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Abstract

The economic impact of genetic information on life insurance has been discussed
since DNA-based genetic testing became available in the 1990s. Macdonald & Yu
(2011) estimated the highest increases in life insurance premium rates were about
0.6% if genetic test results were undisclosed to the insurers. Howard (2014) con-
cluded that premium increases could be as high as 12% if the insurers were unable to
access genetic test results. Although these two studies used different methodologies,
the differences in their conclusions were due to the inclusion of cardiomyopathies
(inherited heart muscle disorders), which were absent in the first of these studies.
Hypertrophic Cardiomyopathy (HCM) is the most common of these disorders with
a prevalence rate estimated to be 0.2% in the general population.

We identify a mathematical model of the impact of genetic testing in HCM in
a life insurance market under adverse selection. Then, we estimate the necessary
premium increases to meet adverse selection costs and survey significant factors
leading to increases and decreases in adverse selection costs. A novel feature of
our model is that it includes ‘cascade genetic testing’, which is the form of genetic
testing that is the most associated with HCM, in nuclear families.

We conclude that the range of possible adverse selection costs is large, but the
costs with the most reasonable assumptions are small and consistent with Macdonald
& Yu (2011). Much higher costs depend on ‘adverse selectors’ treating life insurance
as a financial investment and taking out extremely large sums insured, and also
disregard selection and ascertainment biases in the epidemiological literature.



Acknowledgements

I am greatly thankful to both of my supervisors, Professor Angus S. Macdonald
and Doctor Torsten Kleinow, for their extraordinary supervision during my PhD
studies. Undoubtedly, without their directions and encouragement, it is uncertain
how much of this thesis would exist. Especially, very special thanks to Professor
Angus S. Macdonald for being so patient, by giving very good feedback on my writing
and replying my endless questions, during this time. Additionally, I appreciate the
helpful comments of the late Professor A. J. (Sandy) Raeburn and Doctor Wayne
Lam in terms of the clinical perspective of Hypertrophic Cardiomyopathy (HCM).

I would like to thank all my family, especially my parents, brother, and maternal
aunts, very much for their constant financial and emotional support through this
process, and always being the main characters in any achievement in my life.

I am also very thankful to all my friends for morale support in the meantime; in
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a result of genetic testing, knows they carry an identical mutation.

ζ0: As a result of genetic testing, knows they do not carry an identical
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Chapter 1

Introduction

1.1 Genetics, Insurance and Cardiomyopathies

Genetics is a field of science specializing in the study of genes. A gene in humans, a

particular region of DNA (deoxyribonucleic acid) inherited from parents, is involved

in the generation of the physical traits (phenotype) of the offspring. It is estimated

that humans have about 30,000–35,000 genes. A gene mutation is a permanent

alteration within any gene sequence, which might cause a ‘genetic disorder’. There

are several types of genetic disorders which are classified as follows (see Sudbery

(2002)):

• Single-Gene Disorders: These are genetic disorders caused by an alteration

in a single gene. Their inheritance pattern is governed by Mendel’s law of

genetics. Therefore, they are also called ‘Mendelian’ disorders. They can

be inherited as recessive, both copies of the mutant gene are necessary, or

dominant, one copy of the mutant gene is sufficient. As a result, the risk of

a family member carrying a mutation can be estimated by tracking family

history. Their manifestation (onset) might be at earlier stages of life, such

as Cystic Fibrosis, or at later stages of life, such as Huntington’s Disease.

They are relatively rare in the general population, but their impact on life

expectancy is significant.

• Multifactorial (Complex) Disorders: These are genetic disorders caused
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by a composition of many mutant genes along with environmental and lifestyle

factors. They do not follow a clear pattern of Mendelian inheritance. The

environmental and lifestyle changes might even decrease the risk of disorders.

Various cancers, diabetes, migraine, and asthma can be given as common

examples of these disorders.

• Chromosomal Disorders: These are genetic disorders caused by an alter-

ation of the genetic structure of chromosomes or the presence of an extra

chromosome. The most prevalent of these disorders is Down’s syndrome. The

majority of chromosomal disorders are not inherited through families.

• Mitochondrial Disorders: These are genetic disorders caused by an alter-

ation of the genetic structure of the mitochondria which only mothers can

pass to their offspring. They also do not follow a typical pattern of Mendelian

inheritance.

Until DNA-based genetic testing began to become available in the 1990s, many

of these genetic disorders were studied through family histories. Genetic testing

enabled individuals to learn for certain whether or not they are affected by the mu-

tations present in their families. Genetic testing also helped individuals to diagnose

gene mutations and start their treatment. Even if there is no certain cure for the

most genetic disorders, early diagnosis is important for early clinical care.

On the other hand, individuals and patient groups have often been concerned

that genetic test results would be so highly predictive of greatly increased risk that

insurance would be denied or become unaffordable to some. They have often ad-

vocated banning the use of genetic test results by insurers. To protect individuals

against ‘genetic discrimination’, insurers are now banned from using genetic test re-

sults in underwriting in many countries. Different countries have different practices

to protect individuals against ‘genetic discrimination’ as follows:

(a) In the UK, the Association of British Insurers (ABI) has currently a voluntary

agreement with the government on the use of genetic test results in underwrit-

ing insurance policies. According to this agreement:
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(i) Genetic test results are classified as ‘predictive’, meaning that they allow

the prediction of future risk of developing genetic disorders in healthy

gene mutation carriers, or ‘diagnostic’, confirming the clinical manifesta-

tion of genetic disorders.

(ii) Insurers are allowed to use ‘diagnostic’ genetic test results, but they are

not allowed to use ‘predictive’ genetic test results except for a sum assured

(per individual) of above

• £500,000 in life insurance (an exception of Huntington’s disease),

• £300,000 in critical illness insurance, and

• £30,000 per annum in income protection insurance.

The only test that may be used to date for over £500,000 of life insurance

has been in the case of Huntington’s disease.

(iii) Individuals, however, can disclose favourable predictive genetic test re-

sults, such as negative test results.

(iv) Moreover, if genetic test results, accidentally or voluntarily, are shared

by individuals, insurers can only use favourable genetic test results in

underwriting. In this situation, the agreement obliges insurers to avoid

the use of unfavourable genetic test results in underwriting as long as

individuals do not ask for a sum assured more than the levels in point

(ii) above.

(b) In Canada, the law called the Genetic Non-Discrimination Act (GNDA), pre-

viously referred as Bill S-201, bans insurers from using all (including predictive

and diagnostic) genetic test results. However, the law does not specifically re-

fer to insurers, and does not define an exception for high levels of sum assured

as in the UK’s agreement.

(c) In the USA, the law called the Genetic Information Nondiscrimination Act

(GINA) bans only health insurers from using genetic information, including

genetic tests and family history, in underwriting. However, in the law, no

restrictions are directed to life insurance.
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See Prince (2019) for the regulations of the countries above (and more) in detail.

As a result of such regulations, insurers have been concerned that if individuals

knew of a genetic test result indicating greatly elevated risk, and were not obliged

to disclose this to an insurer, they would be able to obtain insurance cover for much

below its true cost — classical adverse selection.

Attention was focused on a small subset of genetic disorders deemed to expose

insurers to particularly high risks of adverse selection. These were the single-gene

disorders caused by the mutations in a single gene, and which were dominantly

inherited (meaning that one copy of the mutation inherited from either parent could

lead to the disorder). Among a subset of these disorders, called ‘late-onset disorders’,

onset of symptoms is usually delayed into adulthood. Carriers of such mutations

could:

• remain completely free of symptoms until early adulthood;

• buy life and health insurance during this time; and

• develop symptoms and/or die while an insurance policy was still in force.

Even in the absence of genetic tests, dominantly inherited disorders revealed their

presence by the pattern of inheritance in families. Thus they had been studied by

epidemiologists for many years. Insurers, by asking questions during underwriting

about an applicant’s family history, could also learn about the applicant’s risk of

carrying a mutation. (Insurers’ questions were normally confined to first-degree

relatives; that is, parents and siblings of the applicant.) So, the advent of genetic

tests did not expose insurers to completely new risks. A family history might reveal

that an applicant had a 50% chance of having inherited the mutation. A genetic

test would reveal for certain whether they had or had not.

Late-onset disorders are, fortunately, quite rare. For this reason, attempts to

model the potential costs of adverse selection, in terms of across-the-board increases

to premiums, found that they would be quite small. Macdonald & Yu (2011),

modelled six major single-gene disorders, based on published epidemiology, and

estimated the cost of adverse selection under the following three forms of moratorium
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on insurers’ use of genetic test results.

• Insurers may not use any genetic test results.

• Insurers may not use adverse genetic test results, but may use test results that

show a mutation to be absent. (This reflects the practice in the UK, under

the moratorium agreed between the government and the insurance industry.)

• Insurers are banned from using family history as well as genetic test results.

