94 research outputs found
THE AFTERCARE SURVEY:Assessment and intervention practices after brain tumour surgery in Europe
Introduction People with gliomas need specialized neurosurgical, neuro-oncological, psycho-oncological, and neuropsychological care. The role of language and cognitive recovery and rehabilitation in patients’ well-being and resumption of work is crucial, but there are no clear guidelines for the ideal timing and character of assessments and interventions. The goal of the present work was to describe representative (neuro)psychological practices implemented after brain surgery in Europe. Methods An online survey was addressed to professionals working with individuals after brain surgery. We inquired about the assessments and interventions and the involvement of caregivers. Additionally, we asked about recommendations for an ideal assessment and intervention plan. Results Thirty-eight European centres completed the survey. Thirty of them offered at least one post-surgical (neuro)psychological assessment, mainly for language and cognition, especially during the early recovery stage and at long-term. Twenty-eight of the participating centres offered post-surgical therapies. Patients who stand the highest chances of being included in evaluation and therapy post-surgically are those who underwent awake brain surgery, harboured a low-grade glioma, or showed poor recovery. Nearly half of the respondents offer support programs to caregivers, and all teams recommend them. Treatments differed between these offered to individuals with low-grade glioma versus those with high-grade glioma. The figure of caregiver is not yet fully recognized in the recovery phase. Conclusion We stress the need for more complete rehabilitation plans, including the emotional and health-related aspects of recovery. In respondents´ opinions, assessment and rehabilitation plans should also be individually tailored and goal-directed (e.g., professional reinsertion)
Multi-trait mimicry of ants by a parasitoid wasp
Many animals avoid attack from predators through toxicity or the emission of repellent chemicals. Defensive mimicry has evolved in many species to deceive shared predators, for instance through colouration and other morphological adaptations, but mimicry hardly ever seems to involve multi-trait similarities. Here we report on a wingless parasitoid wasp that exhibits a full spectrum of traits mimicing ants and affording protection against ground-dwelling predators (wolf spiders). In body size, morphology and movement Gelis agilis (Ichneumonidae) is highly similar to the black garden ant (Lasius niger) that shares the same habitat. When threatened, G. agilis also emits a volatile chemical that is similar to an ant-produced chemical that repels spiders. In bioassays with L. niger, G. agilis, G. areator, Cotesia glomerata and Drosophila melanogaster, ants and G. agilis were virtually immune to spider attack, in contrast the other species were not. Volatile characterisation with gas chromatography-mass spectrometry identified G. agilis emissions as 6-methyl-5-hepten-2-one, a known insect defence semiochemical that acts as an alarm pheromone in ants. We argue that multi-trait mimicry, as observed in G. agilis, might be much more common among animals than currently realized
Commercial spruce plantations support a limited. canopy fauna: Evidence from a multi taxa comparison of native and plantation forests
Globally, the total area of plantation forest is increasing as deforestation and fragmentation of native forest continues. In some countries commercial plantations make up more than half of the total forested land. Internationally, there is growing emphasis on forestry policy for plantations to deliver biodiversity and ecosystem services. In Ireland, native forest now comprises just 1% of total land cover while non-native spruce forest makes up 60% of the plantation estate and approximately 6% of the total land cover. The majority of plantation invertebrate biodiversity assessments focus on ground-dwelling species and consequently a good understanding exists for these guilds, especially ground-active spiders and beetles. Using a technique of insecticide fogging, we examine the less well understood component of forest systems, the canopy fauna (Coleoptera, Araneae, Diptera and Hemiptera), in Irish spruce plantations (Sitka and Norway) and compare the assemblage composition, richness and abundance to that of remnant native forest (ash and oak). In addition, we examine the potential for accumulation of forest species in second rotation spruce plantations and identify indicator species for each forest type. From 30 sampled canopies, we recorded 1155 beetles and 1340 spiders from 144 species and over 142 000 Diptera and Hemiptera from 71 families. For all taxa, canopy assemblages of native forests were significantly different from closed-canopy plantation forests. No indicators for plantation forest were identified; those identified for native forest included species from multiple feeding guilds. Plantations supported approximately half the number of beetle species and half the number of Diptera and Hemiptera families recorded in native forests. Although assemblages in Norway spruce plantations were very different to those of native forest, they had consistently higher richness than Sitka spruce plantations. No differences in richness or abundance were found between first rotation and second rotation Sitka spruce plantations. Compared to other forest types, Sitka spruce plantations contained far greater total abundance of invertebrates, due to vast numbers of aphids and midges. Under current management, Sitka spruce plantations provide limited benefit to the canopy fauna typical of native forests in either first or second rotations. The large aphid populations may provide abundant food for insectivores but may also lead to reduced crop production through defoliation. Progressive forestry management should attempt to diversify the plantation canopy fauna, which may also increase productivity and resilience to pest species
