81 research outputs found

    Atherosclerosis of the descending aorta predicts cardiovascular events: a transesophageal echocardiography study

    Get PDF
    PURPOSE: Previous studies have shown that atherosclerosis of the descending aorta detected by transesophageal echocardiography (TEE) is a good marker of coexisting coronary artery disease. The aim of our study was to evaluate whether the presence of atherosclerosis on the descending aorta during TEE has any prognostic impact in predicting cardiovascular events. MATERIAL AND METHODS: The study group consisted of 238 consecutive in-hospital patients referred for TEE testing (135 males, 103 females, mean age 58 +/- 11 years) with a follow up of 24 months. The atherosclerotic lesions of the descending aorta were scored from 0 (no atherosclerosis) to 3 (plaque >5 mm and/or "complex" plaque with ulcerated or mobile parts). RESULTS: Atherosclerosis was observed in 102 patients, (grade 3 in 16, and grade 2 in 86 patients) whereas 136 patients only had an intimal thickening or normal intimal surface. There were 57 cardiovascular events in the follow-up period. The number of events was higher in the 102 patients with (n = 34) than in the 136 patients without atherosclerosis (n = 23, p < 0.01). The frequency of events was in close correlation with the severity of the atherosclerosis of the descending aorta. Fifty percent of the patients with grade 3 experienced cardiovascular events. Excluding patients with subsequent revascularization, the multivariate analysis only left ventricular function with EF < 40% (HR 3.0, CI 1.3–7.1) and TEE atherosclerotic plaque >=2 (HR 2.4, CI 1.0–5.5) predicted hard cardiovascular events. CONCLUSION: Atherosclerosis of the descending aorta observed during transesophageal echocardiography is a useful predictor of cardiovascular events

    Skewed genomic variability in strains of the toxigenic bacterial pathogen, Clostridium perfringens

    Full text link
    Clostridium perfringens is a Gram-positive, anaerobic spore-forming bacterium commonly found in soil, sediments, and the human gastrointestinal tract. C. perfringens is responsible for a wide spectrum of disease, including food poisoning, gas gangrene (clostridial myonecrosis), enteritis necroticans, and non-foodborne gastrointestinal infections. The complete genome sequences of Clostridium perfringens strain ATCC 13124, a gas gangrene isolate and the species type strain, and the enterotoxin-producing food poisoning strain SM101, were determined and compared with the published C. perfringens strain 13 genome. Comparison of the three genomes revealed considerable genomic diversity with >300 unique "genomic islands" identified, with the majority of these islands unusually clustered on one replichore. PCR-based analysis indicated that the large genomic islands are widely variable across a large collection of C. perfringens strains. These islands encode genes that correlate to differences in virulence and phenotypic characteristics of these strains. Significant differences between the strains include numerous novel mobile elements and genes encoding metabolic capabilities, strain-specific extracellular polysaccharide capsule, sporulation factors, toxins, and other secreted enzymes, providing substantial insight into this medically important bacterial pathogen. ©2006 by Cold Spring Harbor Laboratory Press

    Neighbourhood Socioeconomics Status Predicts Non-Cardiovascular Mortality in Cardiac Patients with Access to Universal Health Care

