195 research outputs found

    Design of programs to train pelvic floor muscles in men with urinary dysfunction: systematic review

    Get PDF
    Pelvic floor muscle training (PFMT) is a first line conservative treatment for men with urinary dysfunction, but reports of its efficacy are variable. This study aimed to systematically review the content of PFMT programs used for urinary dysfunction in men.Electronic databases (PubMed, CINAHL, EMBASE, Cochrane, PEDro) were searched for studies that used PFMT in the treatment of adult men with urinary dysfunction. Details of PFMT treatment sessions and home exercise protocols were extracted. Criteria specific to PFMT were developed, based on the Consensus on Exercise Reporting Template, and applied to all studies to measure the comprehensiveness of the PFMT description in the manuscript.Results from the 108 included studies indicate substantial heterogeneity in both the content of PFMT and the quality of reporting of the components of the exercise regimes. There was notable disparity in the muscles targeted by the interventions (and few focused on urethral control despite the use in management of urinary conditions) and the intensity of the programs (eg, 18-240 contractions per day). Most studies were missing key details of description of the PFMT programs (eg, the position in which the pelvic floor muscle [PFM] contraction was taught and how it was assessed, methods used to ensure exercise adherence).Variation in content of PFMT programs is likely to contribute to variation in the reported efficacy for management of urinary dysfunction in men, and unclear description of the details of the evaluated programs makes it difficult to identify the effective/ineffective components. PROSPERO registration number CRD42017071038

    Quantifying donor-to-donor variation in macrophage responses to the human fungal pathogen Cryptococcus neoformans

    Get PDF
    Cryptococcosis remains the leading cause of fungal meningitis worldwide, caused primarily by the pathogen Cryptococcus neoformans. Symptomatic cryptococcal infections typically affect immunocompromised patients. However, environmental exposure to cryptococcal spores is ubiquitous and most healthy individuals are thought to harbor infections from early childhood onwards that are either resolved, or become latent. Since macrophages are a key host cell for cryptococcal infection, we sought to quantify the extent of individual variation in this early phagocyte response within a small cohort of healthy volunteers with no reported immunocompromising conditions. We show that rates of both intracellular fungal proliferation and non-lytic expulsion (vomocytosis) are remarkably variable between individuals. However, we demonstrate that neither gender, in vitro host inflammatory cytokine profiles, nor polymorphisms in several key immune genes are responsible for this variation. Thus the data we present serve to quantify the natural variation in macrophage responses to this important human pathogen and will hopefully provide a useful "benchmark" for the research community

    Design, Delivery, Maintenance, and Outcomes of Peer-to-Peer Online Support Groups for People With Chronic Musculoskeletal Disorders: Systematic Review

