140 research outputs found

    Increased growth and reduced summer drought limitation at the southern limit of Fagus sylvatica\textit{Fagus sylvatica} L., despite regionally warmer and drier conditions

    Get PDF
    Tree populations at the equatorward edge of their distribution are predicted to respond to increased temperature and drought with declining performance. Empirical studies of Fagus sylvatica\textit{Fagus sylvatica} L., one of the most studied tree species in Europe, have broadly supported these predictions. Using a network of tree ring chronologies from northern Greece, we showed that growth in populations of this species at their southeast distribution limit was limited by summer temperature and precipitation, particularly at low elevations. Furthermore, decadal periods of lower precipitation and higher temperature in the twentieth century were associated with multi-year growth depressions. However, since 1990, growth trends were positive across the network, despite continued dry and hot summer conditions. Growth trends were not correlated with either elevation or tree age. Additionally, correlations between growth and temperature and precipitation were weaker in recent decades. These results are consistent with another recent report from the Balkan Peninsula, and indicate that forests in this region may be more resistant to regional climate change than previously considered.AHP received funding from the Department of Geography, University of Cambridge and Clare College, Cambridge

    Climate change and plant reproduction: trends and drivers of mast seeding change

    Get PDF
    Climate change is reshaping global vegetation through its impacts on plant mortality, but recruitment creates the next generation of plants and will determine the structure and composition of future communities. Recruitment depends on mean seed production, but also on the interannual variability and among-plant synchrony in seed production, the phenomenon known as mast seeding. Thus, predicting the long-term response of global vegetation dynamics to climate change requires understanding the response of masting to changing climate. Recently, data and methods have become available allowing the first assessments of long-term changes in masting. Reviewing the literature, we evaluate evidence for a fingerprint of climate change on mast seeding and discuss the drivers and impacts of these changes. We divide our discussion into the main characteristics of mast seeding: interannual variation, synchrony, temporal autocorrelation, and mast frequency. Data indicate that masting patterns, are changing, but the direction of that change varies, likely reflecting the diversity of proximate factors underlying masting across taxa. Experiments to understand the proximate mechanisms underlying masting, in combination with the analysis of long-term datasets, will enable us to understand this observed variability in the response of masting. This will allow us to predict future shifts in masting patterns, and consequently ecosystem impacts of climate change via its impacts on masting.</p

    Evolution of masting in plants is linked to investment in low tissue mortality

    Get PDF
    AbstractMasting, a variable and synchronized variation in reproductive effort is a prevalent strategy among perennial plants, but the factors leading to interspecific differences in masting remain unclear. Here, we investigate interannual patterns of reproductive investment in 517 species of terrestrial perennial plants, including herbs, graminoids, shrubs, and trees. We place these patterns in the context of the plants’ phylogeny, habitat, form and function. Our findings reveal that masting is widespread across the plant phylogeny. Nonetheless, reversion from masting to regular seed production is also common. While interannual variation in seed production is highest in temperate and boreal zones, our analysis controlling for environment and phylogeny indicates that masting is more frequent in species that invest in tissue longevity. Our modeling exposes masting-trait relationships that would otherwise remain hidden and provides large-scale evidence that the costs of delayed reproduction play a significant role in the evolution of variable reproduction in plants.</jats:p

    Drought and reproductive effort interact to control growth of a temperate broadleaved tree species (Fagus sylvatica)

    Get PDF
    Interannual variation in radial growth is influenced by a range of physiological processes, including variation in annual reproductive effort, although the importance of reproductive allocation has rarely been quantified. In this study, we use long stand-level records of annual seed production, radial growth (tree ring width) and meteorological conditions to analyse the relative importance of summer drought and reproductive effort in controlling the growth of Fagus sylvatica L., a typical masting species. We show that both summer drought and reproductive effort (masting) influenced growth. Importantly, the effects of summer drought and masting were interactive, with the greatest reductions in growth found in years when high reproductive effort (i.e., mast years) coincided with summer drought. Conversely, mast years that coincided with non-drought summers were associated with little reduction in radial growth, as were drought years that did not coincide with mast years. The results show that the strength of an inferred trade-off between growth and reproduction in this species (the cost of reproduction) is dependent on environmental stress, with a stronger trade-off in years with more stressful growing conditions. These results have widespread implications for understanding interannual variability in growth, and observed relationships between growth and climate

    Climatically controlled reproduction drives interannual growth variability in a temperate tree species.

    Get PDF
    Climatically controlled allocation to reproduction is a key mechanism by which climate influences tree growth and may explain lagged correlations between climate and growth. We used continent-wide datasets of tree-ring chronologies and annual reproductive effort in Fagus sylvatica from 1901 to 2015 to characterise relationships between climate, reproduction and growth. Results highlight that variable allocation to reproduction is a key factor for growth in this species, and that high reproductive effort ('mast years') is associated with stem growth reduction. Additionally, high reproductive effort is associated with previous summer temperature, creating lagged climate effects on growth. Consequently, understanding growth variability in forest ecosystems requires the incorporation of reproduction, which can be highly variable. Our results suggest that future response of growth dynamics to climate change in this species will be strongly influenced by the response of reproduction

    Environmental variation drives continental-scale synchrony of European beech reproduction.

