
Thomas Jefferson University Thomas Jefferson University 

Jefferson Digital Commons Jefferson Digital Commons 

Department of Neurosurgery Faculty Papers Department of Neurosurgery 

12-23-2022 

Unsupervised Machine Learning Using K-Means Identifies Unsupervised Machine Learning Using K-Means Identifies 

Radiomic Subgroups of Pediatric Low-Grade Gliomas That Radiomic Subgroups of Pediatric Low-Grade Gliomas That 

Correlate With Key Molecular Markers Correlate With Key Molecular Markers 

Debanjan Haldar 

Anahita Fathi Kazerooni 

Sherjeel Arif 

Ariana Familiar 

Rachel Madhogarhia 

See next page for additional authors 

Follow this and additional works at: https://jdc.jefferson.edu/neurosurgeryfp 

 Part of the Neurology Commons, and the Surgery Commons 

Let us know how access to this document benefits you 
This Article is brought to you for free and open access by the Jefferson Digital Commons. The Jefferson Digital 
Commons is a service of Thomas Jefferson University's Center for Teaching and Learning (CTL). The Commons is 
a showcase for Jefferson books and journals, peer-reviewed scholarly publications, unique historical collections 
from the University archives, and teaching tools. The Jefferson Digital Commons allows researchers and interested 
readers anywhere in the world to learn about and keep up to date with Jefferson scholarship. This article has been 
accepted for inclusion in Department of Neurosurgery Faculty Papers by an authorized administrator of the 
Jefferson Digital Commons. For more information, please contact: JeffersonDigitalCommons@jefferson.edu. 

https://jdc.jefferson.edu/
https://jdc.jefferson.edu/neurosurgeryfp
https://jdc.jefferson.edu/neurosurgery
https://jdc.jefferson.edu/neurosurgeryfp?utm_source=jdc.jefferson.edu%2Fneurosurgeryfp%2F200&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/692?utm_source=jdc.jefferson.edu%2Fneurosurgeryfp%2F200&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/706?utm_source=jdc.jefferson.edu%2Fneurosurgeryfp%2F200&utm_medium=PDF&utm_campaign=PDFCoverPages
https://library.jefferson.edu/forms/jdc/index.cfm
http://www.jefferson.edu/university/teaching-learning.html/


Authors Authors 
Debanjan Haldar, Anahita Fathi Kazerooni, Sherjeel Arif, Ariana Familiar, Rachel Madhogarhia, Nastaran 
Khalili, Sina Bagheri, Hannah Anderson, Ibraheem Salman Shaikh, Aria Mahtabfar, Meen Chul Kim, Wenxin 
Tu, Jefferey Ware, Arastoo Vossough, Christos Davatzikos, Phillip B Storm, Adam Resnick, and Ali 
Nabavizadeh 



Neoplasia 36 (2023) 100869 

Contents lists available at ScienceDirect 

Neoplasia 

journal homepage: www.elsevier.com/locate/neo 

Unsupervised machine learning using K-means identifies radiomic 

subgroups of pediatric low-grade gliomas that correlate with key molecular 

markers 

Debanjan Haldar a , b , Anahita Fathi Kazerooni b , c , Sherjeel Arif b , c , Ariana Familiar b , 

Rachel Madhogarhia 

b , c , Nastaran Khalili b , c , Sina Bagheri b , c , Hannah Anderson 

b , c , 

Ibraheem Salman Shaikh 

d , Aria Mahtabfar b , f , Meen Chul Kim 

b , Wenxin Tu 

e , Jefferey Ware 

c , 

Arastoo Vossough 

b , c , Christos Davatzikos c , Phillip B. Storm 

b , g , Adam Resnick 

b , 

Ali Nabavizadeh 

b , c , ∗ 

a Perelman School of Medicine of the University of Pennsylvania, Philadelphia, Pennsylvania, USA 
b Center for Data-Driven Discovery in Biomedicine (D3b), Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA 
c Department of Radiology, Hospital of University of Pennsylvania, Perelman School of Medicine of the University of Pennsylvania, Philadelphia, Pennsylvania, USA 
d Department of Medicine, Crozer-Chester Medical Center, Chester, Pennsylvania, USA 
e College of Arts and Sciences, University of Pennsylvania, Philadelphia, Pennsylvania, USA 
f Department of Neurological Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, USA 
g Division of Neurological Surgery, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA 

a r t i c l e i n f o 

Keywords: 

