276 research outputs found
PENGARUH SELF-EFFICACY, PEER REVIEW DAN PENERAPAN E-AUDIT TERHADAP KUALITAS AUDIT (Survey pada auditor yang bekerja di Kantor Akuntan Publik di wilayah Kota Bandung yang terdaftar di Institut Akuntan Publik Indonesia)
ABSTRAK
Penelitian ini bertujuan untuk mengetahui besarnya pengaruh self efficacy, peer review dan penerapan e-audit terhadap kualitas audit pada 9 Kantor Akuntan Publik di Kota Bandung yang terdaftar pada Institut Akuntan Publik Indonesia (IAPI). Self efficacy, peer review dan penerapan e-audit sebagai variabel independen, kualitas audit sebagai variabel dependen.
Pendekataan penelitian yang digunakan dalam penelitian ini adalah analisis deskriptif dan verifikatif dengan menggunakan data primer. Teknik sampling yang digunakan adalah purposive sampling. Dari kriteria yang ditetapkan diperoleh jumlah sampel yang diambil sebanyak 54 auditor. Analisis statistik yang digunakan dalam penelitian ini adalah uji validitas, uji reliabilitas, uji asumsi klasik, analisis regresi linier berganda, koefisien korelasi, koefisien determinasi, uji t dan uji f.
Berdasarkan hasil penelitian yang dilakukan dapat diketahui bahwa terdapat hubungan timbal balik antara self efficacy dengan peer review sebesar 41,5%, self efficacy dengan penerapan e-audit sebesar 42,9% dan peer review dengan penerapan e-audit sebesar 34%. Secara parsial self efficacy berpengaruh signifikan terhadap kualitas audit dengan kontribusi sebesar 19,2%. Peer review berpengaruh signifikan terhadap kualitas audit dengan kontribusi sebesar 18,7%. Penerapan E-audit berpengaruh signifikan terhadap kualitas audit dengan kontribusi sebesar 32,5%. Self efficacy, peer review dan penerapan e-audit berpengaruh positif secara simultan memberikan pengaruh sebesar 70,4%. Hal ini menunjukkan bahwa semakin baiknya self efficacy, peer review dan penerapan E-audit membuat hasil audit menjadi lebih berkualitas.
Kata Kunci : Self Efficacy, Peer Review, Penerapan E-Audit, Kualitas Audi
A Novel Liquid Multi-Phytonutrient Supplement Demonstrates DNA-Protective Effects
This study explored the DNA protective (anti-mutagenic) effects of an oral, liquid, multi-phytonutrient dietary supplement containing a proprietary blend of fruits, vegetables and aloe vera concentrated components in addition to a proprietary catechin complex from green tea (VIBE Cardiac & Life, Eniva Nutraceuticals, Anoka, MN; herein described as “VIBE”). This study tested the hypothesis that VIBE would reduce DNA damage in skin cells exposed to UVR. Human epidermal cells, from the cell line A431NS, were treated with 0% (control), 0.125%, 0.5%, 1% and 2% VIBE, and then exposed to 240 J/m2 UVR. The amount of DNA damage was assessed using the COMET assay. At each concentration tested, a significantly smaller amount of DNA damage was measured by the COMET assay for the VIBE treated cells compared to the control cells exposed to UVR without VIBE. The dose response curves showed a maximal response at 0.5% VIBE with a threefold reduction in COMET tail density compared to the control samples without VIBE (p < 0.001). Additional research is warranted in human clinical trials to further explore the results of this study which demonstrated the DNA protective and anti-mutagenic effects of VIBE for human skin cells exposed to UVR-induced DNA damage
Development and validation of a questionnaire to identify severe maternal morbidity in epidemiological surveys
<p>Abstract</p> <p>Objective</p> <p>to develop and validate a questionnaire on severe maternal morbidity and to evaluate the maternal recall of complications related to pregnancy and childbirth. <it>Design: </it>validity of a questionnaire as diagnostic instrument. <it>Setting: </it>a third level referral maternity in Campinas, Brazil. <it>Population: </it>386 survivors of severe maternal complications and 123 women that delivered without major complications between 2002 and 2007.</p> <p>Methods</p> <p>eligible women were traced and interviewed by telephone on the occurrence of obstetric complications and events related to their treatment. Their answers were compared with their medical records as gold standard. Sensitivity, specificity and likelihood ratios plus their correspondent 95% confidence intervals were used as main estimators of accuracy. <it>Main outcomes: </it>diagnosis of severe maternal morbidity associated with past pregnancies, including hemorrhage, eclampsia, infections, jaundice and related procedures (hysterectomy, admission to ICU, blood transfusion, laparotomy, inter-hospital transfer, mechanical ventilation and post partum stay above seven days).