    Get PDF
    BACKGROUND: Although the Canadian health care system provides essential services to all residents, evidence suggests that socioeconomic gradients in disease outcomes still persist. The main objective of our study was to investigate whether mortality, from cardiovascular disease or other causes, varies by neighbourhood socioeconomic gradients in patients accessing the healthcare system for cardiovascular disease management. METHODS AND FINDINGS: A cohort of 485 patients with angiographic evidence of coronary artery disease (CAD) and neighbourhood socioeconomic status information was followed for 13.3 years. Survival analyses were completed with adjustment for potentially confounding risk factors. There were 64 cases of cardiovascular mortality and 66 deaths from non-cardiovascular chronic diseases. No socioeconomic differentials in cardiovascular mortality were observed. However, lower neighbourhood employment, education, and median family income did predict an increased risk of mortality from non-cardiovascular chronic diseases. For each quintile decrease in neighbourhood socioeconomic status, non-cardiovascular mortality risk rose by 21-30%. Covariate-adjusted hazard ratios (95% confidence interval) for non-cardiovascular mortality were 1.21 (1.02-1.42), 1.21 (1.01-1.46), and 1.30 (1.06-1.60), for each quintile decrease in neighbourhood education, employment, and income, respectively. These patterns were primarily attributable to mortality from cancer. Estimated risks for mortality from cancer rose by 42% and 62% for each one quintile decrease in neighbourhood median income and employment rate, respectively. Although only baseline clinical information was collected and patient-level socioeconomic data were not available, our results suggest that environmental socioeconomic factors have a significant impact on CAD patient survival. CONCLUSIONS: Despite public health care access, CAD patients who reside in lower-socioeconomic neighbourhoods show increased vulnerability to non-cardiovascular chronic disease mortality, particularly in the domain of cancer. These findings prompt further research exploring mechanisms of neighbourhood effects on health, and ways they may be ameliorated

    Local Gene Silencing of Monocyte Chemoattractant Protein-1 Prevents Vulnerable Plaque Disruption in Apolipoprotein E-Knockout Mice

    Get PDF
    Monocyte chemoattractant protein-1 (MCP-1), a CC chemokine (CCL2), has been demonstrated to play important roles in atherosclerosis and becoming an important therapeutic target for atherosclerosis. The present study was undertaken to test the hypothesis that local RNAi of MCP-1 by site-specific delivery of adenovirus-mediated small hairpin RNA (shRNA) may enhance plaque stability and prevent plaque disruption in ApoE−/− mice. We designed an adenovirus-mediated shRNA against mouse MCP-1 (rAd5-MCP-1-shRNA). Male apolipoprotein E-knockout (ApoE−/−) mice (n = 120) were fed a high-fat diet and vulnerable plaques were induced by perivascular placement of constrictive collars around the carotid artery, intraperitoneal injection of lipopolysaccharide and stress stimulation. Mice were randomly divided into RNA interference (Ad-MCP-1i) group receiving local treatment of rAd5-MCP-1-shRNA suspension, Ad-EGFP group receiving treatment of rAd5-mediated negative shRNA and mock group receiving treatment of saline. Two weeks after treatment, plaque disruption rates were significantly lower in the Ad-MCP-1i group than in the Ad-EGFP group (13.3% vs. 60.0%, P = 0.01), and local MCP-1 expression was significantly inhibited in the Ad-MCP-1i group confirmed by immunostaining, qRT-PCR and western blot (P<0.001). Compared with the Ad-EGFP group, carotid plaques in the Ad-MCP-1i group showed increased levels of collagen and smooth muscle cells, and decreased levels of lipid and macrophages. The expression of inflammatory cytokines and activities of matrix metalloproteinases (MMPs) were lower in the Ad-MCP-1i group than in the Ad-EGFP group. In conclusion, site-specific delivery of adenoviral-mediated shRNA targeting mouse MCP-1 downregulated MCP-1 expression, turned a vulnerable plaque into a more stable plaque phenotype and prevented plaque disruption. A marked suppression of the local inflammatory cytokine expression may be the central mechanism involved

    Ultrasound imaging versus morphopathology in cardiovascular diseases. Coronary collateral circulation and atherosclerotic plaque

    Get PDF
    This review article is aimed at comparing the results of histopathological and clinical imaging studies to assess coronary collateral circulation in humans. The role of collaterals, as emerging from morphological studies in both normal and atherosclerotic coronary vessels, is described; in addition, present role and future perpectives of echocardiographic techniques in assessing collateral circulation are briefly summarized

    Structural and biochemical characterization of HP0315 from Helicobacter pylori as a VapD protein with an endoribonuclease activity

