10 research outputs found

    Training and Comparison of nnU-Net and DeepMedic Methods for Autosegmentation of Pediatric Brain Tumors

    Full text link
    Brain tumors are the most common solid tumors and the leading cause of cancer-related death among children. Tumor segmentation is essential in surgical and treatment planning, and response assessment and monitoring. However, manual segmentation is time-consuming and has high inter-operator variability, underscoring the need for more efficient methods. We compared two deep learning-based 3D segmentation models, DeepMedic and nnU-Net, after training with pediatric-specific multi-institutional brain tumor data using based on multi-parametric MRI scans.Multi-parametric preoperative MRI scans of 339 pediatric patients (n=293 internal and n=46 external cohorts) with a variety of tumor subtypes, were preprocessed and manually segmented into four tumor subregions, i.e., enhancing tumor (ET), non-enhancing tumor (NET), cystic components (CC), and peritumoral edema (ED). After training, performance of the two models on internal and external test sets was evaluated using Dice scores, sensitivity, and Hausdorff distance with reference to ground truth manual segmentations. Dice score for nnU-Net internal test sets was (mean +/- SD (median)) 0.9+/-0.07 (0.94) for WT, 0.77+/-0.29 for ET, 0.66+/-0.32 for NET, 0.71+/-0.33 for CC, and 0.71+/-0.40 for ED, respectively. For DeepMedic the Dice scores were 0.82+/-0.16 for WT, 0.66+/-0.32 for ET, 0.48+/-0.27, for NET, 0.48+/-0.36 for CC, and 0.19+/-0.33 for ED, respectively. Dice scores were significantly higher for nnU-Net (p<=0.01). External validation of the trained nnU-Net model on the multi-institutional BraTS-PEDs 2023 dataset revealed high generalization capability in segmentation of whole tumor and tumor core with Dice scores of 0.87+/-0.13 (0.91) and 0.83+/-0.18 (0.89), respectively. Pediatric-specific data trained nnU-Net model is superior to DeepMedic for whole tumor and subregion segmentation of pediatric brain tumors

    Unsupervised Machine Learning Using K-Means Identifies Radiomic Subgroups of Pediatric Low-Grade Gliomas That Correlate With Key Molecular Markers

    Get PDF
    Introduction: Despite advancements in molecular and histopathologic characterization of pediatric low-grade gliomas (pLGGs), there remains significant phenotypic heterogeneity among tumors with similar categorizations. We hypothesized that an unsupervised machine learning approach based on radiomic features may reveal distinct pLGG imaging subtypes. Methods: Multi-parametric MR images (T1 pre- and post-contrast, T2, and T2 FLAIR) from 157 patients with pLGGs were collected and 881 quantitative radiomic features were extracted from tumorous region. Clustering was performed using K-means after applying principal component analysis (PCA) for feature dimensionality reduction. Molecular and demographic data was obtained from the PedCBioportal and compared between imaging subtypes. Results: K-means identified three distinct imaging-based subtypes. Subtypes differed in mutational frequencies of BRAF (p \u3c 0.05) as well as the gene expression of BRAF (p\u3c0.05). It was also found that age (p \u3c 0.05), tumor location (p \u3c 0.01), and tumor histology (p \u3c 0.0001) differed significantly between the imaging subtypes. Conclusion: In this exploratory work, it was found that clustering of pLGGs based on radiomic features identifies distinct, imaging-based subtypes that correlate with important molecular markers and demographic details. This finding supports the notion that incorporation of radiomic data could augment our ability to better characterize pLGGs

    The Brain Tumor Segmentation (BraTS) Challenge 2023: Focus on Pediatrics (CBTN-CONNECT-DIPGR-ASNR-MICCAI BraTS-PEDs)

    Full text link
    Pediatric tumors of the central nervous system are the most common cause of cancer-related death in children. The five-year survival rate for high-grade gliomas in children is less than 20\%. Due to their rarity, the diagnosis of these entities is often delayed, their treatment is mainly based on historic treatment concepts, and clinical trials require multi-institutional collaborations. The MICCAI Brain Tumor Segmentation (BraTS) Challenge is a landmark community benchmark event with a successful history of 12 years of resource creation for the segmentation and analysis of adult glioma. Here we present the CBTN-CONNECT-DIPGR-ASNR-MICCAI BraTS-PEDs 2023 challenge, which represents the first BraTS challenge focused on pediatric brain tumors with data acquired across multiple international consortia dedicated to pediatric neuro-oncology and clinical trials. The BraTS-PEDs 2023 challenge focuses on benchmarking the development of volumentric segmentation algorithms for pediatric brain glioma through standardized quantitative performance evaluation metrics utilized across the BraTS 2023 cluster of challenges. Models gaining knowledge from the BraTS-PEDs multi-parametric structural MRI (mpMRI) training data will be evaluated on separate validation and unseen test mpMRI dataof high-grade pediatric glioma. The CBTN-CONNECT-DIPGR-ASNR-MICCAI BraTS-PEDs 2023 challenge brings together clinicians and AI/imaging scientists to lead to faster development of automated segmentation techniques that could benefit clinical trials, and ultimately the care of children with brain tumors