</p> <p>Results</p> <p>Women did not recall accurately the occurrence of obstetric complications, especially hemorrhage and infection. The likelihood ratios were < 5 for hemorrhage and infection, while for eclampsia it almost reached 10. The information recalled by women regarding hysterectomy, intensive care unit admission and blood transfusion were found to be highly correlated with finding evidence of the event in the medical records (likelihood ratios ranging from 12.7-240). The higher length of time between delivery and interview was associated with poor recall.</p> <p>Conclusion</p> <p>Process indicators are better recalled by women than obstetric complication and should be considered when applying a questionnaire on severe maternal morbidity.</p
Mitral valve surgery for mitral regurgitation caused by Libman-Sacks endocarditis: a report of four cases and a systematic review of the literature
Libman-Sacks endocarditis of the mitral valve was first described by Libman and Sacks in 1924. Currently, the sterile verrucous vegetative lesions seen in Libman-Sacks endocarditis are regarded as a cardiac manifestation of both systemic lupus erythematosus (SLE) and the antiphospholipid syndrome (APS). Although typically mild and asymptomatic, complications of Libman-Sacks endocarditis may include superimposed bacterial endocarditis, thromboembolic events, and severe valvular regurgitation and/or stenosis requiring surgery. In this study we report two cases of mitral valve repair and two cases of mitral valve replacement for mitral regurgitation (MR) caused by Libman-Sacks endocarditis. In addition, we provide a systematic review of the English literature on mitral valve surgery for MR caused by Libman-Sacks endocarditis. This report shows that mitral valve repair is feasible and effective in young patients with relatively stable SLE and/or APS and only localized mitral valve abnormalities caused by Libman-Sacks endocarditis. Both clinical and echocardiographic follow-up after repair show excellent mid- and long-term results
Reproducibility and Relative Validity of a Food Frequency Questionnaire Developed for Female Adolescents in Suihua, North China
BACKGROUND: This study aims to evaluate the reproducibility and validity of a food frequency questionnaire (FFQ) developed for female adolescents in the Suihua area of North China. The FFQ was evaluated against the average of 24-hour dietary recalls (24-HRs). METHODOLOGY/PRINCIPAL FINDINGS: A total of 168 female adolescents aged 12 to 18 completed nine three consecutive 24-HRs (one three consecutive 24 HRs per month) and two FFQs over nine months. The reproducibility of the FFQ was estimated using intraclass correlation coefficients (ICCs), and its relative validity was assessed by comparing it with the 24-HRs. The mean values of the 24-HRs were lower than those of the FFQs, except for protein (in FFQ1) and iron (in FFQ2). The ICCs for all nutrients and food groups in FFQ1 and FFQ2 were moderately correlated (0.4-0.8). However, all the ICCs decreased after adjusting for energy. The weighted κ statistic showed moderate agreement (0.40-0.6) for all nutrients and food groups, except for niacin and calcium, which showed poor agreement (0.35). The relative validity results indicate that the crude Spearman's correlation coefficients of FFQ1 and the 24-HRs ranged from 0.41 (for Vitamin C) to 0.65 (for fruit). The coefficients of each nutrient and food group in FFQ2 and the 24-HRs were higher than those in FFQ1 and the 24-HRs, indicating good correlation. Although all energy-adjusted Spearman's correlation coefficients were lower than the crude coefficients, de-attenuation to correct for intra-individual variability improved the correlation coefficients. The weighted κ coefficients of nutrients and food groups ranged from 0.32 for beans to 0.52 for riboflavin in FFQ1 and the 24-HRs, and 0.32 for Vitamin C to 0.54 for riboflavin in FFQ2 and the 24-HRs. CONCLUSION: The FFQ developed for female adolescents in the Suihua area is a reliable and valid instrument for ranking individuals within this study
Predicting microbiologically defined infection in febrile neutropenic episodes in children : global individual participant data multivariable meta-analysis
