20 research outputs found

    The Yuan-Tseh Lee Array for Microwave Background Anisotropy

    Full text link
    The Yuan-Tseh Lee Array for Microwave Background Anisotropy (AMiBA) is the first interferometer dedicated to studying the cosmic microwave background (CMB) radiation at 3mm wavelength. The choice of 3mm was made to minimize the contributions from foreground synchrotron radiation and Galactic dust emission. The initial configuration of seven 0.6m telescopes mounted on a 6-m hexapod platform was dedicated in October 2006 on Mauna Loa, Hawaii. Scientific operations began with the detection of a number of clusters of galaxies via the thermal Sunyaev-Zel'dovich effect. We compare our data with Subaru weak lensing data in order to study the structure of dark matter. We also compare our data with X-ray data in order to derive the Hubble constant.Comment: accepted for publication in ApJ (13 pages, 7 figures); a version with high resolution figures available at http://www.asiaa.sinica.edu.tw/~keiichi/upfiles/AMiBA7/pho_highreso.pd

    Field study of indoor environment quality in an open atrium with ETFE membrane in a healthcare facility

    No full text
    The hospital street is widely utilized in the modern health care facilities as a main traffic streamline to connecting all of the outpatient rooms and treatment departments for easy access. This study investigate the indoor environment quality of a typical hospital street, i.e., a high space atrium with ETFE membrane structure in the top. The investigation combines the on-site measurement and subjective survey. The results indicates that the indoor air temperature in the atrium reaches up to 32.6oC in a summer day causing thermal discomfort according to ASHRAE 55. The CO2, PM2.5, TVOC concentration in the hospital street comply with the Chinese standard for hospitals. The illumination in the corridors around the atrium is below the threshold of Chinese standard, i.e., 100 lux. Due to the vibration of the light ETFE membrane structure, the noise level in rainy days is as high as 79.5 dB which causes acoustic discomfort of occupants. This study is beneficial for the design of the hospital street design with the ETFE membrane structure

    Numerical research on thermal performance of water-flow window as hospital curtain-wall

    No full text
    Water-flow window can reduce indoor cooling load from direct solar radiation and preheat domestic hot water at the same time. It is quite suitable for hospital with patient wards and large demand of hot water, especially buildings with large area of glazing curtain-wall. Field measurement was carried out during July 2018 at a major comprehensive hospital in Shenzhen, and the inner surface of the four-storey west-facing glazing curtain-wall reached over 45.6oC in the daytime. The year-round energy-saving potential is investigated by applying water-flow window to the curtain-wall through programme simulation, with a pre-validated FORTRAN programme. The results show that the year-round solar energy utilization rate can reach as high as 9.4%, and the indoor thermal environment is better, compared with conventional window design. The preheated water can be used in wards for showering and help building energy conservation. Water-flow window has great potential for large-scale application within similar buildings

    Energy performance of an innovative bifacial photovoltaic sunshade (BiPVS) under hot summer and warm winter climate

    No full text
    The bi-facial photovoltaic sunshade (BiPVS) is an innovative solution that utilizes vertically mounted bi-facial photovoltaic modules to provide shading. The BiPVS is capable of converting incident solar radiation into electricity on both the front and rear sides of the module, resulting in higher electrical efficiency compared to traditional mono-facial PV sunshades. The BiPVS has great potential as a sustainable solution for building shading and energy generation, which allows for improved indoor light/thermal environment and building energy efficiency. In this study, the bi-facial photovoltaic sunshade (BiPVS) was implemented in an office under typical hot summer and warm winter climate of Shenzhen, China. The energy performance of the BiPVS was analyzed using Energyplus. The comprehensive building energy saving was evaluated by comparing the energy consumption of the office with and without the BiPVS. Results showed that the total annual photovoltaic power generation was 133.19 kWh, while the comprehensive building energy savings were 159.65 kWh. Additionally, carbon dioxide emissions were reduced by 83.29 kgCO2 per year. The proposed method can help optimize the design parameters of BiPVS according to specific climate conditions, building types, and orientation, and contribute to the development of high-efficiency BIPV technology and support efforts towards carbon neutrality

    Performance analysis of pulsed flow control method for radiant slab system

    No full text
    We present a novel pulsed flow control method (PFM) using a two-position valve to regulate the capacity of radiant slab systems. Under PFM, the on-time duration of the valve is short (compared to all prior work, e.g. 4-minute), and fixed, while the off-time varies. We present a novel, open-source, finite difference model that assesses three-dimensional transient slab heat transfer, accounting for the transient heat storage of the pipe fluid. Sensitivity analysis results indicate the dominant factors influencing energy performance of the PFM are: on-time duration; pipe diameter; and spacing. We experimentally validated both the new control strategy and model in full-scale laboratory experiments. Compared with previous intermittent control strategies (with on-time durations over 30 min), at 50% part load the PFM reduces 27% required water flow rate and increases supply to return water temperature differential. Compared with the variable temperature control method, at 50% part load the PFM reduces 24% required water flow rate. The energy performance of PFM is comparable to that of a conventional variable flow rate control. However, it has more accurate capacity control, achieves a more uniform surface temperature distribution, and reduces initial investment by substituting two-position for modulating valves, thus showing promise for engineering applications
    corecore