30 research outputs found

    OMIA (Online Mendelian Inheritance in Animals): an enhanced platform and integration into the Entrez search interface at NCBI

    Get PDF
    Online Mendelian Inheritance in Animals (OMIA) is a comprehensive, annotated catalogue of inherited disorders and other familial traits in animals other than humans and mice. Structured as a comparative biology resource, OMIA is a comprehensive resource of phenotypic information on heritable animal traits and genes in a strongly comparative context, relating traits to genes where possible. OMIA is modelled on and is complementary to Online Mendelian Inheritance in Man (OMIM). OMIA has been moved to a MySQL database at the Australian National Genomic Information Service (ANGIS) and can be accessed at . It has also been integrated into the Entrez search interface at the National Center for Biotechnology Information (NCBI; ). Curation of OMIA data by researchers working on particular species and disorders has also been enabled

    ClanTox: a classifier of short animal toxins

    Get PDF
    Toxins are detected in sporadic species along the evolutionary tree of the animal kingdom. Venomous animals include scorpions, snakes, bees, wasps, frogs and numerous animals living in the sea such as the stonefish, snail, jellyfish, hydra and more. Interestingly, proteins that share a common scaffold with animal toxins also exist in non-venomous species. However, due to their short length and primary sequence diversity, these, toxin-like proteins remain undetected by classical search engines and genome annotation tools. We construct a toxin classification machine and web server called ClanTox (Classifier of Animal Toxins) that is based on the extraction of sequence-driven features from the primary protein sequence followed by the application of a classification system trained on known animal toxins. For a given input list of sequences, from venomous or non-venomous settings, the ClanTox system predicts whether each sequence is toxin-like. ClanTox provides a ranked list of positively predicted candidates according to statistical confidence. For each protein, additional information is presented including the presence of a signal peptide, the number of cysteine residues and the associated functional annotations. ClanTox is a discovery-prediction tool for a relatively overlooked niche of toxin-like cell modulators, many of which are therapeutic agent candidates. The ClanTox web server is freely accessible at http://www.clantox.cs.huji.ac.il

    Amino Acid Patterns around Disulfide Bonds

    Get PDF
    Disulfide bonds provide an inexhaustible source of information on molecular evolution and biological specificity. In this work, we described the amino acid composition around disulfide bonds in a set of disulfide-rich proteins using appropriate descriptors, based on ANOVA (for all twenty natural amino acids or classes of amino acids clustered according to their chemical similarities) and Scheffé (for the disulfide-rich proteins superfamilies) statistics. We found that weakly hydrophilic and aromatic amino acids are quite abundant in the regions around disulfide bonds, contrary to aliphatic and hydrophobic amino acids. The density distributions (as a function of the distance to the center of the disulfide bonds) for all defined entities presented an overall unimodal behavior: the densities are null at short distances, have maxima at intermediate distances and decrease for long distances. In the end, the amino acid environment around the disulfide bonds was found to be different for different superfamilies, allowing the clustering of proteins in a biologically relevant way, suggesting that this type of chemical information might be used as a tool to assess the relationship between very divergent sets of disulfide-rich proteins

    Database resources of the National Center for Biotechnology Information

    Get PDF
    In addition to maintaining the GenBank® nucleic acid sequence database, the National Center for Biotechnology Information (NCBI) provides analysis and retrieval resources for the data in GenBank and other biological data made available through the NCBI web site. NCBI resources include Entrez, the Entrez Programming Utilities, MyNCBI, PubMed, PubMed Central, Entrez Gene, the NCBI Taxonomy Browser, BLAST, BLAST Link (BLink), Electronic PCR, OrfFinder, Spidey, Splign, RefSeq, UniGene, HomoloGene, ProtEST, dbMHC, dbSNP, Cancer Chromosomes, Entrez Genomes and related tools, the Map Viewer, Model Maker, Evidence Viewer, Clusters of Orthologous Groups (COGs), Retroviral Genotyping Tools, HIV-1/Human Protein Interaction Database, Gene Expression Omnibus (GEO), Entrez Probe, GENSAT, Online Mendelian Inheritance in Man (OMIM), Online Mendelian Inheritance in Animals (OMIA), the Molecular Modeling Database (MMDB), the Conserved Domain Database (CDD), the Conserved Domain Architecture Retrieval Tool (CDART) and the PubChem suite of small molecule databases. Augmenting many of the web applications is custom implementation of the BLAST program optimized to search specialized data sets. All of the resources can be accessed through the NCBI home page at www.ncbi.nlm.nih.gov

    Hyperdimensional Analysis of Amino Acid Pair Distributions in Proteins

    Get PDF
    Our manuscript presents a novel approach to protein structure analyses. We have organized an 8-dimensional data cube with protein 3D-structural information from 8706 high-resolution non-redundant protein-chains with the aim of identifying packing rules at the amino acid pair level. The cube contains information about amino acid type, solvent accessibility, spatial and sequence distance, secondary structure and sequence length. We are able to pose structural queries to the data cube using program ProPack. The response is a 1, 2 or 3D graph. Whereas the response is of a statistical nature, the user can obtain an instant list of all PDB-structures where such pair is found. The user may select a particular structure, which is displayed highlighting the pair in question. The user may pose millions of different queries and for each one he will receive the answer in a few seconds. In order to demonstrate the capabilities of the data cube as well as the programs, we have selected well known structural features, disulphide bridges and salt bridges, where we illustrate how the queries are posed, and how answers are given. Motifs involving cysteines such as disulphide bridges, zinc-fingers and iron-sulfur clusters are clearly identified and differentiated. ProPack also reveals that whereas pairs of Lys residues virtually never appear in close spatial proximity, pairs of Arg are abundant and appear at close spatial distance, contrasting the belief that electrostatic repulsion would prevent this juxtaposition and that Arg-Lys is perceived as a conservative mutation. The presented programs can find and visualize novel packing preferences in proteins structures allowing the user to unravel correlations between pairs of amino acids. The new tools allow the user to view statistical information and visualize instantly the structures that underpin the statistical information, which is far from trivial with most other SW tools for protein structure analysis