    Get PDF
    Spatial synchrony is the tendency of spatially separated populations to display similar temporal fluctuations. Synchrony affects regional ecosystem functioning, but it remains difficult to disentangle its underlying mechanisms. We leveraged regression on distance matrices and geography of synchrony to understand the processes driving synchrony of European beech masting over the European continent. Masting in beech shows distance-decay, but significant synchrony is maintained at spatial scales of up to 1,500 km. The spatial synchrony of the weather cues that drive interannual variation in reproduction also explains the regional spatial synchrony of masting. Proximity played no apparent role in influencing beech masting synchrony after controlling for synchrony in environmental variation. Synchrony of beech reproduction shows a clear biogeographical pattern, decreasing from the northwest to southeast Europe. Synchrony networks for weather cues resemble networks for beech masting, indicating that the geographical structure of weather synchrony underlies the biogeography of masting synchrony. Our results support the hypothesis that environmental factors, the Moran effect, are key drivers of spatial synchrony in beech seed production at regional scales. The geographical patterns of regional synchronization of masting have implications for regional forest production, gene flow, carbon cycling, disease dynamics, biodiversity, and conservation

    Consistent limitation of growth by high temperature and low precipitation from range core to southern edge of European beech indicates widespread vulnerability to changing climate

    Get PDF
    © 2016 The Author(s)The aim of our study was to determine variation in the response of radial growth in Fagus sylvatica\textit{Fagus sylvatica} L (European Beech) to climate across the species full geographical distribution and climatic tolerance. We combined new and existing data to build a database of 140 tree-ring chronologies to investigate patterns in growth–climate relationships. Our novel meta-analysis approach has allowed the first investigation of the effect of climate on tree growth across the entire geographical distribution of the species. We identified key climate signals in tree-ring chronologies and then investigated how these varied geographically and according to mean local climate, and by tree age and size. We found that the most important climate variables significantly correlated with growth did not show strong geographical patterns. Growth of trees in the core and at the southern edge of the distribution was reduced by high temperature and low precipitation during the growing season, and by high temperatures in the previous summer. However, growth of trees growing in warmer and drier locations was more frequently significantly correlated with summer precipitation than other populations. Additionally, the growth of older and larger trees was more frequently significantly correlated with previous summer temperature than younger and smaller trees. Trees growing at the south of the species geographical distributions are often considered most at risk from climate change, but our results indicate that radial growth of populations in other areas of the distribution is equally likely to be significantly correlated with summer climate and may also be vulnerable. Additionally, tree-rings from older trees contain particular growth–climate relationships that are rarely found in younger trees. These results have important implications for predicting forest carbon balance, resource use and likely future changes to forest composition across the continent.University of Cambridge; Clare College, Cambridge; Natural Environment Research Council (Grant ID: NE/G002118/1

    Inter-annual and decadal changes in teleconnections drive continental-scale synchronization of tree reproduction

    Get PDF
    Climate teleconnections drive highly variable and synchronous seed production (masting) over large scales. Disentangling the effect of high-frequency (inter-annual variation) from low-frequency (decadal trends) components of climate oscillations will improve our understanding of masting as an ecosystem process. Using century-long observations on masting (the MASTREE database) and data on the Northern Atlantic Oscillation (NAO), we show that in the last 60 years both high-frequency summer and spring NAO, and low-frequency winter NAO components are highly correlated to continent-wide masting in European beech and Norway spruce. Relationships are weaker (non-stationary) in the early twentieth century. This finding improves our understanding on how climate variation affects large-scale synchronization of tree masting. Moreover, it supports the connection between proximate and ultimate causes of masting: indeed, large-scale features of atmospheric circulation coherently drive cues and resources for masting, as well as its evolutionary drivers, such as pollination efficiency, abundance of seed dispersers, and natural disturbance regimes

    Modeling Tree Growth Taking into Account Carbon Source and Sink Limitations

    Get PDF
    Increasing CO2 concentrations are strongly controlled by the behavior of established forests, which are believed to be a major current sink of atmospheric CO2. There are many models which predict forest responses to environmental changes but they are almost exclusively carbon source (i.e., photosynthesis) driven. Here we present a model for an individual tree that takes into account the intrinsic limits of meristems and cellular growth rates, as well as control mechanisms within the tree that influence its diameter and height growth over time. This new framework is built on process-based understanding combined with differential equations solved by numerical method. Our aim is to construct a model framework of tree growth for replacing current formulations in Dynamic Global Vegetation Models, and so address the issue of the terrestrial carbon sink. Our approach was successfully tested for stands of beech trees in two different sites representing part of a long-term forest yield experiment in Germany. This model provides new insights into tree growth and limits to tree height, and addresses limitations of previous models with respect to sink-limited growth.PMP scheme, Cambridge Faculty of Mathematic
    • …
    corecore