28 research outputs found

    Genetics, insurance, and cardiomyopathies : a case study of hypertrophic cardiomyopathy

    Get PDF
    The economic impact of genetic information on life insurance has been discussed since DNA-based genetic testing became available in the 1990s. Macdonald & Yu (2011) estimated the highest increases in life insurance premium rates were about 0.6% if genetic test results were undisclosed to the insurers. Howard (2014) concluded that premium increases could be as high as 12% if the insurers were unable to access genetic test results. Although these two studies used different methodologies, the differences in their conclusions were due to the inclusion of cardiomyopathies (inherited heart muscle disorders), which were absent in the first of these studies. Hypertrophic Cardiomyopathy (HCM) is the most common of these disorders with a prevalence rate estimated to be 0.2% in the general population. We identify a mathematical model of the impact of genetic testing in HCM in a life insurance market under adverse selection. Then, we estimate the necessary premium increases to meet adverse selection costs and survey significant factors leading to increases and decreases in adverse selection costs. A novel feature of our model is that it includes ‘cascade genetic testing’, which is the form of genetic testing that is the most associated with HCM, in nuclear families. We conclude that the range of possible adverse selection costs is large, but the costs with the most reasonable assumptions are small and consistent with Macdonald & Yu (2011). Much higher costs depend on ‘adverse selectors’ treating life insurance as a financial investment and taking out extremely large sums insured, and also disregard selection and ascertainment biases in the epidemiological literature

    Will genetic test results be monetized in life insurance?

    Get PDF
    If life insurers are not permitted to use genetic test results in underwriting, they may face adverse selection. It is sometimes claimed that applicants will choose abnormally high sums insured as a form of financial gamble, possibly financed by life settlement companies (LSCs). The latter possibility is given some credence by the recent experience of “stranger‐originated life insurance” (STOLI) in the United States. We examine these claims, and find them unconvincing for four reasons. First, apparently high mortality implies surprisingly high probabilities of surviving for decades, so the gamble faces long odds. Second, LSCs would have to adopt a different business model, involving much longer time horizons. Third, STOLI is being effectively dealt with by the U.S. courts. Fourth, the gamble would be predicated upon a deep understanding of the genetic epidemiology, which is evolving, subject to uncertain biases, and cannot predict the emergence of effective treatments

    Changes in serum proteins after endotoxin administration in healthy and choline-treated calves

    Get PDF
    Background: This study aimed to investigate the possible serum protein changes after endotoxin administration in healthy and choline-treated calves using proteomics. These results are expected to contribute to the understanding of the pathophysiological mechanisms of endotoxemia and the beneficial effect of choline administration in this clinical situation. Methods: Healthy-calves (n = 20) were divided into 4 groups: Control, Choline treated (C), Lipopolysaccharide administered (LPS), and LPS + C. Control calves received 0.9 % NaCl injection. Calves in C and LPS + C groups received choline chloride (1 mg/kg/iv). Endotoxin (LPS) was injected (2 mu g/kg/iv) to the calves in LPS and LPS + C groups. Serum samples were collected before and after the treatments. Differentially expressed proteins (> 1.5 fold-change relative to controls) were identified by LC-MS/MS. Results: After LPS administration, 14 proteins increased, and 13 proteins decreased within 48 h as compared to controls. In the LPS group, there were significant increases in serum levels of ragulator complex protein (189-fold) and galectin-3-binding protein (10-fold), but transcription factor MafF and corticosteroid binding globulin were down regulated (>= 5 fold). As compared with the LPS group, in LPS + C group, fibrinogen gamma-B-chain and antithrombin were up-regulated, while hemopexin and histone H4 were down-regulated. Choline treatment attenuated actin alpha cardiac muscle-1 overexpression after LPS. Conclusions: LPS administration produces changes in serum proteins associated with lipid metabolism, immune and inflammatory response, protein binding/transport, cell adhesion, venous thrombosis, cardiac contractility and blood coagulation. The administration of choline is associated with changes in proteins which can be related with its beneficial effect in this clinical situation

    Expression profiles of genes involved in TLRs and NLRs signaling pathways of water buffaloes infected with Fasciola gigantica

    Get PDF
    Infection of ruminants and humans with Fasciola gigantica is attracting increasing attention due to its economic impact and public health significance. However, little is known of innate immune responses during F. gigantica infection. Here, we investigated the expression profiles of genes involved in Toll-like receptors (TLRs) and NOD-like receptors (NLRs) signaling pathways in buffaloes infected with 500 F. gigantica metacercariae. Serum, liver and peripheral blood mononuclear cell (PBMC) samples were collected from infected and control buffaloes at 3, 10, 28, and 70 days post infection (dpi). Then, the levels of 12 cytokines in serum samples were evaluated by ELISA. Also, the levels of expression of 42 genes, related to TLRs and NLRs signaling, in liver and PBMCs were determined using custom RT2 Profiler PCR Arrays. At 3 dpi, modest activation of TLR4 and TLR8 and the adaptor protein (TICAM1) was detected. At 10 dpi, NF-κB1 and Interferon Regulatory Factor signaling pathways were upregulated along with activation of TLR1, TLR2, TLR6, TLR10, TRAF6, IRF3, TBK1, CASP1, CD80, and IFNA1 in the liver, and inflammatory response with activated TLR4, TLR9, TICAM1, NF- κB1, NLRP3, CD86, IL-1B, IL-6, and IL-8 in PBMCs. At 28 dpi, there was increase in the levels of cytokines along with induction of NLRP1 and NLRP3 inflammasomes-dependent immune responses in the liver and PBMCs. At 70 dpi, F. gigantica activated TLRs and NLRs, and their downstream interacting molecules. The activation of TLR7/9 signaling (perhaps due to increased B-cell maturation and activation) and upregulation of NLRP3 gene were also detected. These findings indicate that F. gigantica alters the expression of TLRs and NLRs genes to evade host immune defenses. Elucidation of the roles of the downstream effectors interacting with these genes may aid in the development of new interventions to control disease caused by F. gigantica infection