BACKGROUND: Risk-stratified management of fever with neutropenia (FN), allows intensive management of high-risk cases and early discharge of low-risk cases. No single, internationally validated, prediction model of the risk of adverse outcomes exists for children and young people. An individual patient data (IPD) meta-analysis was undertaken to devise one. METHODS: The 'Predicting Infectious Complications in Children with Cancer' (PICNICC) collaboration was formed by parent representatives, international clinical and methodological experts. Univariable and multivariable analyses, using random effects logistic regression, were undertaken to derive and internally validate a risk-prediction model for outcomes of episodes of FN based on clinical and laboratory data at presentation. RESULTS: Data came from 22 different study groups from 15 countries, of 5127 episodes of FN in 3504 patients. There were 1070 episodes in 616 patients from seven studies available for multivariable analysis. Univariable analyses showed associations with microbiologically defined infection (MDI) in many items, including higher temperature, lower white cell counts and acute myeloid leukaemia, but not age. Patients with osteosarcoma/Ewings sarcoma and those with more severe mucositis were associated with a decreased risk of MDI. The predictive model included: malignancy type, temperature, clinically 'severely unwell', haemoglobin, white cell count and absolute monocyte count. It showed moderate discrimination (AUROC 0.723, 95% confidence interval 0.711-0.759) and good calibration (calibration slope 0.95). The model was robust to bootstrap and cross-validation sensitivity analyses. CONCLUSIONS: This new prediction model for risk of MDI appears accurate. It requires prospective studies assessing implementation to assist clinicians and parents/patients in individualised decision making
Stem cell‐derived enteroid cultures as a tool for dissecting host‐parasite interactions in the small intestinal epithelium.
Toxoplasma gondii and Cryptosporidium spp. can cause devastating pathological effects in humans and livestock, and in particular to young or immunocompromised individuals. The current treatment plans for these enteric parasites are limited due to long drug courses, severe side effects, or simply a lack of efficacy. The study of the early interactions between the parasites and the site of infection in the small intestinal epithelium has been thwarted by the lack of accessible, physiologically relevant, and species-specific models. Increasingly, 3D stem cell-derived enteroid models are being refined and developed into sophisticated models of infectious disease. In this review we shall illustrate the use of enteroids to spearhead research into enteric parasitic infections, bridging the gap between cell line cultures and in vivo experiments
Drosophila EGFR pathway coordinates stem cell proliferation and gut remodeling following infection
<p>Abstract</p> <p>Background</p> <p>Gut homeostasis is central to whole organism health, and its disruption is associated with a broad range of pathologies. Following damage, complex physiological events are required in the gut to maintain proper homeostasis. Previously, we demonstrated that ingestion of a nonlethal pathogen, <it>Erwinia carotovora carotovora 15</it>, induces a massive increase in stem cell proliferation in the gut of <it>Drosophila</it>. However, the precise cellular events that occur following infection have not been quantitatively described, nor do we understand the interaction between multiple pathways that have been implicated in epithelium renewal.</p> <p>Results</p> <p>To understand the process of infection and epithelium renewal in more detail, we performed a quantitative analysis of several cellular and morphological characteristics of the gut. We observed that the gut of adult <it>Drosophila </it>undergoes a dynamic remodeling in response to bacterial infection. This remodeling coordinates the synthesis of new enterocytes, their proper morphogenesis and the elimination of damaged cells through delamination and anoikis. We demonstrate that one signaling pathway, the epidermal growth factor receptor (EGFR) pathway, is key to controlling each of these steps through distinct functions in intestinal stem cells and enterocytes. The EGFR pathway is activated by the EGF ligands, Spitz, Keren and Vein, the latter being induced in the surrounding visceral muscles in part under the control of the Janus kinase/signal transducer and activator of transcription (JAK/STAT) pathway. Additionally, the EGFR pathway synergizes with the JAK/STAT pathway in stem cells to promote their proliferation. Finally, we show that the EGFR pathway contributes to gut morphogenesis through its activity in enterocytes and is required to properly coordinate the delamination and anoikis of damaged cells. This function of the EGFR pathway in enterocytes is key to maintaining homeostasis, as flies lacking EGFR are highly susceptible to infection.