Using a variety of scenarios, the highest increases in life insurance premium rates

were about 0.6% if insurers could use family history, and about 1% if they could

not. These assumed that persons buying insurance after an adverse test result did

not buy above average amounts of insurance, but if they did the premium increases

would change pro rata.

Absent from the major classes of single-gene disorders modelled by Macdonald

& Yu (2011) were inherited disorders of the heart muscle, known collectively as

cardiomyopathies. Howard (2014), in a report commissioned by the Canadian Insti-

tute of Actuaries, proposed a model which included the main cardiomyopathies. He

concluded that, if genetic test results were not disclosed to Canadian insurers:

• premium increases caused by adverse selection could be as high as 12%; and

• the overall mortality experience of Canadian insurers could increase by 36%

for males and 58% for females.

Although Howard (2014) and Macdonald & Yu (2011) used different methodolo-

gies, it was clear that the differences in their conclusions were in part due to the

inclusion of the cardiomyopathies in one model only.

The purpose of this study is to develop a mathematical model of the most preva-

lent cardiomyopathy (Hypertrophic Cardiomyopathy (HCM)) and model the possi-

ble adverse selection costs in life insurance.

5



Chapter 1: Introduction

1.2 Healthy Heart and Cardiomoypathies

1.2.1 Major Features of a Healthy Heart

We aim to show the major features of a healthy heart to improve the understanding

of disorders of the heart. Therefore, this section describes the basics of a healthy

heart, which can be accessed from many sources, for example the booklets of the

Heart Societies such as American Heart Association (AHA), British Heart Founda-

tion (BHF), etc. We refer in particular to Seidman & Seidman (2001), Whitaker

(2006), AHA (2011), Khurana (2014), and McKenna & Elliott (2015).

The heart is a muscular pump which is responsible for the circulation of the

blood to the lungs and the body. The heart is separated into four chambers; two

of them are located on the right of the heart as the right atrium (upper-right) and

right ventricle (lower-right), and the other two are located on the left of the heart

as the left atrium (upper-left) and left ventricle (lower-left). These right and left

chambers are divided by the septum wall.

The heart includes four valves. Two of them help the blood flow into the ven-

tricles from the atriums, namely the tricuspid valve (between the right atrium and

right ventricle), and the mitral valve (between the left atrium and left ventricle). The

other two control the blood flow out of the ventricles, namely the pulmonary valve

(between the right ventricle and pulmonary artery), and the aortic valve (between

the left ventricle and aorta).

The healthy heart pumps the blood in the pulmonary and systemic circulations.

Deoxygenated blood from the body reaches the right atrium via the superior and

inferior vena cava veins. Throughout diastole (cardiac relaxation), the blood passes

into the right ventricle via the tricuspid valve. In pulmonary circulation, throughout

systole (cardiac contraction), the blood in the right ventricle is moved into the

lungs to be oxygenated, through the pulmonary valve and pulmonary artery. The

oxygenated blood from the lungs reaches the left atrium via the pulmonary vein.

And, throughout diastole (cardiac relaxation), the oxygenated blood in the left

atrium enters the left ventricle via mitral valve. In systemic circulation, throughout
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systole (cardiac contraction) the oxygenated blood in the left ventricle is pumped

to the body, through the aortic valve into the aorta.

The contraction of the heart muscle is regulated by electric activity via signals

between specialized heart muscle fibres, which is called ‘the conduction system of

the heart’.

The wall structure of the heart consists of three layers; the endocardium, the

myocardium (cardiac or heart muscle), and the pericardium. The endocardium is

the thin layer located inside the heart which covers the chambers and valves. The

pericardium is the outer layer that holds and protects the heart. The myocardium,

between the endocardium and pericardium, is the muscular layer of the heart re-

sponsible for pumping the blood out of the heart.

1.2.2 Major Features of Cardiomyopathies

Cardiomyopathies are disorders of the heart affecting the myocardium. They are

responsible for sudden, unexpected, heart attacks in otherwise healthy young people,

widely reported when they happen to professional sports stars. They are similar to

the ‘classical’ single-gene disorders modelled in Macdonald & Yu (2011), in that

they are single-gene, dominantly inherited Mendelian disorders, but there are also

important differences.

(a) Taking inherited breast cancer as an example, a genetic test for BRCA1 or

BRCA2 gene mutations may reveal the increased risk, while there are no can-

cerous or precancerous tissues in the body. And, if these ever do appear, it

may be several decades after the genetic test was taken. In insurance terms, a

test for mutations in these genes is predictive, not diagnostic. Note that the

moratorium in the UK bans insurers from using predictive tests but not from

using diagnostic tests.

(b) The changes to the heart muscle associated with cardiomyopathies are often,

but not always, present by adolescence or even earlier. They are, in principle,

capable of being detected by non-genetic clinical tests, such as electrocardio-

gram (ECG) and echocardiography. In insurance terms, a genetic test for a
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cardiomyopathy would seem often to be diagnostic, because it reveals a pre-

existing condition; the heart muscle is already affected. However, some may

argue that genetic tests for cardiomyopathies are diagnostic of the physiologi-

cal change, but predictive of the increased risk of death.

1.2.3 Classification of Cardiomyopathies

The term ‘cardiomyopathy’ covers a wide range of disorders, each of which may be

associated with mutations in more than one gene. Some disorders present as changes

to the musculature of the heart. Others present as disruption to the electrical

signals controlling the heart’s rhythm (ion channelopathies). Thus they present

a significantly greater modelling challenge than many of the classical single-gene

disorders.

We follow two major reports in the classifications below. The European Society

of Cardiology (ESC) Report (Elliott et al. 2008) classified the disorders as;

• Hypertrophic Cardiomyopathy (HCM),

• Dilated Cardiomyopathy (DCM),

• Arrhythmogenic Right Ventricular Cardiomyopathy (ARVC),

• Restrictive Cardiomyopathy,

• Unclassified.

The American Heart Association (AHA) Scientific Statement (Maron et al. 2006)

further classified ion channelopathies as:

• Long-QT Syndrome (LQTS),

• Brugada Syndrome,

• Catecholaminergic Polymorphic Ventricular Tachycardia (CPVT),

• Short-QT Syndrome (SQTS),

• Asian Sudden Unexplained Nocturnal Death Syndrome (SUNDS).
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Hypertrophic Cardiomyopathy (HCM) is regarded to be the most prevalent of

these disorders in the general population, (Maron et al. 2014), and is the subject of

this thesis.

1.3 Major Features of Howard (2014)

Howard (2014) models genetic disorders under adverse selection in the life insurance

market in Canada with regard to the law (GNDA, see Section 1.1), prohibiting

insurers to access genetic test results. The model includes thirteen genetic disorders

(including HCM) which are regarded as being significant in giving rise to adverse

selection costs once underwriters are not able to underwrite the full risk of the

individuals affected by these disorders. Howard (2014) presented two conclusions:

(a) the benefit claim costs in Canada under adverse selection would be of the order

of 10% of the total benefit claim costs in one year, and

(b) the overall mortality experience under adverse selection would increase by

about 40%.

HCM was the most prevalent and the second most expensive disorder in Howard

(2014). We wish to understand why HCM is so expensive compared to the other

disorders in the same model. The fundamental assumptions about HCM in Howard

(2014) (see Section 10.2.1) are: the prevalence of HCM mutations in the general

population is 0.2%; and the annual mortality rate of HCM is 0.01, or qx = 0.01

(Section 3.9.8). These rates seem to be widely cited in the epidemiological literature,

but they should be evaluated with care, see Section 1.5, and Chapters 2 and 3.

Another key assumption is that adverse selectors take out sums assured of

$1,000,000 (ten times the assumed normal sum assured of $100,000). There is almost

no evidence of what would be a realistic assumption of what sums assured adverse

selectors would purchase; in Sections 9.7, 11.3, and 11.4, we discuss this.

We will go into detail on Howard (2014) in Chapter 10 after we have defined and

described our model with corresponding adverse selection costs.

9



Chapter 1: Introduction

1.4 Multiple-State Models

Multiple-state models have been used to model genetic disorders in health and life

insurance under adverse selection have been used in many studies such as Macdonald

(1999), Subramanian et al. (1999), Macdonald et al. (2003a), Macdonald et al.

(2003b), Gutiérrez & Macdonald (2004), Gui et al. (2006), Lu et al. (2007), and

Macdonald & Yu (2011). They provide a very flexible approach to representing

transitions between states, and are often used to model transitions between states

of health (see Dickson et al. (2013) and Macdonald et al. (2018)). Other examples

of transitions can be a transition from an untested to a tested state, representing

the event of genetic testing, or an uninsured to an insured state, representing the

event of purchasing insurance.

Following this pattern, in this study, we will use multiple-state models to model

genetic testing in HCM and its impact on life insurance under adverse selection. To

the best of our knowledge, this study contributes a novel feature to the published

studies above, namely modelling cascade genetic testing within families (Chapters

4 and 5).

1.5 Motivation

The motivation for a mathematical model of HCM for life insurance might come from

many directions, but ours mainly comes from adverse selection. Adverse selection

in insurance is the consequence of asymmetry of information between insurers and

individuals. Insurers may lack information known to the applicant, possibly because

of prohibition on asking the applicant for the information.