Radiomics 

Radiogenomics 

Pediatric low-grade glioma 

Unsupervised machine learning 

a b s t r a c t 

Introduction: Despite advancements in molecular and histopathologic characterization of pediatric low-grade 

gliomas (pLGGs), there remains significant phenotypic heterogeneity among tumors with similar categorizations. 

We hypothesized that an unsupervised machine learning approach based on radiomic features may reveal distinct 

pLGG imaging subtypes. 

Methods: Multi-parametric MR images (T1 pre- and post-contrast, T2, and T2 FLAIR) from 157 patients with 

pLGGs were collected and 881 quantitative radiomic features were extracted from tumorous region. Clustering 

was performed using K-means after applying principal component analysis (PCA) for feature dimensionality re- 

duction. Molecular and demographic data was obtained from the PedCBioportal and compared between imaging 

subtypes. 

Results: K-means identified three distinct imaging-based subtypes. Subtypes differed in mutational frequencies 

of BRAF (p < 0.05) as well as the gene expression of BRAF (p < 0.05). It was also found that age (p < 0.05), tumor 

location (p < 0.01), and tumor histology (p < 0.0001) differed significantly between the imaging subtypes. 

Conclusion: In this exploratory work, it was found that clustering of pLGGs based on radiomic features identifies 

distinct, imaging-based subtypes that correlate with important molecular markers and demographic details. This 

finding supports the notion that incorporation of radiomic data could augment our ability to better characterize 

pLGGs. 

Introduction 

Brain tumors are the most common solid malignancy in pediatric 

populations and pediatric low-grade gliomas (pLGGs) are the most com- 

mon type of childhood brain tumor [1] . pLGGs are a large and heteroge- 

nous group of tumors which include pilocytic astrocytomas (PAs), pleo- 

∗ Corresponding author at: Assistant Professor of Radiology, Department of Radiology, 1 Silverstein Building, Hospital of the University of Pennsylvania, 3400 

Spruce St., Philadelphia, PA 19104, USA. 

E-mail address: Ali.Nabavizadeh@pennmedicine.Upenn.edu (A. Nabavizadeh) . 

morphic xanthoastrocytomas (PXAs), diffuse low grade astrocytomas, 

and many others [2] . Together, these tumors account for 40% of central 

nervous system tumors in children [1] . While surgical resection remains 

a mainstay of pLGG treatment with curative potential in the case of total 

resection, cases in which this is not possible go on to become chronic 

and morbid conditions that greatly impact the patient’s quality of life 
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Table 1 

Cohort characteristics. 