The value of plantation forests for plant, invertebrate and bird diversity and the potential for cross-taxon surrogacy
As the area of plantation forest expands worldwide and natural, unmanaged forests decline there is much interest in the potential for planted forests to provide habitat for biodiversity. In regions where little semi-natural woodland remains, the biodiversity supported by forest plantations, typically non-native conifers, may be particularly important. Few studies provide detailed comparisons between the species diversity of native woodlands which are being depleted and non-native plantation forests, which are now expanding, based on data collected from multiple taxa in the same study sites. Here we compare the species diversity and community composition of plants, invertebrates and birds in Sitka spruce- (Picea sitchensis-) dominated and Norway spruce- (Picea abies-) dominated plantations, which have expanded significantly in recent decades in the study area in Ireland, with that of oak- and ash-dominated semi-natural woodlands in the same area. The results show that species richness in spruce plantations can be as high as semi-natural woodlands, but that the two forest types support different assemblages of species. In areas where non-native conifer plantations are the principle forest type, their role in the provision of habitat for biodiversity conservation should not be overlooked. Appropriate management should target the introduction of semi-natural woodland characteristics, and on the extension of existing semi-natural woodlands to maintain and enhance forest species diversity. Our data show that although some relatively easily surveyed groups, such as vascular plants and birds, were congruent with many of the other taxa when looking across all study sites, the similarities in response were not strong enough to warrant use of these taxa as surrogates of the others. In order to capture a wide range of biotic variation, assessments of forest biodiversity should either encompass several taxonomic groups, or rely on the use of indicators of diversity that are not species based
Recommended from our members
Does urbanization explain differences in interactions between an insect herbivore and its natural enemies and mutualists?
Urbanization can alter the composition of arthropod communities. However, little is known about how urbanization affects ecological interactions. Using experimental colonies of the black bean aphid Aphis fabae Scopoli reared on Vicia faba L, we asked if patterns of predator-prey, host-parasitoid and ant-aphid mutualisms varied along an urbanization gradient across a large town in southern England. We recorded the presence of naturally occurring predators, parasitoid wasps and mutualistic ants together with aphid abundance. We examined how biotic (green areas and plant richness) and abiotic features (impervious surfaces and distance to town center) affected (1) aphid colony size, (2) the likelihood of finding predators, mutualistic ants and aphid mummies (indicating the presence of parasitoids), and (3) how the interplay among these factors affected patterns of parasitoid attack, predator abundance, mutualistic interactions and aphid abundance. The best model to predict aphid abundance was the number of mutualistic ants attending the colonies. Aphid predators responded negatively to both the proportion of impervious surfaces and to the number of mutualistic ants farming the colonies, and positively to aphid population size, whereas parasitized aphids were found in colonies with higher numbers of aphids and ants. The number of mutualistic ants attending was positively associated with aphid colony size and negatively with the number of aphid predators. Our findings suggest that for insect-natural enemy interactions, urbanization may affect some groups, while not influencing others, and that local effects (mutualists, host plant presence) will also be key determinants of how urban ecological communities are formed
Systemic Risk, Contagion, and Financial Networks: A Survey
The recent crisis has highlighted the crucial role that existing linkages among banks and financial institutions plays in channeling and amplifying shocks hitting the system. The structure and evolution of such web of linkages can be fruitfully characterized using concepts borrowed from the theory of (complex) networks. This paper critically surveys recent theoretical work that exploits this concept to explain the sources of contagion and systemic risk in financial markets. We taxonomize existing contributions according to the impact of network connectivity, bank heterogeneity, existing uncertainty in financial markets, portfolio composition of the banks. We end with a discussion of the most important challenges faced by theoretical network-based models of systemic risk. These include a better understanding of the causal links between network structure and the likelihood of systemic risk and increasingly using the empirical knowledge about real-world financial-network structures to calibrate theoretical models
- …