Adverse selection in genetics and insurance is a good example of adverse selec-

tion in insurance because in many countries (including the UK) genetic test results

are not disclosed to insurers (Section 1.1). Epidemiological studies allow us to un-

derstand the risks of genetic disorders when genetic test results are not disclosed to

insurers. If insurers understood these epidemiological risks well, they could allow

for them in pricing, and may not then suffer from adverse selection losses due to
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unknown genetic test results. However, the epidemiology of genetic disorders is still

evolving. For example, in HCM, two figures are widely cited: the population preva-

lence of HCM of 0.2% and the annual mortality rate (qx) of HCM of 1%. Chapters 2

and 3 show that the first of these might be greatly underestimated, and the second

greatly overestimated, with an impact on adverse selection costs (Chapter 9).

Even if the epidemiological data was thought to be mature, we still do not know

what would be a realistic assumption for how much insurance or what amounts of

sum assured, ‘adverse selectors’ would buy. Some might set these behavioural pa-

rameters in a conservative way (very large sum assured) which tends to make the

(expected) adverse selection costs very large. But, how reasonable is this assump-

tion? In Sections 9.7, 11.3, and 11.4, we discuss the results of published studies

that might give some intuition about what would motivate the purchase behaviour

of adverse selectors.

1.6 Plan of the Thesis

We identify a mathematical model of genetic testing in HCM and discover the pos-

sible adverse selection costs in a life insurance market.

In Chapter 2, we present the epidemiological features of HCM, such as its onset,

the occurrence of major clinical events, and prevalence.

In Chapter 3, we develop a mathematical model of HCM which is a multiple-

state model in a Markovian setting, and which we call the epidemiological model.

The epidemiological model is parametrised by transition intensities. The occupancy

probabilities in each model state can be obtained from these transition intensities

by solving the Kolmogorov forward equations. We do not yet introduce states and

transitions representing genetic testing because of the nature of genetic testing in

HCM, namely cascade genetic testing. Cascade genetic testing cannot easily be

modelled in a Markovian setting because the testing behaviour depends on not only

the currently occupied state, but also family history.

Thus, in Chapter 4, we describe cascade genetic testing in HCM. We parametrise

the uptake rate of cascade genetic testing within the families affected by HCM.
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In Chapter 5, we describe a simulation model of cascade genetic testing in HCM,

which we call the testing model. It is built on the epidemiological model (adding

states representing genetic testing). We simulate the testing behaviour of the indi-

viduals in HCM families. Unlike the epidemiological model, the testing model is not

a Markov model because under cascade genetic testing, transition intensities from

an untested to a tested state depend on the currently occupied state and family

history. In theory, the state space of the model can be extended without limit to

keep it Markov, but this becomes very unwieldy. Therefore, occupancy probabilities

in tested states can no longer be obtained by solving the Kolmogorov equations. In-

stead, we compute these by simulating life histories in HCM families explicitly. The

testing model is partly Markov because we assume that the individuals in non-HCM

families never take up genetic testing and their life histories can still be modelled in

a Markovian setting and the occupancy probabilities can be obtained for such indi-

viduals as described in Chapter 3. This leads us to divide the general population

into two: HCM and non-HCM families.

In Chapter 6, we discuss life insurance mathematics, allowing us to extend our

model by adding insurance purchase states and so to calculate insurance losses

arising from persons in these insured states. Since this life insurance mathematics

necessitates an elaborate notation, we present the details in Appendix A.

In Chapter 7, we add more states representing insurance purchase to the testing

model, and obtain an adverse selection model of HCM for life insurance, which we

call the adverse selection model.

In Chapter 8, we describe a combined numerical technique, using Thiele’s dif-

ferential equations and Monte-Carlo estimation, for calculating expected insurance

losses from the individuals in non-HCM and HCM families, respectively. We define

our measure of insurance losses under adverse selection, which will be the necessary

premium increases to recoup adverse selection costs.

In Chapter 9, we provide our results based on the measure in Chapter 8. We sur-

vey extensively the factors that are significant for increasing and decreasing adverse

selection costs.
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In Chapter 10, we compare our study and results with those of Howard (2014),

including the addition of lapse states to the adverse selection model, which we call

the lapse model.

In Chapter 11, we discuss our results and make our conclusions.
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Chapter 2

Hypertrophic Cardiomyopathy

(HCM)

2.1 Introduction

In this chapter, we introduce the epidemiological features of Hypertrophic Cardiomy-

opathy (HCM) before modelling the epidemiology of HCM in Chapter 3.

In Section 2.2, we discuss the clinical features of HCM. In Section 2.3, we briefly

describe the genetic substrate of HCM. In Section 2.4, we discuss HCM-related end-

points. In Section 2.5, we discuss the prevalence of HCM in the general population.

In Section 2.6, we move from the epidemiology of HCM to a mathematical model of

the epidemiology of HCM.

2.2 The Clinical Features of HCM

2.2.1 Onset

HCM is the thickening (hypertrophying) of the muscular wall of the left ventricle

(LV) of the heart. In most cases, the thickening of the heart wall may have taken

place by adolescence or early adulthood. In other cases, the process may be delayed

until later ages. See Pokorski (2002). We call these early-onset and late-onset HCM

respectively (though these terms are not used in the clinical literature). They are
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Table 2.1: New York Heart Association (NYHA) Functional Classification.

NYHA Limitations of Symptoms of
Class Physical Activity Heart Failure

I None None
II Mild Arise with ordinary physical activity

(comfortable at rest)
III Marked Arise with less than ordinary physical activity

(comfortable at rest)
IV Severe Arise even at rest

associated with mutations in different genes, see Sections 2.3.1.1 and 3.8.

2.2.2 Diagnosis

Diagnosis depends on having a clear definition of HCM. This is given by the Amer-

ican College of Cardiology Foundation (ACCF)/the American Heart Association

(AHA) Guidelines (Gersh et al. 2011) and the European Society of Cardiology (ESC)

Guidelines (Elliott et al. 2014), as follows.

(a) In adults Left Ventricular Wall Thickness (LVWT) generally greater than or

equal to 15 mm. (The manifestation of LVWT at 13–15 mm can also be

evaluated as the sign of HCM).

(b) In children, LVWT more than 2 standard deviations above the mean related

to age, gender, or body structure.

For our purposes, these criteria divide the life history of a person with an HCM-

related mutation into a period before onset and a period after onset, with age-at-

onset defined as the earliest age at which the definition above is met. This allows

for the possibility that onset never occurs, which it is convenient to represent as

‘age-at-onset = +∞’.

Clinical diagnosis is made by machine imaging techniques such as echocardiog-

raphy and cardiac magnetic resonance (CMR). An electrocardiogram (ECG) is also

recommended, especially for the first clinical diagnosis, to determine any rhythmical

abnormalities.
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2.2.3 Symptoms

While most persons with HCM do not develop any symptoms, a minority mani-

fest the symptoms of chest pain, dyspnoea (shortness of breath), palpitations and

syncope (fainting) (Elliott et al. 2014).

Any symptoms usually start many years after the clinical existence of an ECG

abnormality or increased LVWT (Elliott et al. 2014). They might arise and be stable

and of mild degree, or progress through to a severe degree, see Table 2.1. They can

be relieved by drugs, but surgery, including heart transplantation, is recommended

for HCM patients with drug resistant severe symptoms (Maron et al. 2014) (see

Section 2.4.1).

2.3 The Genetics of HCM

HCM-related mutations occur in genes related to sarcomeres, proteins involved in

contractions of the heart muscle. More than eight such genes are known (Gersh

et al. 2011, Seidman & Seidman 2001). Mutations are dominantly inherited, with

the following consequences.

(a) It is sufficient for one parent to pass the mutation to a child for that child to

be affected. Since HCM-related mutations are moderately rare, we ignore the

possibility that a person carries mutations in two genes.

(b) Each child of an affected parent will inherit the parent’s mutation with prob-

ability 1/2, because of Mendel’s laws.

2.3.1 Gene Mutations Associated with HCM

We follow Elliott et al. (2014) to define the type of HCM-related gene mutations

and their prevalences in the HCM population, consisting of HCM-related mutation

carriers in the general population.
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2.3.1.1 Known Gene Mutations Associated with HCM

Between 40% and 60% of individuals with HCM are found to carry a mutation in

a known sarcomere-related gene (Elliott et al. 2014). Mutations are found most

frequently in the MYBPC3 gene (15–30%) and MYH7 gene (10–20%), and less

frequently in the TNNT2 gene (3–5%), TNNI3 gene (<5%) and TPM1 gene (<5%).

Mutations in each gene are heterogeneous; that is, not confined to a single location

on the gene.

Mutations in the MYBPC3 gene are associated with late-onset HCM while mu-

tations in other genes are associated with early-onset HCM (Niimura et al. 1998,

Pokorski 2002, Jensen et al. 2013) (see Section 2.2.1).