    Radiomics for characterization of the glioma immune microenvironment

    No full text
    Abstract Increasing evidence suggests that besides mutational and molecular alterations, the immune component of the tumor microenvironment also substantially impacts tumor behavior and complicates treatment response, particularly to immunotherapies. Although the standard method for characterizing tumor immune profile is through performing integrated genomic analysis on tissue biopsies, the dynamic change in the immune composition of the tumor microenvironment makes this approach not feasible, especially for brain tumors. Radiomics is a rapidly growing field that uses advanced imaging techniques and computational algorithms to extract numerous quantitative features from medical images. Recent advances in machine learning methods are facilitating biological validation of radiomic signatures and allowing them to “mine” for a variety of significant correlates, including genetic, immunologic, and histologic data. Radiomics has the potential to be used as a non-invasive approach to predict the presence and density of immune cells within the microenvironment, as well as to assess the expression of immune-related genes and pathways. This information can be essential for patient stratification, informing treatment decisions and predicting patients’ response to immunotherapies. This is particularly important for tumors with difficult surgical access such as gliomas. In this review, we provide an overview of the glioma microenvironment, describe novel approaches for clustering patients based on their tumor immune profile, and discuss the latest progress on utilization of radiomics for immune profiling of glioma based on current literature

    Unsupervised machine learning using K-means identifies radiomic subgroups of pediatric low-grade gliomas that correlate with key molecular markers

    Get PDF
    Introduction: Despite advancements in molecular and histopathologic characterization of pediatric low-grade gliomas (pLGGs), there remains significant phenotypic heterogeneity among tumors with similar categorizations. We hypothesized that an unsupervised machine learning approach based on radiomic features may reveal distinct pLGG imaging subtypes. Methods: Multi-parametric MR images (T1 pre- and post-contrast, T2, and T2 FLAIR) from 157 patients with pLGGs were collected and 881 quantitative radiomic features were extracted from tumorous region. Clustering was performed using K-means after applying principal component analysis (PCA) for feature dimensionality reduction. Molecular and demographic data was obtained from the PedCBioportal and compared between imaging subtypes. Results: K-means identified three distinct imaging-based subtypes. Subtypes differed in mutational frequencies of BRAF (p < 0.05) as well as the gene expression of BRAF (p<0.05). It was also found that age (p < 0.05), tumor location (p < 0.01), and tumor histology (p < 0.0001) differed significantly between the imaging subtypes. Conclusion: In this exploratory work, it was found that clustering of pLGGs based on radiomic features identifies distinct, imaging-based subtypes that correlate with important molecular markers and demographic details. This finding supports the notion that incorporation of radiomic data could augment our ability to better characterize pLGGs

    Towards Consistency in Pediatric Brain Tumor Measurements: Challenges, Solutions, and the Role of AI-Based Segmentation

    Full text link
    MR imaging is central to the assessment of tumor burden and changes over time in neuro-oncology. Several response assessment guidelines have been set forth by the Response Assessment in Pediatric Neuro-Oncology (RAPNO) working groups in different tumor histologies; however, the visual delineation of tumor components using MRIs is not always straightforward, and complexities not currently addressed by these criteria can introduce inter- and intra-observer variability in manual assessments. Differentiation of non-enhancing tumor from peritumoral edema, mild enhancement from absence of enhancement, and various cystic components can be challenging; particularly given a lack of sufficient and uniform imaging protocols in clinical practice. Automated tumor segmentation with artificial intelligence (AI) may be able to provide more objective delineations, but rely on accurate and consistent training data created manually (ground truth). Herein, this paper reviews existing challenges and potential solutions to identifying and defining subregions of pediatric brain tumors (PBTs) that are not explicitly addressed by current guidelines. The goal is to assert the importance of defining and adopting criteria for addressing these challenges, as it will be critical to achieving standardized tumor measurements and reproducible response assessment in PBTs, ultimately leading to more precise outcome metrics and accurate comparisons among clinical studies

    Naïve CD8 T cell IFNγ responses to a vacuolar antigen are regulated by an inflammasome-independent NLRP3 pathway and Toxoplasma gondii ROP5

    No full text
    Host resistance to Toxoplasma gondii relies on CD8 T cell IFNγ responses, which if modulated by the host or parasite could influence chronic infection and parasite transmission between hosts. Since host-parasite interactions that govern this response are not fully elucidated, we investigated requirements for eliciting naïve CD8 T cell IFNγ responses to a vacuolar resident antigen of T. gondii, TGD057. Naïve TGD057 antigen-specific CD8 T cells (T57) were isolated from transnuclear mice and responded to parasite-infected bone marrow-derived macrophages (BMDMs) in an antigen-dependent manner, first by producing IL-2 and then IFNγ. T57 IFNγ responses to TGD057 were independent of the parasite's protein export machinery ASP5 and MYR1. Instead, host immunity pathways downstream of the regulatory Immunity-Related GTPases (IRG), including partial dependence on Guanylate-Binding Proteins, are required. Multiple T. gondii ROP5 isoforms and allele types, including 'avirulent' ROP5A from clade A and D parasite strains, were able to suppress CD8 T cell IFNγ responses to parasite-infected BMDMs. Phenotypic variance between clades B, C, D, F, and A strains suggest T57 IFNγ differentiation occurs independently of parasite virulence or any known IRG-ROP5 interaction. Consistent with this, removal of ROP5 is not enough to elicit maximal CD8 T cell IFNγ production to parasite-infected cells. Instead, macrophage expression of the pathogen sensors, NLRP3 and to a large extent NLRP1, were absolute requirements. Other members of the conventional inflammasome cascade are only partially required, as revealed by decreased but not abrogated T57 IFNγ responses to parasite-infected ASC, caspase-1/11, and gasdermin D deficient cells. Moreover, IFNγ production was only partially reduced in the absence of IL-12, IL-18 or IL-1R signaling. In summary, T. gondii effectors and host machinery that modulate parasitophorous vacuolar membranes, as well as NLR-dependent but inflammasome-independent pathways, determine the full commitment of CD8 T cells IFNγ responses to a vacuolar antigen
    corecore