Age Range (at time of tissue collection) 0-22 ∗ years 

Sex Male 78 49.68% 

Female 79 50.32% 

Race White 78 49.68% 

Black 15 9.55% 

Asian 4 2.55% 

American Indian 1 0.64% 

Other 17 10.83% 

NA 42 26.75% 

Tumor Tissue Site Posterior Fossa 75 47.77% 

Suprasellar 34 21.66% 

Supratentorial (Hemispheric) 29 18.47% 

Ventricular 9 5.73% 

Other 10 6.37% 

Tumor Histologies Pilocytic Astrocytoma (JPA) 91 57.96% 

Fibrillary Astrocytoma 15 9.55% 

Diffuse Astrocytoma 10 6.37% 

Low Grade Glioma (Not otherwise Specified) 8 5.10% 

Pilomyxoid Astrocytoma 7 4.46% 

Pilocytic/Pilomyxoid Astrocytoma 6 3.82% 

Subependymal Giant Cell Astrocytoma 4 2.55% 

Pleomorphic Xanthoastrocytomas 4 2.55% 

Angiocentric glioma 3 1.91% 

Oligodendroglioma 2 1.27% 

Ganglioma 2 1.27% 

Pilocytic and Diffuse Astrocytoma 2 1.27% 

Ganglion Cell Tumor 1 0.64% 

Diffuse Infiltrating Astrocytoma 1 0.64% 

Glioneuronal Tumor 1 0.64% 

∗ Ages of patients at time of imaging was under 18. Biopsy, for some patients, occurred years after initial imaging. 

[ 2 , 3 ]. While overall survival of patients with pLGGs who undergo stan- 

dard chemotherapy and radiation therapy are quite high, the 10-year 

progression-free survival rate is less than 50% [4] . 

Despite integration of molecular data in the characterization of 

pLGGs and their use in aiding chemotherapeutic selection, patients with 

molecularly similar tumors often respond differently to treatments [5] . 

This in turn results in unnecessary morbidity due to the futility of the 

agent chosen to treat the disease which necessitates further character- 

ization of tumors beyond the current state of the field. Radiomic data 

shows promise in filling this knowledge gap. In adult GBM, based on ra- 

diomic features extracted from multi-parametric MRI, distinct imaging 

subtypes that correspond to differences in key disease characteristics 

including mortality and the underlying molecular subtypes have been 

found [6] . It is possible that similar relationships exist in pLGGs, lend- 

ing credence to the idea that radiomic data could independently add to 

the ability to characterize tumors more comprehensively. 

While radiomics has been implemented in pLGGs to work towards 

pretherapeutic differentiation of molecular subtypes in a supervised 

fashion [7] , to our knowledge there has been no work done to iden- 

tify radiomic subtypes of pLGGs in an unsupervised approach. An un- 

supervised radiomic analysis approach allows for the exploration and 

characterization of the underlying heterogeneity in the structural pat- 

terns, reflected in radiographic phenotypes and quantified by radiomic 

features. These pattern analysis methods have the potential to elucidate 

the biological processes that form similar or dissimilar imaging pheno- 

types and clinical presentation of the tumors among patients. In princi- 

ple, imaging subtypes, similar to molecular subtypes, are characterized 

through clustering methods that group the most similar tumors together 

in a subtype, in a way that they are most distinctive from the other sub- 

types. Such unbiased data-driven approaches have found popularity in 

several neuroimaging studies and helped in better understanding of the 

disease biology [8] . 

We hypothesize that specific imaging subtypes can be identified 

through a data-driven approach and that certain imaging characteris- 

tics are associated with molecular markers. Therefore, by grouping the 

tumors based on their common imaging characteristics, similar under- 

pinnings of these tumor may be captured as well. Thus, using unsu- 

pervised machine learning methods to analyze radiomic data obtained 

from multi-parametric MRI (mpMRI) modalities collected through stan- 

dard clinical protocols, we aimed to identify imaging-based subtypes 

of pLGGs. Additionally, we sought to explore the relationships of these 

subtypes with key molecular markers and patient demographic infor- 

mation. 

Methods 

Subjects 

The data for this study was retrospectively collected from the 

Children’s Hospital of Philadelphia (CHOP). The patient selection 

was based on availability of specimen/sequencing and pre-surgical 

and pre-treatment multi-parametric MRI scans. Raw genomic and 

imaging data were available through the Children’s Brain Tumor 

Network ( www.cbtn.org ) and were accessed through the Gabriella 

Miller Kids First Portal ( https://kidsfirstdrc.org/ ). Processed ge- 

nomic data was obtained from the Open Pediatric Brain Tumor 

Atlas ( https://github.com/AlexsLemonade/OpenPBTA-analysis ). 