In our study, therefore, we divide carriers of known HCM-related mutations into

two sub-populations:

(a) a known early-onset HCM mutation carrier sub-population,

(b) a known late-onset HCM mutation carrier sub-population.

2.3.1.2 Unknown Gene Mutations Associated with HCM

Approximately between 25% and 30% of individuals with HCM are found not to

carry a known HCM-related mutation (Elliott et al. 2014). This means that genetic

testing, either does not detect a known HCM-related mutation, or finds a variant of

unknown significance (VUS).

Our presumption is that a clinically affected person who does not test positive for

a known HCM-related mutation must carry a mutation that has yet to be identified.

Then, we obtain another two sub-populations for the carriers of unknown muta-

tions:

(a) an unknown early-onset HCM mutation carrier sub-population,

(b) an unknown late-onset HCM mutation carrier sub-population.

In total, therefore, the population of HCM mutation carriers is divided into four

sub-populations, according as the mutation is known/early-onset, unknown/early-

onset, known/late-onset and unknown/late-onset.
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2.3.1.3 Other Disorders Associated with HCM

Approximately between 5% and 10% of individuals with HCM are associated with

other disorders, of which, most are genetic disorders while some are non-genetic

disorders (Elliott et al. 2014). Gersh et al. (2011) describe them as a ‘clinical mimic’

of HCM.

For our purposes, we are less interested in the ‘other genetic disorders associated

with HCM’. They are complex multi-system disorders in which the genetic compo-

nent is usually autosomal recessive, and are most likely to affect infants, children

and adolescents:

(a) They manifest themselves in the early years of life, so they are of no interest

for life insurance questions.

(b) They do not display autosomal dominant inheritance.

(c) They were also not included in the HCM prevalence and penetrance studies

that we will introduce later.

As a result, we ignore them in our study.

2.3.2 The Features of Genetic Testing in HCM

Since we aim to model the impact of genetic testing in HCM with an application to

the life insurance market, we need to discuss the methodology and uptake of genetic

testing in HCM. We do this in detail in Chapter 4.

2.4 HCM-related Endpoints

2.4.1 Risk, Features, and Management

Maron et al. (2014) describe three major causes of HCM-related mortality, affecting

both genders to the same degree, associated with HCM-related endpoints.

(a) Sudden cardiac arrest (SCA) is often associated with no or mild symptoms

(NYHA Class I/II in Table 2.1). This is the manifestation of HCM that
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sometimes strikes healthy athletes. It is most prevalent among persons less

than 30 years old. The annual rate of this event for persons at ages below

or equal 20 was estimated at much higher rates compared to those of ages

above 20 in Maron et al. (1999) and Spirito et al. (2000). It can be prevented

with implantable cardioverter-defibrillator (ICD) treatment that can be offered

when any major risk factor, such as increased LVWT, age, family history of

SCA, syncope, or ECG abnormalities, have arisen.

(b) Death from heart failure (HF) is often associated with a history of severe

symptoms (NYHA Class III/IV in Table 2.1) (Spirito et al. 2000, Maron et al.

2015, 2016a). It is not confined to any particular age range. It can be alleviated

with invasive treatments if pharmacological treatment is not useful. Septal

myectomy (alcohol ablation) or heart transplant are indicated depending on

the particular clinical condition that presents in addition to increased LVWT.

(c) Stroke death is often caused by atrial fibrillation (AF). It is most often observed

at older ages, and will not be significant for our purposes.

2.4.2 A Comment on Sudden Cardiac Death

We use the term ‘sudden cardiac arrest’ (SCA) and note that it may be fatal or

non-fatal. This differs from the term used throughout the epidemiological litera-

ture, which is ‘sudden cardiac death’ (SCD). Surprisingly, at least to actuaries, this

can also be fatal or non-fatal. A typical definition is that given in Elliott et al.

(2006) (emphasis added):

“The following endpoints were used in the survival analysis: (1) sudden cardiac death —

witnessed sudden death with or without documented ventricular fibrillation, death within

one hour of new symptoms, nocturnal death with no antecedent history of worsening

symptoms, and successfully resuscitated cardiac arrest ; (2) ...”

The risk of confusion is obvious. For example, a review study determining the

risk factors of HCM for health and life insurance applications by Pokorski (2002)
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relied on the HCM-related mortality rates of a survival analysis published by Maron

et al. (2000) which included non-fatal cases of SCD.

2.4.3 Relationship with Common Gene Mutations

Significant differences in the endpoints associated with different HCM-related mu-

tations have not been established conclusively.

Watkins et al. (1995) found mutations in the MYH7 and TNNT2 genes to be

associated with high SCA risk at ages less than 30 years. Niimura et al. (1998)

found MYBPC3 mutation carriers to have a better prognosis compared to previous

studies of MYH7 and TNNT2 mutation carriers. However, Van Driest et al. (2004)

did not find MYBPC3 mutation carriers to have a more favourable prognosis than

MYH7 mutation carriers.

Page et al. (2012) were not able to find a relationship between MYBPC3 gene

mutations and the various clinical manifestations of HCM.

Given this uncertainty, we do not attempt, in our model, to distinguish between

the endpoint after onset associated with mutations in different HCM-related genes,

or different mutations in the same gene. We do distinguish between early-onset and

late-onset HCM, but only before onset occurs; after onset we assume the same rates

for the endpoints.

2.4.4 The Historical Pattern of HCM-Related Annual Mor-

tality Rates

Here we consider the measurement of annual mortality rates, or hazard rates, asso-

ciated with HCM-related endpoints.

(a) The earliest epidemiological studies of HCM tended to suggest extremely high

mortality. However these studies were relatively small, and based on highly-

selected populations, for example persons undergoing clinical treatment for

symptoms of HCM. For example, Teare (1958) recorded seven fatal SCA end-

points among eight individuals with HCM at ages between 14 and 44 years.

Such results are affected by referral bias or patient selection bias, (Maron
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et al. 1999), and would not be applicable to a population of otherwise healthy

carriers of an HCM-related mutation.

(b) Since Teare (1958) and until the 1990s (Maron et al. 1999), most epidemiolog-

ical studies estimated HCM-related annual hazard rates as between 3% and

6%. Referral bias was still present, because the subjects were mostly severely

symptomatic HCM patients who had been referred to tertiary hospitals rather

than patients having a better clinical profile in the general population. The

latter paper, a US regional study including 227 HCM patients at ages 1 month

to 86 years, estimated an HCM-related annual hazard rate of 1.3% if referral

bias was absent.

(c) An important feature of any epidemiological study is the definition of the

endpoint. In an actuarial mortality study this is always death. In a clinical

study, this is not necessarily so. We noted in Section 2.4.2 that the endpoint

often used in epidemiological studies — sudden cardiac death — is not always

fatal. Studies generally do report fatal and non-fatal endpoints separately, but

often combine them in the published survival analysis. We give two examples

below.

(i) Maron et al. (2000) was a cohort study of 744 patients over a wide age

range, in Italy and the USA. Non-fatal SCD and heart transplant were

recorded as HCM-related fatal endpoints. The HCM-related annual haz-

ard rate was estimated to be 1.4%. However, the annual hazard rate

would drop to 1.08% if non-fatal endpoints were excluded.

(ii) Elliott et al. (2006) was a cohort study of 956 individuals affected by

HCM at ages 16 to 88 years in the UK. The annual hazard rate of SCD

was estimated to be 1%, but would drop to 0.4–0.8% if non-fatal SCD

was excluded. Table 3.4 estimates the impact of recalculating the an-

nual hazard rates reported in several studies if non-fatal endpoints were

excluded.

(iii) Modern diagnosis and treatment techniques have brought HCM-related
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annual hazard rates below 1%, in population studies in Europe and the

USA (Elliott et al. 2006). In very recent studies, HCM-related annual

hazard rates were reported to be as low as 0.5% for all ages (Maron et al.

2013, 2015, 2016a). These low mortality rates were explained by ICD

treatment to avert fatal SCA and surgery to avert heart failure.

In what follows, we rely on the three very recent studies Maron et al. (2013),

Maron et al. (2015) and Maron et al. (2016a). These are relatively large, avoid

referral bias as far as possible and distinguish between fatal and non-fatal HCM-

related endpoints.

2.5 Prevalence of HCM

Prevalence estimates of HCM-related mutations in the general population depend

on two types of studies, one of which was based on clinically affected individuals,

the other on the analysis of DNA.

2.5.1 Prevalence of Clinical HCM

Maron et al. (1995) examined the prevalence of clinical HCM in the general pop-

ulation. The study included 4,111 men and women at ages 25 to 35 years in the

USA, of whom seven were diagnosed with HCM. (This sample was obtained by

a random selection in the general population, which means these individuals were

clinically unknown, or undetected.) The estimated prevalence was approximately

0.2%. Other studies of HCM in the general population, in Japan, China, and East

Africa, estimated similar prevalence rates (Maron 2004, Semsarian et al. 2015).