    Get PDF
    Background: Online support groups (OSGs) are one way for people with chronic diseases, their family or friends, and health professionals to communicate, gain information, and provide social support. As the number of peer-to-peer OSGs for chronic musculoskeletal conditions grows, it is important to gain insight into the different designs of groups available, who is accessing them, if and how they may be effective, and what strategies are being used to implement or increase consumer engagement. Objective: The objectives of this systematic review of people with musculoskeletal conditions were to (1) describe the design features (functions, usage options, moderation, and expert input) of peer-to-peer OSGs, (2) describe the characteristics of the individuals using peer-to-peer OSGs, (3) synthesize the evidence on outcomes of participation, and (4) identify strategies used in the delivery and maintenance of OSGs. Methods: A search comprising terms related to the population (people with musculoskeletal disorders) and the intervention (peer-to-peer OSGs) was conducted in 6 databases. Results were filtered from 1990 (internet inception) to February 2019. Studies identified in the search were screened according to predefined eligibility criteria using a 2-step process. Quantitative studies were appraised by 2 reviewers using the Risk Of Bias In Non-Randomized Studies of Interventions tool. Qualitative studies were appraised by 2 different reviewers using the Critical Appraisal Skills Programme checklist. Extracted data were synthesized narratively. Results: We examined 21 studies with low to moderate risk of bias. Of these studies, 13 studies included OSGs hosted on public platforms, 11 studies examined OSGs that were conducted in English, and 6 studies used moderators or peer leaders to facilitate engagement. Studies either reported the number of OSG members (n=1985 across all studies) or the number of posts (range: 223-200,000). The majority of OSG members were females who were not full-time employees and with varied levels of education. There were no randomized controlled trials measuring the efficacy of OSGs. Qualitative and quantitative studies identified empowerment, social support, self-management behavior, and health literacy as primary constructs to measure OSG efficacy. Neutral or marginal improvement was reported in these constructs. Sharing experiences and a greater level of engagement appeared to have an important influence on OSGs efficacy. The extent to which members posted on the website influenced engagement. Conclusions: Across a diverse range of designs, languages, included features, and delivery platforms, peer-to-peer OSGs for chronic musculoskeletal conditions attract predominantly female participants of all ages and education levels. The level of participation of a member appears to be related to their perceived benefit, health literacy, and empowerment. Future studies are needed to identify which design and maintenance strategies have superior efficacy and whether there are concomitant improvements in health outcomes for people with chronic musculoskeletal conditions resulting from participation in OSGs

    Store-Operated Ca2+ Entry (SOCE) and Purinergic Receptor-Mediated Ca2+ Homeostasis in Murine bv2 Microglia Cells: Early Cellular Responses to ATP-Mediated Microglia Activation

    Get PDF
    Microglia activation is a neuroinflammatory response to parenchymal damage with release of intracellular metabolites, e.g., purines, and signaling molecules from damaged cells. Extracellular purines can elicit Ca(2+)-mediated microglia activation involving P2X/P2Y receptors with metabotropic (P2Y) and ionotropic (P2X) cell signaling in target cells. Such microglia activation results in increased phagocytic activity, activation of their inflammasome and release of cytokines to sustain neuroinflammatory (so-called M1/M2 polarization). ATP-induced activation of ionotropic P2X4 and P2X7 receptors differentially induces receptor-operated Ca(2+) entry (ROCE). Although store-operated Ca(2+) entry (SOCE) was identified to modulate ROCE in primary microglia, its existence and role in one of the most common murine microglia cell line, BV2, is unknown. To dissect SOCE from ROCE in BV2 cells, we applied high-resolution multiphoton Ca(2+) imaging. After depleting internal Ca(2+) stores, SOCE was clearly detectable. High ATP concentrations (1 mM) elicited sustained increases in intracellular [Ca(2+)]i whereas lower concentrations (≤100 μM) also induced Ca(2+) oscillations. These differential responses were assigned to P2X7 and P2X4 activation, respectively. Pharmacologically inhibiting P2Y and P2X responses did not affect SOCE, and in fact, P2Y-responses were barely detectable in BV2 cells. STIM1S content was significantly upregulated by 1 mM ATP. As P2X-mediated Ca(2+) oscillations were rare events in single cells, we implemented a high-content screening approach that allows to record Ca(2+) signal patterns from a large number of individual cells at lower optical resolution. Using automated classifier analysis, several drugs (minocycline, U73122, U73343, wortmannin, LY294002, AZ10606120) were tested on their profile to act on Ca(2+) oscillations (P2X4) and sustained [Ca(2+)]i increases. We demonstrate specific drug effects on purinergic Ca(2+) pathways and provide new pharmacological insights into Ca(2+) oscillations in BV2 cells. For example, minocycline inhibits both P2X7- and P2X4-mediated Ca(2+)-responses, and this may explain its anti-inflammatory action in neuroinflammatory disease. As a technical result, our novel automated bio-screening approach provides a biomedical engineering platform to allow high-content drug library screens to study neuro-inflammation in vitro