Clinical information was collected through the PedcBioPor- 

tal ( https://pedcbioportal.kidsfirstdrc.org:443/saml/discovery?entityID 

= d3b-center.auth0.com&returnIDParam = idp ) [ 9 , 10 ]. 

157 subjects were included in the study based on the following cri- 

teria: 1) less than 18 years of age at the time of initial imaging; 2) 

availability of pre-treatment pre- and post-contrast T1-weighted images 

(T1, T1-Gd), T2-weighted, and T2- fluid-attenuated inversion recovery 

(T2-FLAIR) MR imaging; 3) confirmed diagnosis of pediatric low-grade 

glioma (pLGG) as determined by pathology report ( Table 1 ). 

Molecular analysis 

All molecular data was obtained from the PedCBioportal 

( https://pedcbioportal.kidsfirstdrc.org ), which is an open access 
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Table 2 

Clustering results. 

Cluster 1 Cluster 2 Cluster 3 p-value 

Sex 0.802 

Male 37 18 23 

Female 34 18 27 

Mean Age (years) at Imaging 10 6 5 0.0334 

Tumor Location 0.0014 

Posterior Fossa 44 15 16 

Suprasellar 19 7 8 

Supratentorial 4 8 17 

Ventricular 2 3 4 

Other 2 3 5 

Tumor Histology < 0.0001 

Pilocytic Astrocytoma 58 18 17 

Diffuse Astrocytoma 1 1 9 

Fibrillary Astrocytoma 3 3 9 

Pilomyxoid Astrocytoma 3 2 2 

LGG (Not Otherwise Specified) 1 3 4 

Other 5 9 9 

Mutation Frequencies (percentage of samples altered) 

BRAF 20 49.25 47.22 0.0346 

FGFR1 4 10.45 0 0.0987 

TSC1 28 41.79 38.89 0.479 

TSC2 28 37.31 38.89 0.645 

NF1 24 38.81 41.67 0.325 

MYB 0 2.99 0 0.297 

EGFR 4 11.94 16.67 0.317 

ALK 4 16.42 25 0.0933 

IDH1 8 7.46 5.56 0.916 

RB1 24 35.82 30.56 0.544 

Expresion Levels (mean Log2) 

BRAF 4.08 3.75 3.98 0.0152 

FGFR1 6.34 6.35 6.56 0.459 

TSC1 3.61 3.43 3.58 0.0923 

TSC2 4.87 4.94 5.14 0.187 

NF1 4.95 4.83 4.85 0.707 

MYB 0.13 0.28 0.15 0.709 

EGFR 2.19 2.55 2.07 0.308 

ALK 1.74 1.86 1.51 0.377 

IDH1 4.36 4.46 4.54 0.631 

RB1 4.63 4.58 4.7 0.521 

data visualization platform that hosts multi-institutional data across 

multiple cancerous and non-cancerous pathologies [ 9 , 10 ]. Gene mu- 

tations data on the portal were sourced from clinical gene panels and 

whole genome sequencing, where available. Expressions data was 

obtained through RNA sequencing where available. 

Initial molecular analysis was focused on 10 genes of interest that 

play a role in the pathogenesis of pLGG: BRAF, FGFR1, TSC1, TSC2, 

NF1, MYB, EGFR, ALK, IDH1, and RB1. 

Histology data was obtained from review of pathology reports and 

included all cases that met the WHO grade I/II criteria for Low Grade 

Glioma. 

MRI data acquisition 

MR imaging was originally acquired as standard of practice for all 

subjects and accessed retrospectively for this study. All imaging was ac- 

quired on 1.5-3T scanners from Siemens and General Electric manufac- 

turers. T1-weighted pre- (T1) and post-contrast (T1-Gd), T2-weighted, 

and T2-FLAIR imaging sequences were included in this study. Only im- 

ages acquired prior to treatment were included. For each patient, the 

earliest imaging event that included all four modalities were selected. 