The recent studies of clinical prevalence of HCM (Maron et al. (2016b), Husser

et al. (2018)) presented the results of ‘claims-based analysis’, the analysis of very

large healthcare databases in which people were recorded on clinically diagnosed

with HCM.

(a) In Maron et al. (2016b), a medical database with 169,098,614 patients (more

than half of the US population) was examined, of whom, 59,009 HCM-related
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claims were found, a prevalence of approximately 0.035%.

(b) In Husser et al. (2018), a German healthcare claims database with 5,490,810

patients was examined, of whom, 4,000 cases were found, a prevalence of ap-

proximately 0.07%.

That is, their findings show that the prevalence of clinical HCM in the general

population varies between 0.035–0.07%. This has interesting results.

(I) Onset of HCM does not necessarily refer to diagnosis of HCM since the ma-

jority of individuals who developed HCM are thought to be ‘silent’.

(II) HCM is clinically diagnosed (or detected) in several ways: clinical diagnosis

of asymptomatic patients based on family history, routine checks or incidental

findings, or based on symptoms (the majority of cases in this subject) before

or after an HCM-related event such as non-fatal or fatal HCM. See Maron

et al. (1982), Adabag et al. (2006), and Elliott et al. (2006).

2.5.2 Prevalence of HCM-Related Mutations

Bick et al. (2012) studied the prevalence of HCM-related mutations in the general

population. The study included 3,600 men and women at ages 30 to 84 years, of

whom twenty-two carried known HCM-related mutations. The estimated prevalence

rate of mutations was 0.6%, higher than the level estimated by studies of clinical

HCM. Moreover, only four of these twenty-two genetically affected individuals had

clinical HCM.

The difference between these results has interesting consequences.

(a) As we noted in Section 2.3.1, not all HCM-related mutations have been iden-

tified. Bick et al. (2012) could detect only those HCM-related mutations that

were known at the time, so 0.6% is a minimum, the prevalence of mutations

might be as high as 1%.

(b) The study also shows that not everyone who is a carrier of an HCM mutation

will ever develop the disorder.
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(c) If there is a much larger pool of mutation carriers than clinical observations

of HCM suggest, then rates of onset and mortality among mutation carriers

may be much lower than previously thought. If genetic test results were to

encourage mutation carriers to over-insure (adverse selection) then for every

such new insurance contract that brings the clinical risk of HCM observed in

Maron et al. (1995) to the insurance pool, there may be another two that do

not.

2.6 From the Epidemiology of HCM to a Mathe-

matical Model of HCM

In this chapter we have given a broad outline of the epidemiology of HCM. Before

we go into any more detail, it is convenient to consider how we might formulate a

mathematical model of HCM that will allow us to address actuarial questions. We

do this in Chapter 3. The model we propose is a multiple-state Markov model, whose

key parameters are the hazard rates or transition intensities between the states. To

fully specify the model we then need to estimate these hazard rates. To do this we

return to a more detailed examination of the epidemiology of HCM, in Sections 3.7,

3.8, and 3.9.
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Chapter 3

A Mathematical Model of the

Epidemiology of Hypertrophic

Cardiomyopathy (HCM)

3.1 Introduction

In this chapter, we model the epidemiology of HCM using a multiple-state Markov

model. For simplicity, at the moment, the model does not include genetic testing

because the nature of genetic testing in HCM cannot be easily modelled in a Marko-

vian setting. Chapter 4 describes genetic testing in HCM and Chapter 5 represents

it in a multiple-state model.

In this chapter, we model only HCM-related events such as onset of HCM, non-

fatal or fatal HCM. This model will be referred to as ‘the epidemiological model’

(of HCM). In Section 3.2, we introduce a mathematical model of the epidemiology

of HCM. In Section 3.3, we formulate the epidemiological model of HCM and ex-

press the occupancy probabilities in the model states in terms of the Kolmogorov

forward equations. Then, in Sections 3.4 and 3.5, we derive and numerically solve

the Kolmogorov forward equations. In Section 3.6, we survey the necessary param-

eters (transition intensities) of the model. In Sections 3.7, 3.8, 3.9, and 3.10, we

estimate these model parameters. In Section 3.11, we show examples of occupancy

probabilities in the model states.
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State i0
No Events

State i1
Non-Fatal HCM

State i2
Other Dead

State i3
Fatal HCM

µi12x µi13x

µi02x µi01x µi03x

Figure 3.1: A mathematical model of HCM, representing the life history of a person
in the ith of several sub-populations defined by HCM genotype.

3.2 The Epidemiological Model of HCM

In what follows we denote age by x and time by s ∈ [0,∞] after age x. Here we

only model a life history of a single individual, however, in later chapters, it will be

necessary to describe age x as a function of ‘calendar time’ t ∈ [0,∞].

Our mathematical model of HCM is the discrete-state continuous-time Markov

model shown in Figure 3.1.

Assumption 3.1. In the model, a foundational assumption is the Markov assump-

tion itself which is that the probability of being in any model state in future at age

x+ s is only conditional on the currently occupied state at age x and not any other

past history (see equation (3.2)).

It would be reasonable to suppose that transition intensities can be influenced

by previous events in a life history. However, it is generally too difficult to specify

what these might be and how they affect the intensities, so we choose a Markov

model for simplicity. Where it is essential to condition intensities on an event other

than age and the currently occupied state (as will be the case in Chapter 5 when

we model genetic testing in HCM) then we must use a non-Markov model at the

expense of more complex computations.

The entire population is represented by a collection of five such models, see

Figure 3.2:

(a) four sub-populations representing those who carry an HCM-related mutation
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State 00
No

Events

State 01
Non-Fatal

HCM

State 02
Other
Dead

State 03
Fatal
HCM

State 10
No

Events

State 11
Non-Fatal

HCM

State 12
Other
Dead

State 13
Fatal
HCM

State 20
No

Events

State 21
Non-Fatal

HCM

State 22
Other
Dead

State 23
Fatal
HCM

State 30
No

Events

State 31
Non-Fatal

HCM

State 32
Other
Dead

State 33
Fatal
HCM

State 40
No

Events

State 41
Non-Fatal

HCM

State 42
Other
Dead

State 43
Fatal
HCM

Individuals in the General Population

Represents individuals not carrying a mutation associated with HCM
(Non-HCM Population).

Represents individuals carrying a mutation associated with HCM
(HCM Population).

i = 0, No HCM-Related Mutations

i = 1, A Known Early-Onset HCM Mutation i = 2, A Known Late-Onset HCM Mutation

i = 3, An Unknown Early-Onset HCM Mutation i = 4, An Unknown Late-Onset HCM Mutation

Figure 3.2: A mathematical model of HCM for a population consists of non-HCM
population with sub-population i = 0, carrying no HCM-related mutations and
HCM population with the collection of sub-populations i = 1, carrying a known
early-onset HCM mutation; i = 2, carrying a known late-onset HCM mutation;
i = 3, carrying an unknown early-onset HCM mutation; and i = 4, carrying an
unknown late-onset HCM mutation.
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based on genotype defined in Section 2.3.1, in which the collection of these

sub-populations is referred to as the ‘HCM population’; and

(b) one sub-population representing those who do not carry any HCM-related

mutation which is referred to as the ‘non-HCM population’.

Sub-populations are labelled by ‘i’ as follows:

• i = 0: individuals who do not carry any HCM-related mutations.

• i = 1: individuals who carry a known early-onset HCM-related mutation.

• i = 2: individuals who carry a known late-onset HCM-related mutation.

• i = 3: individuals who carry an unknown early-onset HCM-related mutation.

• i = 4: individuals who carry an unknown late-onset HCM-related mutation.

Thus, we can represent different risks associated with different HCM-related mu-

tations by different transition intensities in the models representing the respective

sub-populations.

3.3 The Formulation of the Model

3.3.1 The Probabilities at Birth

We assume that a person chosen at random occupies at birth, one of the states 00,

10, 20, 30, or 40, with respective probabilities equal to the population prevalence of

genotype i at birth:

(a) p00 is the prevalence of non-carriers of HCM-related mutations at birth,

(b) p10 is the prevalence of known early-onset mutation carriers at birth,

(c) p20 is the prevalence of known late-onset mutation carriers at birth,

(d) p30 is the prevalence of unknown early-onset mutation carriers at birth,

(e) p40 is the prevalence of unknown late-onset mutation carriers at birth,

and
4∑
i=0

pi0 = 1. (3.1)
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3.3.2 Transition Intensities and Occupancy Probabilities af-

ter Birth

After birth, the epidemiological model (see Figures 3.1 and 3.2) is parametrized by

transition intensities labelled by µijkx . They are instantaneous rates of transitions

between model states which are defined in terms of the occupancy probabilities,

sp
ijk
x = P [In state ik at age x+ s | In state ij at age x], (3.2)

as follows:

µijkx = lim
ds→0

dsp
ijk
x

ds
, j 6=k. (3.3)

Assumption 3.2. In the other direction, the occupancy probabilities can be ob-

tained from transition intensities as follows:

dsp
ijk
x = µijkx ds+ o(ds), j 6=k. (3.4)

Assumption 3.3. We assume that the probability of two or more transitions in

small time ds is o(ds).

