10 research outputs found

    A Lie bracket for the momentum kernel

    Full text link
    We develop new mathematical tools for the study of the double copy and colour-kinematics duality for tree-level scattering amplitudes using the properties of Lie polynomials. We show that the SS-map that was defined to simplify super-Yang--Mills multiparticle superfields is in fact a new Lie bracket on the dual space of Lie polynomials. We introduce {\it Lie polynomial currents} based on Berends-Giele recursion for biadjoint scalar tree amplitudes that take values in Lie polynomials. Field theory amplitudes are obtained from the Lie polynomial amplitudes by numerators characterized as homomorphisms from the free Lie algebra to kinematic data. Examples are presented for the biadjoint scalar, Yang--Mills theory and the nonlinear sigma model. That these theories satisfy the Bern-Carrasco-Johansson amplitude relations follows from the identities we prove for the Lie polynomial amplitudes and the existence of BCJ numerators. A KLT map from Lie polynomials to their dual is obtained by nesting the S-map Lie bracket; the matrix elements of this map yield a recently proposed `generalized KLT matrix', and this reduces to the usual KLT matrix when its entries are restricted to a basis. Using this, we give an algebraic proof for the cancellation of double poles in the KLT formula for gravity amplitudes. We finish with some remarks on numerators and colour-kinematics duality from this perspective.Comment: 48 p

    Chalcone and Cinnamate Synthesis via One-Pot Enol Silane Formation-Mukaiyama Aldol Reactions of Ketones and Acetate Esters

    Get PDF
    Aryl alkyl ketones, acetate esters, and acetamides undergo facile one-pot enol silane formation, Mukaiyama aldol addition, and dehydrosilyloxylation in the presence of an amine base and excess trimethylsilyl trifluoromethanesulfonate. The chalcone and cinnamate products are generally recovered in high yield. The relative stoichiometry of the trimethylsilyl trifluoromethanesulfonate and amine base reagents determines whether the reaction yields the ÎČ- silyloxy carbonyl product or the α, ÎČ -unsaturated carbonyl

    A Lie bracket for the momentum kernel

    No full text
    We develop new mathematical tools for the study of the double copy and colour-kinematics duality for tree-level scattering amplitudes using the properties of Lie polynomials. We show that the S-map that was defined to simplify super-Yang–Mills multiparticle superfields is in fact a new Lie bracket on the dual space of Lie polynomials. We introduce Lie polynomial currents based on Berends-Giele recursion for biadjoint scalar tree amplitudes that take values in Lie polynomials. Field theory amplitudes are obtained from the Lie polynomial amplitudes by numerators characterized as homomorphisms from the free Lie algebra to kinematic data. Examples are presented for the biadjoint scalar, Yang–Mills theory and the nonlinear sigma model. That these theories satisfy the Bern-CarrascoJohansson amplitude relations follows from the identities we prove for the Lie polynomial amplitudes and the existence of BCJ numerators. A KLT map from Lie polynomials to their dual is obtained by nesting the S-map Lie bracket; the matrix elements of this map yield a recently proposed ‘generalized KLT matrix’, and this reduces to the usual KLT matrix when its entries are restricted to a basis. Using this, we give an algebraic proof for the cancellation of double poles in the KLT formula for gravity amplitudes. We finish with some remarks on numerators and colour-kinematics duality from this perspective

    A Lie bracket for the momentum kernel

    No full text
    We develop new mathematical tools for the study of the double copy and colour-kinematics duality for tree-level scattering amplitudes using the properties of Lie polynomials. We show that the SS-map that was defined to simplify super-Yang--Mills multiparticle superfields is in fact a new Lie bracket on the dual space of Lie polynomials. We introduce {\it Lie polynomial currents} based on Berends-Giele recursion for biadjoint scalar tree amplitudes that take values in Lie polynomials. Field theory amplitudes are obtained from the Lie polynomial amplitudes by numerators characterized as homomorphisms from the free Lie algebra to kinematic data. Examples are presented for the biadjoint scalar, Yang--Mills theory and the nonlinear sigma model. That these theories satisfy the Bern-Carrasco-Johansson amplitude relations follows from the identities we prove for the Lie polynomial amplitudes and the existence of BCJ numerators. A KLT map from Lie polynomials to their dual is obtained by nesting the S-map Lie bracket; the matrix elements of this map yield a recently proposed `generalized KLT matrix', and this reduces to the usual KLT matrix when its entries are restricted to a basis. Using this, we give an algebraic proof for the cancellation of double poles in the KLT formula for gravity amplitudes. We finish with some remarks on numerators and colour-kinematics duality from this perspective

    QUAREP-LiMi: A community-driven initiative to establish guidelines for quality assessment and reproducibility for instruments and images in light microscopy