    Get PDF
    VapD-like virulence-associated proteins have been found in many organisms, but little is known about this protein family including the 3D structure of these proteins. Recently, a relationship between the Cas2 family of ribonucleases associated with the CRISPR system of microbial immunity and VapD was suggested. Here, we show for the first time the structure of a member of the VapD family and present a relationship of VapD with Cas2 family and toxin–antitoxin (TA) systems. The crystal structure of HP0315 from Helicobacter pylori was solved at a resolution of 2.8 Å. The structure of HP0315, which has a modified ferredoxin-like fold, is very similar to that of the Cas2 family. Like Cas2 proteins, HP0315 shows endoribonuclease activity. HP0315-cleaved mRNA, mainly before A and G nucleotides preferentially, which means that HP0315 has purine-specific endoribonuclease activity. Mutagenesis studies of HP0315 revealed that D7, L13, S43 and D76 residues are important for RNase activity, in contrast, to the Cas2 family. HP0315 is arranged as an operon with HP0316, which was found to be an antitoxin-related protein. However, HP0315 is not a component of the TA system. Thus, HP0315 may be an evolutionary intermediate which does not belong to either the Cas2 family or TA system

    Genomic insights to SAR86, an abundant and uncultivated marine bacterial lineage

    Get PDF
    Bacteria in the 16S rRNA clade SAR86 are among the most abundant uncultivated constituents of microbial assemblages in the surface ocean for which little genomic information is currently available. Bioinformatic techniques were used to assemble two nearly complete genomes from marine metagenomes and single-cell sequencing provided two more partial genomes. Recruitment of metagenomic data shows that these SAR86 genomes substantially increase our knowledge of non-photosynthetic bacteria in the surface ocean. Phylogenomic analyses establish SAR86 as a basal and divergent lineage of γ-proteobacteria, and the individual genomes display a temperature-dependent distribution. Modestly sized at 1.25–1.7 Mbp, the SAR86 genomes lack several pathways for amino-acid and vitamin synthesis as well as sulfate reduction, trends commonly observed in other abundant marine microbes. SAR86 appears to be an aerobic chemoheterotroph with the potential for proteorhodopsin-based ATP generation, though the apparent lack of a retinal biosynthesis pathway may require it to scavenge exogenously-derived pigments to utilize proteorhodopsin. The genomes contain an expanded capacity for the degradation of lipids and carbohydrates acquired using a wealth of tonB-dependent outer membrane receptors. Like the abundant planktonic marine bacterial clade SAR11, SAR86 exhibits metabolic streamlining, but also a distinct carbon compound specialization, possibly avoiding competition

    Database resources of the National Center for Biotechnology Information

    Get PDF
    In addition to maintaining the GenBank® nucleic acid sequence database, the National Center for Biotechnology Information (NCBI) provides analysis and retrieval resources for the data in GenBank and other biological data made available through the NCBI web site. NCBI resources include Entrez, the Entrez Programming Utilities, MyNCBI, PubMed, PubMed Central, Entrez Gene, the NCBI Taxonomy Browser, BLAST, BLAST Link (BLink), Electronic PCR, OrfFinder, Spidey, Splign, Reference Sequence, UniGene, HomoloGene, ProtEST, dbMHC, dbSNP, Cancer Chromosomes, Entrez Genomes and related tools, the Map Viewer, Model Maker, Evidence Viewer, Trace Archive, Sequence Read Archive, Retroviral Genotyping Tools, HIV-1/Human Protein Interaction Database, Gene Expression Omnibus, Entrez Probe, GENSAT, Online Mendelian Inheritance in Man, Online Mendelian Inheritance in Animals, the Molecular Modeling Database, the Conserved Domain Database, the Conserved Domain Architecture Retrieval Tool, Biosystems, Peptidome, Protein Clusters and the PubChem suite of small molecule databases. Augmenting many of the web applications are custom implementations of the BLAST program optimized to search specialized data sets. All these resources can be accessed through the NCBI home page at www.ncbi.nlm.nih.gov
    corecore