Then, at any age x ≥ 0, we have:

4∑
i=0

pi0

3∑
k=0

sp
i0k
0 = 1. (3.5)

That is, at birth no-one has suffered onset of HCM, and at any later age x the law

of total probability holds.

We obtain the occupancy probabilities from transition intensities by solving the

Kolmogorov forward equations in Section 3.4. As usual, we will parametrise the

model by estimating the transition intensities and we will use the Kolmogorov for-

ward equations to find occupancy probabilities when needed.
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Age

States

x x+ s x+ s+ ds

ij ik

i0

i1

i2

i3

Figure 3.3: Generalized form of all probabilistic paths of a person in state ij at age
x into state ik at age x+ s+ ds.

3.3.3 Transition Intensities and Clinical HCM

An HCM-related event can occur only if the carrier of an HCM-related mutation

has suffered onset of HCM (see Section 2.2.2) whether or not symptoms are present.

We do not model onset of HCM as a transition between states. Instead, we define

the penetrance of clinical HCM, denoted by F (x), as:

F (x) = P [Onset of HCM has occured by age x]. (3.6)

If the hazard rates of non-fatal and fatal HCM-related events, conditional on onset

having occurred, are denoted by ρi01
x and ρi03

x respectively, then the hazard rates

assuming onset to be unobserved are µi01
x = F (x)ρi01

x and µi03
x = F (x)ρi03

x . These

are the hazard rates used in the model. Other transition intensities are as indicated

in Figure 3.1.

3.4 The Kolmogorov Forward Equations

Here we will derive the Kolmogorov forward equations (Macdonald et al. (2018)

is a good reference for this purpose). They form a system of ordinary differential

equations (ODEs).

We derive the general form of the Kolmogorov forward equations in five steps:

1. We denote by Ψ the total number of states in the model. The model has

twenty states, see Figure 3.2, therefore, Ψ = 20 at the moment.
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2. We show the general form of possible transitions between the model states

after age x in our model in Figure 3.3.

3. Then, we can write down the occupancy probability of a person in state ik at

age x+ s+ ds given that the person was in state ij at age x in our model as

follows:

s+dsp
ijk
x = sp

ijk
x dsp

ikk
x+s +

Ψ∑
l=0
l 6=k

sp
ijl
x dsp

ilk
x+s. (3.7)

4. Since the total probability of being in all model states at any specific time

is always equal to 1, we can express dsp
ikk
x+s, see assumptions 3.2 and 3.3, as

follows:

dsp
ikk
x+s =

1−
Ψ∑
l=0
l 6=k

(
µiklx+sds+ o(ds)

) (3.8)

5. Therefore, equation (3.7) is represented by:

s+dsp
ijk
x = sp

ijk
x

1−
Ψ∑
l=0
l 6=k

(
µiklx+sds+ o(ds)

) (3.9)

+
Ψ∑
l=0
l 6=k

sp
ijl
x

(
µilkx+sds+ o(ds)

)

Now, subtract sp
ijk
x from both sides of the equation,

s+dsp
ijk
x − sp

ijk
x =

Ψ∑
l=0
l 6=k

sp
ijl
x

(
µilkx+sds+ o(ds)

)
− sp

ijk
x

Ψ∑
l=0
l 6=k

(
µiklx+sds+ o(ds)

)
,

(3.10)

divide the each side of the equation by ds and take the limit ds→ 0+, where

limds→0+ (o(ds)/ds) = 0,

lim
ds→0+

s+dsp
ijk
x − sp

ijk
x

ds
=

Ψ∑
l=0
l 6=k

sp
ijl
x µ

ilk
x+s − sp

ijk
x

Ψ∑
l=0
l 6=k

µiklx+s, (3.11)
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and obtain the general form of the Kolmogorov forward equations as follows:

d

ds
sp
ijk
x =

Ψ∑
l=0
l 6=k

sp
ijl
x µ

ilk
x+s

︸ ︷︷ ︸
rate of entering
into state ik at

age x+ s

− sp
ijk
x

Ψ∑
l=0
l 6=k

µiklx+s

︸ ︷︷ ︸
rate of leaving

from state ik at
age x+ s

. (3.12)

3.5 Numerical Solution of the Kolmogorov For-

ward Equations

Several numerical methods can be applied to solve the Kolmogorov forward equa-

tions. Macdonald et al. (2018) discusses two methods: the Euler method as the

simplest; and the fourth-order Runge-Kutta method as being much more efficient.

Thus we follow the latter. Firstly, formulate any component of equation (3.12) as

d
(
sp
ijk
x

)
= f

(
s, sp

ijk
x

)
ds. (3.13)

Secondly, apply the algorithm of the fourth-order Runge-Kutta method which solves

the equations as follows:

s+dsp
ijk
x ≈spijkx +

dp1 + 2dp2 + 2dp3 + dp4

6
(3.14)

where

dp1 = f(s, sp
ijk
x )ds, (3.15)

dp2 = f
(
s+ ds/2, sp

ijk
x + dp1/2

)
ds, (3.16)

dp3 = f
(
s+ ds/2, sp

ijk
x + dp2/2

)
ds, (3.17)

dp4 = f
(
s+ ds, sp

ijk
x + dp3

)
ds. (3.18)

We solve these equations forward (ds > 0), since the boundary conditions for the

occupancy probabilities are 0p
i00
0 = pi0, the prevalence rate at birth in the ith sub-

population and 0p
i0k
0 = 0 where k 6= 0. Now, we can find the occupancy probability
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Table 3.1: The prevalence rate of HCM in the general population. LVWT: Left
Ventricular Wall Thickness.

Population Diagnosis
Baseline

(Criteria)

Age
(yr)

Prevalence
Rate

Reference

The study included unrelated
4,111 men and women in the
USA, of whom seven were clin-
ically diagnosed with HCM.

Clinical
(LVWT≥15

mm)

23–35 0.2% Maron
et al.

(1995)

The study included unrelated
3600 adults men and women in
the USA, of whom twenty-two
carried known HCM-related
mutations.

Genetics
(HCM
causing

known gene
mutations)

30–84 0.6% Bick et al.
(2012)

at any age in any model state.

3.6 The Parameters of the Model

To fully parametrise this model, therefore, we need estimates of the following.

(a) The population prevalences pi0 at birth.

(b) The age-related onset of clinical HCM, see F (x) (equation (3.6)) in Section

3.3.3, in the mutation-carrying sub-populations.

(c) Hazard rates of fatal and non-fatal HCM-related events after onset of clinical

HCM. Referring to Section 2.4.3, we assume the same hazard rates after onset

of HCM for the carriers of different HCM-related mutations.

(d) Mortality rates from all non-HCM-related causes. We assume these to be the

same in all five sub-populations.

Ages zero to 20 are influential, because we will assume that no life insurance

is purchased before age 20. Onset and mortality rates are high, among early-onset

mutation carriers. High rates of onset increase the number who reach age 20 with

clinical HCM, while high rates of mortality decrease that number.

3.7 Parametrising the Model I: Prevalence

The prevalence of HCM-related mutations is here considered in two stages.
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Table 3.2: The prevalence rate of HCM-related mutations in the HCM population
conservatively estimated from the reported rates in Elliott et al. (2014).

Mutation Early-Onset Late-Onset Total

Baseline Known 50% 16.67% 66.67%
Unknown 25% 8.33% 33.33%

Total 75% 25% 100%

Sensitivity Known 56.25% 18.75% 75%
Unknown 18.75% 6.25% 25%

Total 75% 25% 100%

(a) We firstly consider the prevalence rate of HCM-related mutations in the general

population. See all the model sub-populations in Figure 3.2.

(b) We secondly consider the prevalence rates of HCM-related mutations in the

different sub-populations (see Sections 3.2 and 3.3.1) in the HCM population.

See the model sub-populations i = 1, i = 2, i = 3, and i = 4 in Figure 3.2.

3.7.1 Prevalence of HCM Mutations: General Population

We follow two reported prevalence studies of HCM in the general population, sum-

marised in Table 3.1 (see Section 2.5).

(a) Maron et al. (1995) reports that the prevalence of clinical HCM is about 0.2%

in the general population at ages 23–35 years. See Section 2.5.1.

(b) Bick et al. (2012) reports that the prevalence of HCM-related known mutations

is 0.6% in the general population at ages 30–84 years. See Section 2.5.2.

We choose to use a prevalence of 0.2% as our baseline for the prevalence rate

of HCM-related mutations in the general population because it is conservative. It

assumes the prevalence of HCM-related mutations and clinical HCM to be the same.