Pre-processing 

mpMRI volumes were pre-processed within the Cancer 

Imaging Phenomics Toolkit open-source software (CaPTk, 

https://www.cbica.upenn.edu/captk ) [ 11 , 12 ] utilizing methods previ- 

ously described in detail [13] . In summary, images were co-registered 

to an atlas [14] and resampled to a 1 × 1 × 1 mm 

3 resolution utilizing 

the Greedy tool ( https://github.com/pyushkevich/greedy ) [15] . Skull 

stripping was then performed using BrainMaGe [16] . As this method is 

developed for adult brain tumors and cannot always correctly segment 

pediatric scans, brain masks were revised manually. The skull-stripped 

images were then corrected for intensity non-uniformity. Pixels with 

intensities beyond the 99.9th percentile were removed, and image 

intensities were rescaled to the range of 0 and 255. 

Tumor segmentation 

Tumor segmentation was performed in a semi-automatic fashion. 

Pre-processed MR-images were first segmented automatically by a deep 

learning segmentation model trained to segment adult brain tumors. 

[17] Tumor regions of interest (ROIs) were then manually revised us- 

ing ITK-SNAP [18] ( http://www.itksnap.org/ ) and edited/confirmed by 

board-certified experienced neuroradiologists (A.N, A.V, J.W) to create 

final ROIs. 

Radiomic feature extraction 

881 MR-imaging based radiomic features were extracted using 

CaPTk software from the ROIs across all four imaging modalities. Fea- 

tures included histogram, morphology, and texture-based features. The 
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Fig 1. Radiomics workflow. The radiomic clustering workflow begins with the feature extraction pipeline, depicted in the rectangle at the left of the schematic. 

Patients first undergo image acquisition through routine MR imaging protocols. Images are then accessed and pre-processed which involves stripping away extra- 

axial tissues from the images leaving only the brain and tumor volumes. The tumor is then segmented out leaving only tumor volume. Engineered radiomic features, 

including texture-based, morphologic, and histogram features, are then extracted from the tumor volumes. The features are then fed into the unsupervised machine 

learning algorithm, which sorts the patients based on the radiomic features. The end results are distinct groups of patients, categorized based on imaging, that can 

be compared on their clinical, genetic, and other molecular characteristics. 

extracted radiomic features were then z-scored using the normalize func- 

tion in the preprocessing module of Scikit-learn [19] within Python 

(Python version 3.9.12). 

Unsupervised machine learning 

Feature reduction was performed using Principal Component Analy- 

sis (PCA) to reduce the dimensionality of the features and reduce noise 

from the data. PCA components that accounted for 90% of the variance 

in the data cumulatively were chosen for the clustering step. 

K-means clustering was performed on the selected PCA components 

to identify imaging subtypes that capture similarities in feature profiles 

between subjects. This clustering was performed in python using Scikit- 

Learn’s KMeans package. A range of 1 to 20 was searched for selecting 

the optimum number of clusters and the point of inflection of inertia, or 

within cluster sum of squares, was determined to be the optimal value. 

K-means clustering was performed with 10,000 iterations with ran- 

dom initialization to ensure robustness of clustering. A schematic of the 

entire feature extraction and clustering pipeline is included in Fig. 1 . 

Statistical analysis 

Chi-squared test was used to identify significant differences in cate- 

gorical variables including mutational frequency between radiomic sub- 

types, differences in tumor location, and differences in histology. Genes 

of interest were categorized in a binary fashion (mutated vs wildtype). 

Histology data obtained from pathology reports was analyzed with each 

histology as its own category. Histologies that did not occur across all 

clusters were binned as “other ”. Kruskal-Wallis test was used to com- 

pare continuous variables including age and gene expressions between 

clusters. Alpha was set to 0.05 for all analyses. 

Assessing feature weights 

To provide increased interpretability of the clusters, the weight of 

each feature on the clustering process was assessed in the following way. 