    Characterizing the Mechanisms of Nonopsonic Uptake of Cryptococci by Macrophages

    Get PDF
    The pathogenic fungus Cryptococcus enters the human host via inhalation into the lung and is able to reside in a niche environment that is serum- (opsonin) limiting. Little is known about the mechanism by which nonopsonic phagocytosis occurs via phagocytes in such situations. Using a combination of soluble inhibitors of phagocytic receptors and macrophages derived from knockout mice and human volunteers, we show that uptake of nonopsonized Cryptococcus neoformans and C. gattii via the mannose receptor is dependent on macrophage activation by cytokines. However, although uptake of C. neoformans is via both dectin-1 and dectin-2, C. gattii uptake occurs largely via dectin-1. Interestingly, dectin inhibitors also blocked phagocytosis of unopsonized Cryptococci in wax moth (Galleria mellonella) larvae and partially protected the larvae from infection by both fungi, supporting a key role for host phagocytes in augmenting early disease establishment. Finally, we demonstrated that internalization of nonopsonized Cryptococci is not accompanied by the nuclear translocation of NF-κB or its concomitant production of proinflammatory cytokines such as TNF-α. Thus, nonopsonized Cryptococci are recognized by mammalian phagocytes in a manner that minimizes proinflammatory cytokine production and potentially facilitates fungal pathogenesis

    Surviving rather than thriving: Understanding the experiences of women coaches using a theory of gendered social well-being

    Get PDF
    In shifting our gaze to the sociological impact of being in the minority, the purpose of this study was to substantiate a model of gendered social well-being to appraise women coaches’ circumstances, experiences and challenges as embedded within the social structures and relations of their profession. This is drawn on indepth interviews with a sample of head women coaches within the UK. The findings demonstrate that personal lives, relationships, social and family commitments were sidelined by many of the participants in order to meet the expectations of being a (woman) coach. We locate these experiences in the organisational practices of high performance sport which hinder women coaches from having meaningful control over their lives. The complexities of identity are also revealed through the interplay of gender with (dis)ability, age and whiteness as evidence of hegemonic femininity within the coaching profession. Consequently, for many women, coaching is experienced as a ‘developmental dead-end’

    Total cardiovascular or fatal events in people with type 2 diabetes and cardiovascular risk factors treated with dulaglutide in the REWIND trail:a post hoc analysis

    Get PDF
    Abstract Background The Researching cardiovascular Events with a Weekly INcretin in Diabetes (REWIND) double blind randomized trial demonstrated that weekly subcutaneous dulaglutide 1.5 mg, a glucagon like peptide-1 receptor agonist, versus matched placebo reduced the first outcome of major adverse cardiovascular event (MACE), cardiovascular death, nonfatal myocardial infarction or nonfatal stroke (594 versus 663 events) in 9901 persons with type 2 diabetes and either chronic cardiovascular disease or risk factors, and followed during 5.4 years. These findings were based on a time-to-first-event analysis and preclude relevant information on the burden of total major events occurring during the trial. This analysis reports on the total cardiovascular or fatal events in the REWIND participants Methods We compared the total incidence of MACE or non-cardiovascular deaths, and the total incidence of expanded MACE (MACE, unstable angina, heart failure or revascularization) or non-cardiovascular deaths between participants randomized to dulaglutide and those randomized to placebo. Incidences were expressed as number per 1000 person-years. Hazard ratios (HR) were calculated using the conditional time gap and proportional means models. Results Participants had a mean age of 66.2 years, 46.3% were women and 31% had previous cardiovascular disease. During the trial there were 1972 MACE or non-cardiovascular deaths and 3673 expanded MACE or non-cardiovascular deaths. The incidence of total MACE or non-cardiovascular deaths in the dulaglutide and placebo groups was 35.8 and 40.3 per 1000 person-years, respectively [absolute reduction = 4.5 per 1000 person-years; conditional time gap HR 0.90 (95% CI, 0.82–0.98) p = 0.020, and proportional means HR 0.89 (95% CI, 0.80–0.98) p = 0.022]. The incidence of total expanded MACE or non-cardiovascular deaths in the dulaglutide and placebo groups was 67.1 and 74.7 per 1000 person-years, respectively [absolute reduction = 7.6 per 1000 person-years; conditional time gap HR 0.93 (95% CI, 0.87–0.99) p = 0.023, and proportional means HR 0.90 (95% CI, 0.82–0.99) p = 0.028]. Conclusions These findings suggest that weekly subcutaneous dulaglutide reduced total cardiovascular or fatal event burden in people with type 2 diabetes at moderate cardiovascular risk. Clinical Trial Registration: https://www.clinicaltrials.gouv . Unique Identifier NCT01394952)