    Get PDF
    A modern day light microscope has evolved from a tool devoted to making primarily empirical observations to what is now a sophisticated, quantitative device that is an integral part of both physical and life science research. Nowadays, microscopes are found in nearly every experimental laboratory. However, despite their prevalent use in capturing and quantifying scientific phenomena, neither a thorough understanding of the principles underlying quantitative imaging techniques nor appropriate knowledge of how to calibrate, operate and maintain microscopes can be taken for granted. This is clearly demonstrated by the well-documented and widespread difficulties that are routinely encountered in evaluating acquired data and reproducing scientific experiments. Indeed, studies have shown that more than 70% of researchers have tried and failed to repeat another scientist's experiments, while more than half have even failed to reproduce their own experiments. One factor behind the reproducibility crisis of experiments published in scientific journals is the frequent underreporting of imaging methods caused by a lack of awareness and/or a lack of knowledge of the applied technique. Whereas quality control procedures for some methods used in biomedical research, such as genomics (e.g. DNA sequencing, RNA-seq) or cytometry, have been introduced (e.g. ENCODE), this issue has not been tackled for optical microscopy instrumentation and images. Although many calibration standards and protocols have been published, there is a lack of awareness and agreement on common standards and guidelines for quality assessment and reproducibility. In April 2020, the QUality Assessment and REProducibility for instruments and images in Light Microscopy (QUAREP-LiMi) initiative was formed. This initiative comprises imaging scientists from academia and industry who share a common interest in achieving a better understanding of the performance and limitations of microscopes and improved quality control (QC) in light microscopy. The ultimate goal of the QUAREP-LiMi initiative is to establish a set of common QC standards, guidelines, metadata models and tools, including detailed protocols, with the ultimate aim of improving reproducible advances in scientific research. This White Paper (1) summarizes the major obstacles identified in the field that motivated the launch of the QUAREP-LiMi initiative; (2) identifies the urgent need to address these obstacles in a grassroots manner, through a community of stakeholders including, researchers, imaging scientists, bioimage analysts, bioimage informatics developers, corporate partners, funding agencies, standards organizations, scientific publishers and observers of such; (3) outlines the current actions of the QUAREP-LiMi initiative and (4) proposes future steps that can be taken to improve the dissemination and acceptance of the proposed guidelines to manage QC. To summarize, the principal goal of the QUAREP-LiMi initiative is to improve the overall quality and reproducibility of light microscope image data by introducing broadly accepted standard practices and accurately captured image data metrics

    QUAREP-LiMi: A community-driven initiative to establish guidelines for quality assessment and reproducibility for instruments and images in light microscopy

    Get PDF
    A modern day light microscope has evolved from a tool devoted to making primarily empirical observations to what is now a sophisticated, quantitative device that is an integral part of both physical and life science research. Nowadays, microscopes are found in nearly every experimental laboratory. However, despite their prevalent use in capturing and quantifying scientific phenomena, neither a thorough understanding of the principles underlying quantitative imaging techniques nor appropriate knowledge of how to calibrate, operate and maintain microscopes can be taken for granted. This is clearly demonstrated by the well-documented and widespread difficulties that are routinely encountered in evaluating acquired data and reproducing scientific experiments. Indeed, studies have shown that more than 70% of researchers have tried and failed to repeat another scientist's experiments, while more than half have even failed to reproduce their own experiments. One factor behind the reproducibility crisis of experiments published in scientific journals is the frequent underreporting of imaging methods caused by a lack of awareness and/or a lack of knowledge of the applied technique. Whereas quality control procedures for some methods used in biomedical research, such as genomics (e.g. DNA sequencing, RNA-seq) or cytometry, have been introduced (e.g. ENCODE), this issue has not been tackled for optical microscopy instrumentation and images. Although many calibration standards and protocols have been published, there is a lack of awareness and agreement on common standards and guidelines for quality assessment and reproducibility. In April 2020, the QUality Assessment and REProducibility for instruments and images in Light Microscopy (QUAREP-LiMi) initiative was formed. This initiative comprises imaging scientists from academia and industry who share a common interest in achieving a better understanding of the performance and limitations of microscopes and improved quality control (QC) in light microscopy. The ultimate goal of the QUAREP-LiMi initiative is to establish a set of common QC standards, guidelines, metadata models and tools, including detailed protocols, with the ultimate aim of improving reproducible advances in scientific research. This White Paper (1) summarizes the major obstacles identified in the field that motivated the launch of the QUAREP-LiMi initiative; (2) identifies the urgent need to address these obstacles in a grassroots manner, through a community of stakeholders including, researchers, imaging scientists, bioimage analysts, bioimage informatics developers, corporate partners, funding agencies, standards organizations, scientific publishers and observers of such; (3) outlines the current actions of the QUAREP-LiMi initiative and (4) proposes future steps that can be taken to improve the dissemination and acceptance of the proposed guidelines to manage QC. To summarize, the principal goal of the QUAREP-LiMi initiative is to improve the overall quality and reproducibility of light microscope image data by introducing broadly accepted standard practices and accurately captured image data metrics

    QUAREP-LiMi: A community-driven initiative to establish guidelines for quality assessment and reproducibility for instruments and images in light microscopy