</p> <p>Conclusions</p> <p>This study demonstrates that restoration of normal gut morphology following bacterial infection is a more complex phenomenon than previously described. Maintenance of gut homeostasis requires the coordination of stem cell proliferation and differentiation, with the incorporation and morphogenesis of new cells and the expulsion of damaged enterocytes. We show that one signaling pathway, the EGFR pathway, is central to all these stages, and its activation at multiple steps could synchronize the complex cellular events leading to gut repair and homeostasis.</p
Role of Neural NO Synthase (nNOS) Uncoupling in the Dysfunctional Nitrergic Vasorelaxation of Penile Arteries from Insulin-Resistant Obese Zucker Rats
Objective: Erectile dysfunction (ED) is considered as an early sign of vascular disease due to its high prevalence in patients with cardiovascular risk factors. Endothelial and neural dysfunction involving nitric oxide (NO) are usually implicated in the pathophysiology of the diabetic ED, but the underlying mechanisms are unclear. The present study assessed the role of oxidative stress in the dysfunctional neural vasodilator responses of penile arteries in the obese Zucker rat (OZR), an experimental model of metabolic syndrome/prediabetes. Methods and Results: Electrical field stimulation (EFS) under non-adrenergic non-cholinergic (NANC) conditions evoked relaxations that were significantly reduced in penile arteries of OZR compared with those of lean Zucker rats (LZR). Blockade of NO synthase (NOS) inhibited neural relaxations in both LZR and OZR, while saturating concentrations of the NOS substrate L-arginine reversed the inhibition and restored relaxations in OZR to levels in arteries from LZR. nNOS expression was unchanged in arteries from OZR compared to LZR and nNOS selective inhibition decreased the EFS relaxations in LZR but not in OZR, while endothelium removal did not alter these responses in either strain. Superoxide anion production and nitro-tyrosine immunostaining were elevated in the erectile tissue from OZR. Treatment with the NADPH oxidase inhibitor apocynin or acute incubation with the NOS cofactor tetrahydrobiopterin (BH4) restored neural relaxations in OZR to levels in control arteries, while inhibition of the enzyme of BH4 synthesis GTP-cyclohydrolase (GCH) reduced neural relaxations i
Age-related transcriptional changes in gene expression in different organs of mice support the metabolic stability theory of aging
Individual differences in the rate of aging are determined by the efficiency with which an organism transforms resources into metabolic energy thus maintaining the homeostatic condition of its cells and tissues. This observation has been integrated with analytical studies of the metabolic process to derive the following principle: The metabolic stability of regulatory networks, that is the ability of cells to maintain stable concentrations of reactive oxygen species (ROS) and other critical metabolites is the prime determinant of life span. The metabolic stability of a regulatory network is determined by the diversity of the metabolic pathways or the degree of connectivity of genes in the network. These properties can be empirically evaluated in terms of transcriptional changes in gene expression. We use microarrays to investigate the age-dependence of transcriptional changes of genes in the insulin signaling, oxidative phosphorylation and glutathione metabolism pathways in mice. Our studies delineate age and tissue specific patterns of transcriptional changes which are consistent with the metabolic stability–longevity principle. This study, in addition, rejects the free radical hypothesis which postulates that the production rate of ROS, and not its stability, determines life span
- …