Later, in Chapter 9, we investigate the consequences of a much higher prevalence of

HCM-related mutations such as the prevalence figure in Bick et al. (2012) above.
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3.7.2 Prevalence of HCM Mutations: HCM Population

Table 3.2 shows, from Elliott et al. (2014), the prevalence rates of HCM mutations

in the HCM population, which are conservative for our purposes. See Section 2.3.1.

(a) We assume, ignoring irrelevant mutations, the prevalence rate of known mu-

tations in the HCM population is about 2/3 (baseline) to 3/4 (sensitivity).

(b) We assume 3/4 of known mutations (and the same for unknown mutations)

are early-onset mutations.

(c) Elliott et al. (2014) does not report a specific age for these prevalences. For

simplicity, they are assumed to be at birth (age zero) in this study.

3.8 Parametrising the Model II: Onset

The penetrance of a mutation is the probability that the phenotype associated with

the mutation is actually present. See Section 3.3.3. If penetrance is less than 100%

it is said to be incomplete. Not many late-onset single-gene disorders of humans

have complete penetrance; it is the exception rather than the rule. If the phenotype

may appear sometime after birth, then we can define the age-related penetrance of a

specific mutation, denoted by the non-decreasing function F (x), see equation (3.6).

If penetrance is incomplete then limx→∞ F (x) < 1. Except for the last property,

F (x) behaves in every way like a cumulative distribution function.

The penetrance of HCM has been estimated to be 69% in Charron et al. (1997),

which was regarded as the baseline penetrance of HCM in Howard (2014), see Section

10.2. However, this must be qualified.

(a) Clinical expression of HCM is heteregenous. In HCM, mutations in different

genes, and different mutations in the same gene, may have different pene-

trances.

(b) If there is a high proportion of ‘silent’ mutations, see Section 2.5, penetrance

estimates relying on clinically diagnosed HCM may be overstated. This is

discussed in Section 9.3.1 and its impact in adverse selection costs is significant.
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3.8.1 Penetrance of Early-Onset HCM Mutations

Penetrance estimates of the form of equation (3.6) are not available below age 20.

This is partly related to the difficulties in carrying out medical studies involving

young children, and partly the uncertainty associated with clinically defining onset

at these ages (see Section 2.2.2). However we may rely on the general observations

that onset often occurs in adolescence and early adulthood; and mortality is at its

highest up to about age 30 (see Section 3.9).

For our purposes, a conservative assumption is that early-onset mutations have

100% penetrance by age 20. We are unable to estimate directly the proportion of

mutation carriers who develop HCM and die before age 20. Yet, in our study, the

penetrance before age 20 is not particularly relevant. So, we gradually increase the

early-onset penetrance up to age 20 by assuming (same for both genders) F (x) =

0.25 below age 10; F (x) = 0.5 at ages 10 to below 15; and F (x) = 1, afterwards.

3.8.2 Penetrance of Late-Onset HCM Mutations

Late-onset HCM is mainly associated with mutations in the MYBPC3 gene (see

Section 2.3.1.1). Thus a mutation carrier may be identified as being at risk by

a genetic test alone, when no clinical symptoms are present. Two studies have

estimated the age-related penetrance of such mutations:

(a) Christiaans et al. (2011) studied 446 mutation carriers in 166 families in the

Netherlands (44% male, 56% female). The majority had the same mutation in

the MYBPC3 gene, explained by there being founders of Dutch origin in the

past. None had been clinically evaluated as having HCM. Figure 3.4 shows

their Kaplan-Meier estimates of penetrance by age x for males and females, as
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well as our own smoothed estimates:

F (x)Dutch Males = 5.049(10−3)− 9.488(10−4)x+ 9.550(10−5)x2 (3.19)

+ 2.636(10−6)x3 − 2.428(10−8)x4

F (x)Dutch Females = −3.743(10−3) + 3.868(10−3)x− 3.319(10−4)x2 (3.20)

+ 9.348(10−6)x3 − 4.991(10−8)x4.

The authors noted that their penetrance estimates were lower than in other

studies because they excluded known clinically affected probands (the index

patient in a family affected by HCM) and relatives.

(b) Terauchi et al. (2015) studied 61 MYBPC3 mutation carriers in 28 families in

Japan (%51 male, %49 female). Their penetrance estimates showed a similar

pattern by age and gender to those of Christiaans et al. (2011) but were some-

what higher. Figure 3.5 shows their Kaplan-Meier estimates of penetrance by

age x for both gender, as well as our own smoothed estimates:

F (x)Japan Males = 1.608(10−2)− 6.861(10−3)x+ 2.040(10−4)x2 (3.21)

+ 9.051(10−6)x3 − 1.120(10−7)x4

F (x)Japan Females = 1.806(10−3) + 2.306(10−3)x− 7.659(10−5)x2 (3.22)

+ 5.757(10−6)x3 − 4.066(10−8)x4.

We use Christiaans et al. (2011) as our baseline. (Note that sensitivity testing,

in respect of adverse selection costs, in Section 9.3.2 shows that the choice of ei-

ther study is unimportant.) We assume F (x) = 0 below age 20, F (x) is given by

equations (3.19) and (3.20) for males and females respectively at ages 20–70, and

F (x) = 1 above age 70. For sensitivity analysis, we use Terauchi et al. (2015),

substituting equations (3.21) and (3.22) for equations (3.19) and (3.20).
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Figure 3.4: Late-Onset Penetrance of HCM from Christiaans et al. (2011)
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Figure 3.5: Late-Onset Penetrance of HCM from Terauchi et al. (2015)

38



Chapter 3: A Mathematical Model of the Epidemiology of Hypertrophic
Cardiomyopathy (HCM)

3.9 Parametrising the Model III: HCM-Related

Endpoints

3.9.1 Data Sources

In Section 2.4.4, we noted that estimates of the mortality rates associated with HCM

had fallen steadily since first being studied, as a result of referral bias being reduced,

and methods of diagnosis and treatment being improved.

We also noted, in Section 2.4.2, the need to distinguish between fatal and non-

fatal events among the endpoints of any study. Therefore, we make the following

definitions.

(a) Fatal HCM endpoints: sudden cardiac arrest causing death (Fatal SCA), death

from progressive heart failure (HF), stroke, and post-operative deaths.

(b) Non-fatal HCM endpoints: resuscitated cardiac arrest and heart transplant.

For these reasons, we base our estimates of HCM-related hazard rates on three

large, recent studies. Maron et al. (2016a, 2015, 2013) observed 1,902 individuals

clinically affected by HCM, from the Minneapolis Heart Institute and Tufts Medical

Center in the USA. The ages at onset of HCM of these individuals were not known;

instead each was observed from an initial evaluation age, at which clinical HCM was

established. These ages ranged from seven to 91 years old. Thus, observation of

HCM-related endpoints is left-truncated (see Macdonald et al. (2018)). Each of the

three studies analysed a different range of initial evaluation ages.

• Maron et al. (2016a) included 474 individuals with initial evaluation ages seven

to 29 years old, subdivided into age ranges 7–10, 11–15, 16–20, 21–25, and 26–

29. Three deaths from heart transplant complications were recorded as HF

deaths.

• Maron et al. (2015) included 1,000 individuals with initial evaluation ages 30

to 59 years old, subdivided into age ranges 30–39, 40–49, and 50–59. Five

deaths from heart transplant complications were recorded as HF deaths, and
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Table 3.3: HCM-related endpoints from Maron et al. (2016a, 2015, 2013). The fatal
endpoints are Fatal SCA: Sudden Cardiac Arrest causing death, HF: Heart Failure,
Stroke and P-O: Post-Operative. The non-fatal endpoints are ReCA: Resuscitated
Cardiac Arrest, and HT: Heart Transplant.

Initial Fatal Endpoints Non-Fatal Reference
Evaluation Fatal Endpoints

Ages No. SCA HF Stroke P-O ReCA HT

7–29 474 12 5 0 1 20 12 Maron et al. (2016a)
7–10 10 0 0 0 0 1 0
11–15 94 5 0 0 0 1 2
16–20 173 5 4 0 0 10 3
21–25 117 0 0 0 1 5 4
26–29 80 2 1 0 0 3 3

30–59 1000 17 17 2 4 5 20 Maron et al. (2015)
30–39 290 7 5 1 0 3 8
40–49 361 6 7 0 3 1 8
50–59 349 4 5 1 1 1 4

60–91 428 2 2 6 2 3 1 Maron et al. (2013)

two heart transplants following resuscitated cardiac arrest were recorded as

heart transplants.

• Maron et al. (2013) included 428 individuals with initial evaluation ages 60 to

91 years.

For brevity, we will refer to these three papers in what follows as ‘the Maron et

al. papers’. In Table 3.3, we summarise the results of these three studies.