    Get PDF
    This is the final version. Available on open access from Wiley via the DOI in this record. A modern day light microscope has evolved from a tool devoted to making primarily empirical observations to what is now a sophisticated , quantitative device that is an integral part of both physical and life science research. Nowadays, microscopes are found in nearly every experimental laboratory. However, despite their prevalent use in capturing and quantifying scientific phenomena, neither a thorough understanding of the principles underlying quantitative imaging techniques nor appropriate knowledge of how to calibrate, operate and maintain microscopes can be taken for granted. This is clearly demonstrated by the well-documented and widespread difficulties that are routinely encountered in evaluating acquired data and reproducing scientific experiments. Indeed, studies have shown that more than 70% of researchers have tried and failed to repeat another scientist's experiments, while more than half have even failed to reproduce their own experiments. One factor behind the reproducibility crisis of experiments published in scientific journals is the frequent underreporting of imaging methods caused by a lack of awareness and/or a lack of knowledge of the applied technique. Whereas quality control procedures for some methods used in biomedical research, such as genomics (e.g. DNA sequencing, RNA-seq) or cytometry, have been introduced (e.g. ENCODE), this issue has not been tackled for optical microscopy instrumentation and images. Although many calibration standards and protocols have been published, there is a lack of awareness and agreement on common standards and guidelines for quality assessment and reproducibility. In April 2020, the QUality Assessment and REProducibility for instruments and images in Light Microscopy (QUAREP-LiMi) initiative was formed. This initiative comprises imaging scientists from academia and industry who share a common interest in achieving a better understanding of the performance and limitations of microscopes and improved quality control (QC) in light microscopy. The ultimate goal of the QUAREP-LiMi initiative is to establish a set of common QC standards, guidelines, metadata models and tools, including detailed protocols, with the ultimate aim of improving reproducible advances in scientific research. This White Paper (1) summarizes the major obstacles identified in the field that motivated the launch of the QUAREP-LiMi initiative; (2) identifies the urgent need to address these obstacles in a grassroots manner, through a community of stakeholders including, researchers, imaging scientists, bioimage analysts, bioimage informatics developers, corporate partners, funding agencies, standards organizations, scientific publishers and observers of such; (3) outlines the current actions of the QUAREP-LiMi initiative and (4) proposes future steps that can be taken to improve the dissemination and acceptance of the proposed guidelines to manage QC. To summarize, the principal goal of the QUAREP-LiMi initiative is to improve the overall quality and reproducibility of light microscope image data by introducing broadly accepted standard practices and accurately captured image data metrics.Deutsche ForschungsgemeinschaftFundação para a CiĂȘncia e Tecnologia, Portugal (FCT

    QUAREP-LiMi: A community-driven initiative to establish guidelines for quality assessment and reproducibility for instruments and images in light microscopy

    Get PDF
    A modern day light microscope has evolved from a tool devoted to making primarily empirical observations to what is now a sophisticated , quantitative device that is an integral part of both physical and life science research. Nowadays, microscopes are found in nearly every experimental laboratory. However, despite their prevalent use in capturing and quantifying scientific phenomena, neither a thorough understanding of the principles underlying quantitative imaging techniques nor appropriate knowledge of how to calibrate, operate and maintain microscopes can be taken for granted. This is clearly demonstrated by the well-documented and widespread difficulties that are routinely encountered in evaluating acquired data and reproducing scientific experiments. Indeed, studies have shown that more than 70% of researchers have tried and failed to repeat another scientist's experiments, while more than half have even failed to reproduce their own experiments. One factor behind the reproducibility crisis of experiments published in scientific journals is the frequent underreporting of imaging methods caused by a lack of awareness and/or a lack of knowledge of the applied technique. Whereas quality control procedures for some methods used in biomedical research, such as genomics (e.g. DNA sequencing, RNA-seq) or cytometry, have been introduced (e.g. ENCODE), this issue has not been tackled for optical microscopy instrumentation and images. Although many calibration standards and protocols have been published, there is a lack of awareness and agreement on common standards and guidelines for quality assessment and reproducibility. In April 2020, the QUality Assessment and REProducibility for instruments and images in Light Microscopy (QUAREP-LiMi) initiative was formed. This initiative comprises imaging scientists from academia and industry who share a common interest in achieving a better understanding of the performance and limitations of microscopes and improved quality control (QC) in light microscopy. The ultimate goal of the QUAREP-LiMi initiative is to establish a set of common QC standards, guidelines, metadata models and tools, including detailed protocols, with the ultimate aim of improving reproducible advances in scientific research. This White Paper (1) summarizes the major obstacles identified in the field that motivated the launch of the QUAREP-LiMi initiative; (2) identifies the urgent need to address these obstacles in a grassroots manner, through a community of stakeholders including, researchers, imaging scientists, bioimage analysts, bioimage informatics developers, corporate partners, funding agencies, standards organizations, scientific publishers and observers of such; (3) outlines the current actions of the QUAREP-LiMi initiative and (4) proposes future steps that can be taken to improve the dissemination and acceptance of the proposed guidelines to manage QC. To summarize, the principal goal of the QUAREP-LiMi initiative is to improve the overall quality and reproducibility of light microscope image data by introducing broadly accepted standard practices and accurately captured image data metrics
    corecore