Features were normalized using z-score method and the scalar prod- 

uct was found between each feature and PCA component. The absolute 

value of this product was deemed to be the relative influence of each 

feature along the vector of the PCA component. These influences were 

then multiplied by the variance explained by their respective PCA com- 

ponent, resulting in a value that served as a reflection of the influence 

of the individual feature on the clustering. 

Results 

Unsupervised learning on radiomic features 

PCA produced 48 principal components that explained 90% of the 

variability in the feature space. Based on inertias, it was found that the 

optimal number of clusters through K-means analysis on the 48 princi- 

pal components was 3. Cluster labels were then assigned to each of the 

subjects based on closest distance to centers of the 3 identified clusters. 

Cluster 1 contained 71 subjects, cluster 2 contained 36 subjects, and 

cluster 3 contained 50 subjects. These three clusters (subtypes) were 

utilized for comparisons to molecular status ( Fig. 2 ). Example images 

were selected from subjects near the center of each cluster and included 

for illustrative purposes ( Fig. 2 ). 

Results are summarized in Table 2 

Molecular comparisons of imaging-based subtypes 

PedCBioportal’s PBTA (provisional) database was queried using sub- 

ject identifiers from each imaging subtype. From the total 157 pLGG sub- 

jects with pre-treatment imaging available, 128 samples had molecular 

sequencing data available on the portal and were used for exploration 

of molecular markers. 

Of the 10 genes of interest described in the above section, only BRAF 

was found to have significant differences in mutational frequency be- 

tween the three imaging subtypes ( X 

2 [2, N = 128] = 6.73, p = 0.0346). 

4 
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Fig 2. Clustering projection and illustrative 

images. In the top chart, the final imaging- 

based clustering results are depicted here with 

each point representing a unique subject plot- 

ted against the first two principal components 

(PCs). Each color represents a cluster group 

(Cluster 1: Blue; Cluster 2: Orange; Cluster 3: 

Red). In this analysis, the first two PCs explain 

only 25 percent of the variance in the feature 

set which may explain the proximity of the 

clusters on this projection. Although the true 

clustering is done on 48 dimensions, separation 

of the subjects can be appreciated even on this 

two-dimensional projection of the data. 

Below the chart, representative images were se- 

lected from the T2 Axial MR images from 4 

patients in each cluster. These patients were 

picked from the center-most regions of each 

cluster and can thus be presumed to be most 

representative of their groups. Although the 

full volume of tumor from all 4 modalities (T1 

pre-contrast, T1 post-contrast, T2, and FLAIR) 

was utilized for this work, for illustrative pur- 

poses only the axial T2 slice demonstrating the 

largest diameter of tumor was selected for this 

figure. 

Cluster 1 had 20%, Cluster 2 had 49.3% and Cluster 3 had 47.2% of 

samples carrying a BRAF mutation. Of note, this does not include data 

on structural variants (ie. gene fusions). 

Kruskal-Wallis test on expressions data further revealed expressions 

differences in BRAF between imaging subtypes as well (H = 9.59 [2, 

N = 73], p = 0.0083). The mean log2 expression of BRAF was 4.08, 

3.75, and 3.98 in Clusters 1, 2, and 3 respectively. The remaining genes 

showed no differences ( p > 0.05) in alterations or expressions between 

subtypes ( Fig. 3 ). 

Additional differences between image-based subtypes 

Tissue histology was also compared between imaging subtypes 

through review of clinical pathology free-text reports generated at the 

time of initial tissue collection. Chi-squared test suggested that there 

were significant differences in histology between imaging-based clus- 

ters ( X 

2 [10, N = 157] = 39.97, p < 0.0001). 

Age at the time of tissue collection was found to be significantly 

different between clusters based on Kruskal-Wallis test ( p = 0.0334) with 

cluster 1 being the oldest (median = 10 years), as compared to cluster 

2 (median = 6 years) and cluster 3 (median = 5 years). 