    Database resources of the National Center for Biotechnology Information

    Get PDF
    In addition to maintaining the GenBank® nucleic acid sequence database, the National Center for Biotechnology Information (NCBI) provides analysis and retrieval resources for the data in GenBank and other biological data made available through the NCBI web site. NCBI resources include Entrez, the Entrez Programming Utilities, MyNCBI, PubMed, PubMed Central, Entrez Gene, the NCBI Taxonomy Browser, BLAST, BLAST Link (BLink), Electronic PCR, OrfFinder, Spidey, Splign, Reference Sequence, UniGene, HomoloGene, ProtEST, dbMHC, dbSNP, Cancer Chromosomes, Entrez Genomes and related tools, the Map Viewer, Model Maker, Evidence Viewer, Trace Archive, Sequence Read Archive, Retroviral Genotyping Tools, HIV-1/Human Protein Interaction Database, Gene Expression Omnibus, Entrez Probe, GENSAT, Online Mendelian Inheritance in Man, Online Mendelian Inheritance in Animals, the Molecular Modeling Database, the Conserved Domain Database, the Conserved Domain Architecture Retrieval Tool, Biosystems, Peptidome, Protein Clusters and the PubChem suite of small molecule databases. Augmenting many of the web applications are custom implementations of the BLAST program optimized to search specialized data sets. All these resources can be accessed through the NCBI home page at www.ncbi.nlm.nih.gov

    The Princeton Protein Orthology Database (P-POD): A Comparative Genomics Analysis Tool for Biologists

    Get PDF
    Many biological databases that provide comparative genomics information and tools are now available on the internet. While certainly quite useful, to our knowledge none of the existing databases combine results from multiple comparative genomics methods with manually curated information from the literature. Here we describe the Princeton Protein Orthology Database (P-POD, http://ortholog.princeton.edu), a user-friendly database system that allows users to find and visualize the phylogenetic relationships among predicted orthologs (based on the OrthoMCL method) to a query gene from any of eight eukaryotic organisms, and to see the orthologs in a wider evolutionary context (based on the Jaccard clustering method). In addition to the phylogenetic information, the database contains experimental results manually collected from the literature that can be compared to the computational analyses, as well as links to relevant human disease and gene information via the OMIM, model organism, and sequence databases. Our aim is for the P-POD resource to be extremely useful to typical experimental biologists wanting to learn more about the evolutionary context of their favorite genes. P-POD is based on the commonly used Generic Model Organism Database (GMOD) schema and can be downloaded in its entirety for installation on one's own system. Thus, bioinformaticians and software developers may also find P-POD useful because they can use the P-POD database infrastructure when developing their own comparative genomics resources and database tools

    Has classical gene position been practically reduced?

    Get PDF
    One of the defining features of the classical gene was its position (a band in the chromosome). In molecular genetics, positions are defined instead as nucleotide numbers and there is no clear correspondence with its classical counterpart. However, the classical gene position did not simply disappear with the development of the molecular approach, but survived in the lab associated to different genetic practices. The survival of classical gene position would illustrate Waters’ view about the practical persistence of the genetic approach beyond reductionism and anti-reductionist claims. We show instead that at the level of laboratory practices there are also reductive processes, operating through the rise and fall of different techniques. Molecular markers made the concept of classical gene position practically dispensable, leading us to rethink whether it had any causal role or was just a mere heuristi

    User-generated content and the future of public broadcasting : a case study of the Special Broadcasting Service

    Get PDF
    New media formats that engage audiences as producers as well as consumers/users of content are transforming media worldwide, and present particular challenges for public broadcasters as they open up new questions about both the mandated responsibilities of the broadcaster and their responsiveness to new community expectations and needs. This paper considers how the Special Broadcasting Service (SBS) has been responding to the challenge of user-created content, and adapting to the new environment of participatory media culture. It draws upon an action research framework and ethnographic research into media organizations, and considers SBS’s responses alongside the emergence of citizen journalism in Australia

    In The Public Interest? : Investigative Journalism and Fourth Estate Philosophy Within the Australian Press

    No full text
    The tradition of ‘investigative journalism’ has come to denote the most lauded qualities of the journalistic profession, and has an impressive history of producing social reform in Australia. However, its grounding in Fourth Estate principles arguably promotes an adversarial, top-down approach to journalism, which has served to position the journalist as a removed ‘watchdog’ gaurdian of public interests, rather than as a professional who facilitates the public’s expressions of politcal, social and cultural interest. This thesis uses a case study of the National Times newspaper (1971-1986) to illustrate the form and effect of a particular manifestation of investigative journalism, and seeks to contextualise the tradition within a historical account of the development of Fourth Estate philosophy within Australia. This thesis aims to contribute to contemporary debates surrounding the role of journalism by situating this research within a broader discussion of the changing relations between the media and the citizenry within the contemporary public sphere
    corecore