    Experimental Fasciola hepatica Infection Alters Responses to Tests Used for Diagnosis of Bovine Tuberculosis

    No full text
    Fasciola hepatica is a prevalent helminth parasite of livestock. Infection results in polarization of the host's immune response and generation of type 2 helper (Th2) immune responses, which are known to be inhibitory to Th1 responses. Bovine tuberculosis (BTB) is a bacterial disease of economic and zoonotic importance. Control polices for this disease rely on extensive annual testing and a test-and-slaughter policy. The correct diagnosis of BTB relies on cell-mediated immune responses. We established a model of coinfection of F. hepatica and Mycobacterium bovis BCG to examine the impact of helminth infection on correct diagnosis. We found the predictive capacity of tests to be compromised in coinfected animals and that F. hepatica infection altered macrophage function. Interleukin-4 and gamma interferon expression in whole-blood lymphocytes restimulated in vitro with M. bovis antigen was also altered in coinfected animals. These results raise the question of whether F. hepatica infection can affect the predictive capacity of tests for the diagnosis of BTB and possibly also influence susceptibility to BTB and other bacterial diseases. Further studies on the interplay between helminth infection and BTB are warranted

    Changes in serum proteins after endotoxin administration in healthy and choline-treated calves

    Get PDF
    Altres ajuts: TÜBTAK 111O026This study aimed to investigate the possible serum protein changes after endotoxin administration in healthy and choline-treated calves using proteomics. These results are expected to contribute to the understanding of the pathophysiological mechanisms of endotoxemia and the beneficial effect of choline administration in this clinical situation. Healthy-calves (n = 20) were divided into 4 groups: Control, Choline treated (C), Lipopolysaccharide administered (LPS), and LPS + C. Control calves received 0.9 % NaCl injection. Calves in C and LPS + C groups received choline chloride (1 mg/kg/iv). Endotoxin (LPS) was injected (2 μg/kg/iv) to the calves in LPS and LPS + C groups. Serum samples were collected before and after the treatments. Differentially expressed proteins (> 1.5 fold-change relative to controls) were identified by LC-MS/MS. After LPS administration, 14 proteins increased, and 13 proteins decreased within 48 h as compared to controls. In the LPS group, there were significant increases in serum levels of ragulator complex protein (189-fold) and galectin-3-binding protein (10-fold), but transcription factor MafF and corticosteroid binding globulin were down regulated (≥ 5 fold). As compared with the LPS group, in LPS + C group, fibrinogen gamma-B-chain and antithrombin were up-regulated, while hemopexin and histone H4 were down-regulated. Choline treatment attenuated actin alpha cardiac muscle-1 overexpression after LPS. LPS administration produces changes in serum proteins associated with lipid metabolism, immune and inflammatory response, protein binding/transport, cell adhesion, venous thrombosis, cardiac contractility and blood coagulation. The administration of choline is associated with changes in proteins which can be related with its beneficial effect in this clinical situation. The online version of this article (doi:10.1186/s12917-016-0837-y) contains supplementary material, which is available to authorized users

    Detailed tail proteomic analysis of axolotl ( Ambystoma mexicanum

    No full text
    WOS: 000394432900012PubMed ID: 27896924Salamander axolotl has been emerging as an important model for stem cell research due to its powerful regenerative capacity. Several advantages, such as the high capability of advanced tissue, organ, and appendages regeneration, promote axolotl as an ideal model system to extend our current understanding on the mechanisms of regeneration. Acknowledging the common molecular pathways between amphibians and mammals, there is a great potential to translate the messages from axolotl research to mammalian studies. However, the utilization of axolotl is hindered due to the lack of reference databases of genomic, transcriptomic, and proteomic data. Here, we introduce the proteome analysis of the axolotl tail section searched against an mRNA-seq database. We translated axolotl mRNA sequences to protein sequences and annotated these to process the LC-MS/MS data and identified 1001 nonredundant proteins. Functional classification of identified proteins was performed by gene ontology searches. The presence of some of the identified proteins was validated by in situ antibody labeling. Furthermore, we have analyzed the proteome expressional changes postamputation at three time points to evaluate the underlying mechanisms of the regeneration process. Taken together, this work expands the proteomics data of axolotl to contribute to its establishment as a fully utilized model
    corecore