217 research outputs found

    Heterogeneity in Short Gamma-ray Bursts

    Full text link
    We analyze the Swift/BAT sample of short gamma-ray bursts, using an objective Bayesian Block procedure to extract temporal descriptors of the bursts' initial pulse complexes (IPCs). The sample comprises 12 and 41 bursts with and without extended emission (EE) components, respectively. IPCs of non-EE bursts are dominated by single pulse structures, while EE bursts tend to have two or more pulse structures. The medians of characteristic timescales - durations, pulse structure widths, and peak intervals - for EE bursts are factors of ~ 2-3 longer than for non-EE bursts. A trend previously reported by Hakkila and colleagues unifying long and short bursts - the anti-correlation of pulse intensity and width - continues in the two short burst groups, with non-EE bursts extending to more intense, narrower pulses. In addition we find that preceding and succeeding pulse intensities are anti-correlated with pulse interval. We also examine the short burst X-ray afterglows as observed by the Swift/XRT. The median flux of the initial XRT detections for EE bursts (~ 6 x 10^-10 erg cm^-2 s^-1) is ~> 20 x brighter than for non-EE bursts, and the median X-ray afterglow duration for EE bursts (~ 60,000 s) is ~ 30 x longer than for non-EE bursts. The tendency for EE bursts toward longer prompt-emission timescales and higher initial X-ray afterglow fluxes implies larger energy injections powering the afterglows. The longer-lasting X-ray afterglows of EE bursts may suggest that a significant fraction explode into more dense environments than non-EE bursts, or that the sometimes-dominant EE component efficiently powers the afterglow. Combined, these results favor different progenitors for EE and non-EE short bursts.Comment: 30 pages, 11 figures, 3 tables; accepted to The Astrophysical Journa

    Correlations Between Lag, Luminosity, and Duration in Gamma-ray Burst Pulses

    Full text link
    We derive a new peak lag vs. peak luminosity relation in gamma-ray burst (GRB) pulses. We demonstrate conclusively that GRB spectral lags are pulse rather than burst properties and show how the lag vs. luminosity relation determined from CCF measurements of burst properties is essentially just a rough measure of this newly derived relation for individual pulses. We further show that most GRB pulses have correlated properties: short-lag pulses have shorter durations, are more luminous, and are harder within a burst than long-lag pulses. We also uncover a new pulse duration vs. pulse peak luminosity relation, and indicate that long-lag pulses often precede short-lag pulses. Although most pulse behaviors are supportive of internal shocks (including long-lag pulses), we identify some pulse shapes that could result from external shocks.Comment: 14 pages, 4 figures, 1 table; accepted for publication in Astrophysical Journal Letter

    Classification of Swift's gamma-ray bursts

    Get PDF
    Two classes of gamma-ray bursts have been identified in the BATSE catalogs characterized by durations shorter and longer than about 2 seconds. There are, however, some indications for the existence of a third class. Swift satellite detectors have different spectral sensitivity than pre-Swift ones for gamma-ray bursts. Therefore, it is worth to reanalyze the durations and their distribution. We analyze, the maximum likelihood estimation, the bursts duration distribution, published in The First BAT Catalog, whether it contains two, three or more groups. The three log-normal fit is significantly (99.54% probability) better than the two for the duration distribution. Monte-Carlo simulations also confirm this probability (99.2%). Similarly, in previous results we found that the fourth component is not needed. The relative frequencies of the distribution of the groups are 7% short 35% intermediate and 58% long. Although the relative frequencies of the groups are different than in the BATSE GRB sample, the difference in the instrument spectral sensitivities can explain this bias on a natural way. This means theoretical models may be needed to explain three different type of gamma-ray bursts.Comment: Accepted in AA, added bibliograph

    Gamma-Ray Burst Pulse Correlations as Redshift Indicators

    Full text link
    Correlations among pulse properties in the prompt emission of long GRBs can potentially be used as cosmological distance indicators to estimate redshifts of GRBs to which these pulses belong. We demonstrate application of this technique to a sample of GRBs for which redshifts are not known. We also study the scatter of predicted redshifts of pulses found within individual bursts. We explore the characteristics of this scatter in hopes of identifying systematic corrections and/or pulse subsets that can be used to increase the technique's reliability.Comment: 3 pages and 6 figures, to appear in the proceedings of the Sixth Huntsville Gamma-Ray Burst Symposium, edited by C.A. Meegan, N. Gehrels, and C. Kouvelioto

    Detailed Classification of Swift's Gamma-Ray Bursts

    Get PDF
    Earlier classification analyses found three types of gamma-ray bursts (short, long and intermediate in duration) in the BATSE sample. Recent works have shown that these three groups are also present in the RHESSI and the BeppoSAX databases. The duration distribution analysis of the bursts observed by the Swift satellite also favors the three-component model. In this paper, we extend the analysis of the Swift data with spectral information. We show, using the spectral hardness and the duration simultaneously, that the maximum likelihood method favors the three-component against the two-component model. The likelihood also shows that a fourth component is not needed.Comment: Accepted for publication in The Astrophysical Journa