    Molecular and Cellular Basis of Microvascular Perfusion Deficits Induced by Clostridium perfringens and Clostridium septicum

    Get PDF
    Reduced tissue perfusion leading to tissue ischemia is a central component of the pathogenesis of myonecrosis caused by Clostridium perfringens. The C. perfringens α-toxin has been shown capable of inducing these changes, but its potential synergy with perfringolysin O (θ-toxin) is less well understood. Similarly, Clostridium septicum is a highly virulent causative agent of spontaneous gas gangrene, but its effect on the microcirculation has not been examined. Therefore, the aim of this study was to use intravital microscopy to examine the effects of C. perfringens and C. septicum on the functional microcirculation, coupled with the use of isogenic toxin mutants to elucidate the role of particular toxins in the resultant microvascular perfusion deficits. This study represents the first time this integrated approach has been used in the analysis of the pathological response to clostridial toxins. Culture supernatants from wild-type C. perfringens induced extensive cell death within 30 min, as assessed by in vivo uptake of propidium iodide. Furthermore, significant reductions in capillary perfusion were observed within 60 min. Depletion of either platelets or neutrophils reduced the alteration in perfusion, consistent with a role for these blood-borne cells in obstructing perfusion. In addition, mutation of either the α-toxin or perfringolysin O structural genes attenuated the reduction in perfusion, a process that was reversed by genetic complementation. C. septicum also induced a marked reduction in perfusion, with the degree of microvascular compromise correlating with the level of the C. septicum α-toxin. Together, these data indicate that as a result of its ability to produce α-toxin and perfringolysin O, C. perfringens rapidly induces irreversible cellular injury and a marked reduction in microvascular perfusion. Since C. septicum induces a similar reduction in microvascular perfusion, it is postulated that this function is central to the pathogenesis of clostridial myonecrosis, irrespective of the causative bacterium

    Glycosylation status of the C. albicans cell wall affects the efficiency of neutrophil phagocytosis and killing but not cytokine signaling

    Get PDF
    The cell wall of the opportunistic human fungal pathogen, Candida albicans is a complex, layered network of rigid structural polysaccharides composed of β-glucans and chitin that is covered with a fibrillar matrix of highly glycosylated mannoproteins. Poly-morphonuclear cells (PMNs, neutrophils) are the most prevalent circulating phagocytic leukocyte in peripheral blood and they are pivotal in the clearance of invading fungal cells from tissues. The importance of cell-wall mannans for the recognition and uptake of C. albicans by human PMNs was therefore investigated. N- and O-glycosylation-deficient mutants were attenuated in binding and phagocytosis by PMNs and this was associated with reduced killing of C. albicans yeast cells. No differences were found in the production of the respiratory burst enzyme myeloperoxidase (MPO) and the neutrophil chemokine IL-8 in PMNs exposed to control and glycosylation-deficient C. albicans strains. Thus, the significant decrease in killing of glycan-deficient C. albicans strains by PMNs is a consequence of a marked reduction in phagocytosis rather than changes in the release of inflammatory mediators by PMNs
    corecore