Finally, tumor tissue site was also significantly different between 

imaging subtypes based on chi-square test ( X 

2 [8, N = 157] = 25.28, 

p = 0.0014). 

Feature weights and informative radiomic features 

On assessment of feature weights, it was found that texture-based 

(collage) features and morphologic features, namely those describing 

the size of the tumors, were most influential in the creation of imaging 

subtypes. Furthermore, all top ten weighted features were obtained from 

the morphology of the tumor masks and the FLAIR sequences ( Fig. 4 ). 

Discussion 

This work, to the best of our knowledge, is the first application of un- 

supervised machine learning methods in identifying imaging-based sub- 

types of pediatric low-grade gliomas. The principal contribution of this 

work is a demonstration that an unbiased approach to high-throughput 

image analysis can identify imaging-based subtypes that may have an 

underlying biological basis. 

In this work, the unsupervised approach was undertaken to explore 

the utility of radiomics in explaining phenotypic differences within 

5 



D. Haldar, A.F. Kazerooni, S. Arif et al. Neoplasia 36 (2023) 100869 

Fig 3. Molecular analysis. (A) Mutation frequencies of each of the 10 genes of interest are reported. The X-axis contains each of 10 genes of interest. The Y-axis 

represents percentage of patients in each cluster that contain a mutation in the respective gene. Genes that had significant differences in mutation frequencies between 

clusters were marked with an asterisk ( ∗ ) next to the gene symbol on the X-axis. (B) Box-and-whisker plot for BRAF expressions between clusters. Kruskal-Wallis test 

was used to determine significance of differences observed between clusters, p-value from this analysis is included to the right of the chart. 

Fig 4. Feature weight matrix. This heatmap demonstrates the relative influence of each feature on the overall clustering attempt. Darker cells depict higher values 

of influence as calculated by the scalar product between the feature vector and the principal component vector multiplied by the explained variance of the respective 

principal component. By performing this operation, the relative importance of certain types of features and imaging sequences can be understood. Feature names 

describe the attribute that they measure in the following way: ImagingSequence_FeatureType_Metric. 
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pLGGs. By focusing primarily on the intra-tumoral radiomic feature- 

space, this work identifies imaging subtypes without any a priori sub- 

categorization. In doing so, it allows for flexibility in the classification 

of these tumors beyond existent categorizations and groupings that are 

based on molecular information alone. A major advantage of such an 

approach is its ability to reveal relatively homogenous subtypes from a 

large group of samples in an unbiased way [20] . Information extracted 

as a result of such work can add to the metrics, we use to define spe- 

cific tumors. The current trajectory of tumor classifications supports this 

type of data layering, with the most recent WHO guidelines incorporat- 

ing layers of molecular and histologic data in tumor classification [21] . 

It is possible that an additional layer of radiomic information could be 

valuable in further refining our understanding of tumors and augment- 

ing our ability to create integrated diagnoses. [22] In other sects of 

neuroscience, similar approaches have been instrumental in furthering 

our understanding of adult neuro oncology, neurodegenerative diseases, 

psychiatric conditions, and autism spectrum disorders [20] . 

The tumors comprising pLGGs are diverse in their histopathology. 

On a molecular scale they converge on an upregulation of the mitogen- 

activated protein kinase (MAPK) pathway through a variety of genomic 

aberrations [ 23 , 24 ]. Mutations or fusions involving the B-Raf proto- 

oncogene, serine/threonine kinase (BRAF) gene are the most common al- 

terations found in pLGGs; namely, the BRAF V600E mutation (p.V600E) 

and KIAA1549-BRAF fusion gene are the two major BRAF alterations 

that hold clinical significance and are used to guide treatment selection 

[ 24 , 25 ]. Other common genetic alterations in the MAPK pathway in- 

clude those in EGFR, FGFR1, MYB, MYBL1, and NTRK2 [24] . Patients 

with Neurofibromatosis type 1 and tuberous sclerosis also have a pre- 

disposition for developing pLGGs due to congenital aberrations in NF1 

and TSC1/TSC2, respectively. NF1 is a tumor suppressor gene that en- 

codes neurofibromin 1, a negative regulator of RAS, which is a signal 

transducer in the MAPK pathway. TSC1 and TSC2 encode for hamartin 

and tuberin, respectively, which are components of the mTOR pathway 

downstream of RAS [24] . This background is what informed the selec- 

tion of the genes of interest in this study. 