    How Sample Completeness Affects Gamma-Ray Burst Classification

    Full text link
    Unsupervised pattern recognition algorithms support the existence of three gamma-ray burst classes; Class I (long, large fluence bursts of intermediate spectral hardness), Class II (short, small fluence, hard bursts), and Class III (soft bursts of intermediate durations and fluences). The algorithms surprisingly assign larger membership to Class III than to either of the other two classes. A known systematic bias has been previously used to explain the existence of Class III in terms of Class I; this bias allows the fluences and durations of some bursts to be underestimated (Hakkila et al., ApJ 538, 165, 2000). We show that this bias primarily affects only the longest bursts and cannot explain the bulk of the Class III properties. We resolve the question of Class III existence by demonstrating how samples obtained using standard trigger mechanisms fail to preserve the duration characteristics of small peak flux bursts. Sample incompleteness is thus primarily responsible for the existence of Class III. In order to avoid this incompleteness, we show how a new dual timescale peak flux can be defined in terms of peak flux and fluence. The dual timescale peak flux preserves the duration distribution of faint bursts and correlates better with spectral hardness (and presumably redshift) than either peak flux or fluence. The techniques presented here are generic and have applicability to the studies of other transient events. The results also indicate that pattern recognition algorithms are sensitive to sample completeness; this can influence the study of large astronomical databases such as those found in a Virtual Observatory.Comment: 29 pages, 6 figures, 3 tables, Accepted for publication in The Astrophysical Journa

    The Spectral Lag of GRB060505: A Likely Member of the Long Duration Class

    Full text link
    Two long gamma-ray bursts, GRB 060505 and GRB 060614, occurred in nearby galaxies at redshifts of 0.089 and 0.125 respectively. Due to their proximity and durations, deep follow-up campaigns to search for supernovae (SNe) were initiated. However none were found in either case, to limits more than two orders of magnitude fainter than the prototypical GRB-associated SN, 1998bw. It was suggested that the bursts, in spite of their durations (4 and 102 s), belonged to the population of short GRBs which has been shown to be unrelated to SNe. In the case of GRB 060614 this argument was based on a number of indicators, including the negligible spectral lag, which is consistent with that of short bursts. GRB 060505 has a shorter duration, but no spectral lag was measured. We present the spectral lag measurements of GRB 060505 using Suzakus Wide Area Monitor and the Swift Burst Alert Telescope. We find that the lag is 0.36+/- 0.05 s, inconsistent with the lags of short bursts and consistent with the properties of long bursts and SN-GRBs. These results support the association of GRB 060505 with other low-luminosity GRBs also found in star-forming galaxies and indicates that at least some massive stars may die without bright SNe.Comment: Accepted by ApJL, 5 pages, 3 Figure

    A distinct peak-flux distribution of the third class of gamma-ray bursts: A possible signature of X-ray flashes?

    Full text link
    Gamma-ray bursts are the most luminous events in the Universe. Going beyond the short-long classification scheme we work in the context of three burst populations with the third group of intermediate duration and softest spectrum. We are looking for physical properties which discriminate the intermediate duration bursts from the other two classes. We use maximum likelihood fits to establish group memberships in the duration-hardness plane. To confirm these results we also use k-means and hierarchical clustering. We use Monte-Carlo simulations to test the significance of the existence of the intermediate group and we find it with 99.8% probability. The intermediate duration population has a significantly lower peak-flux (with 99.94% significance). Also, long bursts with measured redshift have higher peak-fluxes (with 98.6% significance) than long bursts without measured redshifts. As the third group is the softest, we argue that we have {related} them with X-ray flashes among the gamma-ray bursts. We give a new, probabilistic definition for this class of events.Comment: accepted for publication in Ap

    Time-Resolved Spectroscopy of the 3 Brightest and Hardest Short Gamma-Ray Bursts Observed with the FGST Gamma-Ray Burst Monitor

    Full text link
    From July 2008 to October 2009, the Gamma-ray Burst Monitor (GBM) on board the Fermi Gamma-ray Space Telescope (FGST) has detected 320 Gamma-Ray Bursts (GRBs). About 20% of these events are classified as short based on their T90 duration below 2 s. We present here for the first time time-resolved spectroscopy at timescales as short as 2 ms for the three brightest short GRBs observed with GBM. The time-integrated spectra of the events deviate from the Band function, indicating the existence of an additional spectral component, which can be fit by a power-law with index ~-1.5. The time-integrated Epeak values exceed 2 MeV for two of the bursts, and are well above the values observed in the brightest long GRBs. Their Epeak values and their low-energy power-law indices ({\alpha}) confirm that short GRBs are harder than long ones. We find that short GRBs are very similar to long ones, but with light curves contracted in time and with harder spectra stretched towards higher energies. In our time-resolved spectroscopy analysis, we find that the Epeak values range from a few tens of keV up to more than 6 MeV. In general, the hardness evolutions during the bursts follows their flux/intensity variations, similar to long bursts. However, we do not always see the Epeak leading the light-curve rises, and we confirm the zero/short average light-curve spectral lag below 1 MeV, already established for short GRBs. We also find that the time-resolved low-energy power-law indices of the Band function mostly violate the limits imposed by the synchrotron models for both slow and fast electron cooling and may require additional emission processes to explain the data. Finally, we interpreted these observations in the context of the current existing models and emission mechanisms for the prompt emission of GRBs.Comment: 14 pages, 10 figures, 9 tables, Accepted for publication in the Astrophysical Journal September, 23 2010 (Submitted May, 16 2010) Corrections: 1 reference updated, figure 10 captio
    corecore