus eugenii, which is a member of the kangaroo family and the first representative of the iconic hopping mammals that symbolize Australia to be sequenced. The tammar has many unusual biological characteristics, including the longest period of embryonic diapause of any mammal, extremely synchronized seasonal breeding and prolonged and sophisticated lactation within a well-defined pouch. Like other marsupials, it gives birth to highly altricial young, and has a small number of very large chromosomes, making it a valuable model for genomics, reproduction and development. RESULTS: The genome has been sequenced to 2 × coverage using Sanger sequencing, enhanced with additional next generation sequencing and the integration of extensive physical and linkage maps to build the genome assembly. We also sequenced the tammar transcriptome across many tissues and developmental time points. Our analyses of these data shed light on mammalian reproduction, development and genome evolution: there is innovation in reproductive and lactational genes, rapid evolution of germ cell genes, and incomplete, locus-specific X inactivation. We also observe novel retrotransposons and a highly rearranged major histocompatibility complex, with many class I genes located outside the complex. Novel microRNAs in the tammar HOX clusters uncover new potential mammalian HOX regulatory elements. CONCLUSIONS: Analyses of these resources enhance our understanding of marsupial gene evolution, identify marsupial-specific conserved non-coding elements and critical genes across a range of biological systems, including reproduction, development and immunity, and provide new insight into marsupial and mammalian biology and genome evolution
The role of individual protein kinase C isoforms in mouse mast cell function and their targeting by the immunomodulatory parasitic worm product, ES-62
ES-62, a glycoprotein secreted by the filarial nematode Acanthocheilonema viteae, has been shown to modulate the immune system through subversion of signal transduction pathways operating in various immune system cells. With respect to human bone marrow-derived mast cells (BMMCs), ES-62 was previously shown to inhibit FcϵRI-mediated mast cell functional responses such as degranulation and pro-inflammatory cytokine release through a mechanism involving the degradation of PKC-α. At the same time, it was noted that the worm product was able to degrade certain other PKC isoforms but the significance of this was uncertain. In this study, we have employed PKC isoform KO mice to investigate the role of PKC-α, -β -ϵ, and -θ in mouse BMMCs in order to establish their involvement in mast cell-mediated responses and also, if their absence impacts on ES-62’s activity. The data obtained support that in response to antigen cross-linking of IgE bound to FcϵRI, pro-inflammatory cytokine release is controlled in part by a partnership between one conventional and one novel isoform with PKC-α and -θ acting as positive regulators of IL-6 and TNF-α production, while PKC-β and ϵ act as negative regulators of such cytokines. Furthermore, ES-62 appears to target certain other PKC isoforms in addition to PKC-α to inhibit cytokine release and this may enable it to more efficiently inhibit mast cell responses
- …