A major, general criticism of unsupervised tasks is the difficulty in 

interpreting the clinical significance of their classifications. This work 

addresses these concerns by analyzing key molecular markers, histo- 

logic diagnoses, and demographic information that underlie the image- 

based subtypes. Interestingly, the analysis found that there were signif- 

icant differences in both the mutations and expressions of BRAF, a key 

gene identified in the literature review that holds clinical significance in 

treatment selection. This finding suggests that the imaging-based classi- 

fication has true biologic basis. Furthermore, it supports the hypothesis 

that molecular foundations underlie imaging phenotypes and suggests 

that by grouping based on imaging features, we can gain insight into the 

molecular landscapes that inform them. However, the work also demon- 

strated that mutation and expression differences alone did not explain 

the classifications of the images. This may point towards the idea that ra- 

diomics is capturing currently unleveraged information, although such 

conclusions cannot be drawn from this work alone. 

This work has several limitations. Primarily, it is a retrospective anal- 

ysis, and its findings are limited to the purpose of hypothesis genera- 

tion. Furthermore, while the sample size was larger than other radiomic 

studies on pLGG, more data is needed for a comprehensive exploration 

of imaging-genomics relationships. pLGGs encompass a wide variety of 

tumor histologies, of which only the major types represented by this 

dataset despite its relatively large size compared to other works involv- 

ing the application of radiomics in pediatric neuro-oncology. 

Furthermore, not all subjects had molecular data available in the 

publicly accessible repository and so the molecular analysis is prone to 

the influence of sampling biases. Addition of data, both in terms of detail 

and availability, would allow for a more rigorous analysis of the imag- 

ing subtypes. Differences in image acquisition in terms of MR machine 

brand and magnet strength was present in this study. Steps were taken 

to minimize the effect of differences in acquisition as elaborated in the 

Pre-processing sub-section of the Methods. Despite these steps, we can’t 

exclude the confounding effect of variations in acquisitions and in fu- 

ture work. Notwithstanding these limitations, the work does accomplish 

its exploratory goal of furthering our understanding of the relationships 

between imaging phenotypes and biological drivers of disease. 

Future works should thus focus on the expansion of cohorts both 

in terms of number of subjects and diversity of tumors. Cohort size is 

a universal limitation in radiomic works in pediatric brain tumor pop- 

ulations [26] . Multi-institutional collaboration is the ideal solution to 

this challenge and is indeed the model upon which open-access data 

repositories, such as those available via PedCBioportal, are built. By in- 

corporating data from a wider array of institutions, the generalizability 

of findings will improve, however, this would also necessitate the use of 

rigorous normalization methods to account for the diversity in imaging 

acquisition protocols and equipment between institutions. Finally, uti- 

lization of a wider range of markers, both clinical and molecular, should 

be emphasized in future works to better support image subtype identi- 

ties. 

Conclusion 

This work demonstrated that readily available imaging sequences 

can be utilized to create novel radiomic subtypes of pLGG that correlate 

with key molecular markers and demographic information. The findings 

suggest that important molecular aberrations are manifested in radio- 

logic phenotypes and that non-invasive imaging can lend insights into 

the biological underpinnings of pLGGs. The work paves the way for fu- 

ture work in the field that can build towards robust and generalizable 

imaging subtypes of tumor that may aid in treatment selection and dis- 

ease prognostication. 
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