3.9.2 HCM-Related Hazard Rates

In our subsequent modelling of term insurance contracts, we will focus on ages 20

to 60, as being a representative range of ages when such contracts are in force. We

have little interest in ages before 20, except insofar as deaths before age 20 reduce

the population who might buy insurance after age 20. Our aim here is to use the

results in the Maron et al. papers to estimate the hazard rates of HCM-related

mortality between ages 20 and 60.
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3.9.3 The Estimation of HCM-Related Hazard Rates

If we observe a group of nx persons with age label x exposed to the risk of some

event for a total time of Ec
x years, and record dx events, we may model the number of

events as a random variable Dx having a Poisson distribution with parameter ρxE
c
x,

where ρx is the force or hazard rate of the event applicable at the ages labelled x

(note that we denote the hazard rates of non-fatal HCM and fatal HCM at age x

by ρx in Section 3.3.3), as follows:

P (Dx = dx) =
e−ρxE

c
x(ρxE

c
x)
dx

dx!
. (3.23)

Standard results lead to the maximum likelihood estimate (Macdonald et al. (2018)):

ρ̂x = dx/E
c
x (3.24)

of the hazard rate ρx, and its approximate sampling variance:

vx≈ρ̂x/Ec
x. (3.25)

The age label x may refer either to a single age or a range of ages, over which the

hazard rate is assumed to be constant.

The event of interest may be death, or other endpoints from different causes such

as non-fatal HCM, taking dx to be the number of relevant events observed.

3.9.4 Confidence Intervals of HCM-Related Hazard Rates

Approximate 95% confidence intervals for ρx are given by ρ̂x ± 1.96(ρ̂x/E
c
x)

1/2. In

some cases, this results in confidence intervals including negative values, which sug-

gests that the usual asymptotic Normal theory on which these intervals are based

is a poor approximation for these data. A better approach may be to estimate

confidence intervals by parametric bootstrapping.

For each age label x, 10,000 values of a Poisson random variable with parameter

ρ̂xE
c
x are simulated, using R. This gives a vector of simulated numbers of events
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consistent with the Poisson assumption, denoted by D̃x:

D̃x = (D̃1
x, D̃

2
x, ...., D̃

10000
x ), (3.26)

Dividing each of these by Ec
x, we obtain a simulated sample of estimated hazard

rates consistent with the Poisson assumption, denoted by ρ̃x:

ρ̃x =
D̃x

Ec
x

= (ρ̃1
x, ρ̃

2
x, ...., ρ̃

10000
x ). (3.27)

Approximate 95% confidence intervals can be read off directly from the ordered list

of elements of ρ̃x.

3.9.5 The Central Exposure to Risk (Ec
x) of HCM-Related

Events

The Maron et al. papers do not provide the central exposure to risk Ec
x for any age

groups. They do, however, state the mean follow-up times observed in respect of

the aggregated age range in each study. At ages 7–29, the mean follow-up time was

7.1 years; at ages 30–59, it was 7.2 years; and at ages 60 and over, it was 5.8 years.

We can therefore use the identity:

Central exposure to risk=Number of persons×Mean follow-up time (3.28)

to find the central exposures to risk for these aggregated age groups. Mean follow-up

times for the subdivided age ranges in Maron et al. (2016a) and Maron et al. (2015)

were not stated.

In Table 3.4, we present age-specific HCM-related annualized hazard rates, based

on the data in Table 3.3. We show hazard rates including and excluding the non-

fatal endpoints of resuscitated cardiac arrest and heart transplant. We note that

mortality due to stroke is relatively unimportant below age 60.
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Table 3.4: Annualized hazard rates of SCA and heart failure, and the overall
hazard rate of HCM, are shown both including (inc.) and excluding (exc.) non-fatal
endpoints. For the abbreviations used in the headings, please see the caption of
Table 3.3. Note that the numerics are rounded to six decimal places.

Ages nx Ec
x SCA HF Stroke HCM

(exc. (inc. (exc. (inc. (exc. (inc.
ReCA) ReCA) HT) HT) non-fatal) non-fatal)

7–29 474 3365.4 0.003566 0.009509 0.001486 0.005051 0.000000 0.005349 0.014857
30–59 1000 7200 0.002361 0.003056 0.002361 0.005139 0.000278 0.005556 0.009028
60–91 428 2482.4 0.000806 0.002014 0.000806 0.001209 0.002417 0.004834 0.006445

3.9.6 Obtaining HCM-Related Hazard Rates for Ages 20 to

60

From the Maron et al. papers, we have estimated hazard rates for ages 7–29, 30–59

and 60 and over. We also have numbers of events, but not mean follow-up times,

for subdivisions of the first two age ranges. Our purpose requires hazard rates for

ages 20–60. We consider three alternative assumptions here how we may adjust the

data we have, in order to approximate the required hazard rates.

Assumption 3.4. ρ[20−29] = ρ[7−29]: Assume hazard rates to be constant over the

age ranges shown in Table 3.4, then use the hazard rate for ages 7–29 at ages 20–29.

(We assume the estimated hazard rates for ages 30–59 apply up to exact age 60.)

Assumption 3.5. ρ[20−29] = ρ[30−59]: Assume hazard rates for ages 30–59 also apply

to the age range 20–29. This assumption might be justified for fatal HCM since the

numbers of HCM-related fatal events at ages 21–29 were very small (see Table 3.3).

Assumption 3.6. Assume the 7.1 years mean follow-up for ages 7–29 also applies

at ages 21–29, so we can find the central exposure to risk Ec
x for the latter age range.

Then combining the numbers of HCM-related events and the exposures for the age

ranges 21–29 and 30–59, we can calculate a single constant hazard rate for ages

21–59. We then assume this hazard applies also in the year of age 20–21.

3.9.7 Estimated HCM-Related Hazard Rates

Table 3.5 shows the estimated hazard rates of SCA and heart failure, and the overall

hazard rate of HCM, both including and excluding non-fatal endpoints, and confi-
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Table 3.6: Annualized hazard rates of non-fatal HCM (see Section 3.9.3).

Ages nx Ec
x Non-Fatal HCM

7–29 474 3365.4 0.009509
30–59 1000 7200 0.003472
60–91 428 2482.4 0.001611

dence intervals, under the three assumptions.

(a) When non-fatal HCM-related endpoints are excluded, which is most relevant

here, the hazard rates under all three assumptions were similar, and under

Assumption 3.4 they were also similar in the two age groups.

(b) When non-fatal HCM-related endpoints are included, the hazard rates were

considerably higher, and under Assumption 3.4 were higher at ages 20–29 than

ages 30–59. The latter difference was mainly due to SCA, with about 2/3 of

occurrences being non-fatal.

(c) In total, the hazard rate of HCM-related death between ages 20 and 60 seems

to lie between 0.005 and 0.0055 per year.

(d) The mean hazard rates from the bootstrapped samples in Table 3.5 were in

all cases very close to the estimated hazard rates.

Based on the analysis in this section, the hazard rate of fatal HCM is assumed

as 0.0055 per annum for all ages as a baseline assumption in our model. See also

Table 3.6 for the hazard rates of non-fatal HCM per annum at all ages.

3.9.8 The Survival Function of the HCM-Related Hazard

Rates

Consider the probability of a person age x surviving to age x + s from any HCM-

related endpoint(s) is denoted by spx and is given in terms of the hazard rate at age

x+ s of any HCM-related endpoint(s) denoted by ρx+s as:

spx = exp

(
−
∫ s

0

ρx+wdw

)
, (3.29)
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in which spx + sqx = 1. If ρx+w is constant and equal to ρx in the interval w ∈ (0, s)

then,

spx = exp (−sρx) . (3.30)

We use equation (3.30), with the 10,000 simulated hazard rates in ρ̃x (equation

(3.27)) to obtain 10,000 simulated values of spx consistent with our assumed Poisson

distribution of the number of HCM-related events. This allows us to calculate the

means and 95% confidence intervals of the survival function associated with HCM-

related hazard rates. The survival function from age 20, and its simulated confidence

intervals (CI, 95%) are shown under Assumption 3.4 (Table 3.7 and Figure 3.6);

under Assumption 3.5 (Table 3.8 and Figure 3.7); under Assumption 3.6 (Table

3.9 and Figure 3.8). In the figures, the survival probabilities are also compared

with that of qx = 0.01 at all integer x ≥ 0 (the baseline assumption of the annual

HCM-related mortality in Howard (2014), see Section 1.3).

3.10 Parametrising the Model IV: Mortality from

All Other Causes

We use the males and females mortality rates reported in Life Tables, United States

(US), 2013 (Arias et al. 2017) to quantify the hazard rates of all other causes of

mortality in our model. This work gives probabilities qx that a person age x will

die before x + 1 (for non-negative integers x). To obtain hazard rates, we use the

approximation − log(1 − qx) ≈ µx+0.5, valid for small qx. The log-hazard rates,

obtained by linear interpolation at time step 0.0005 years, are shown in Figure 3.9.

Strictly, we ought to remove HCM-related mortality from the population hazard

rate, since HCM is represented by a separate event in our model. We have not done

so, as the effect would be small, and for our purposes the results are conservative.
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3.11 Occupancy Probabilities

We first calculate the prevalence rates of HCM sub-populations at birth under the

baseline assumptions (Table 3.10) as follows:

0.002

20p100
0 + 20p200

0 + 20p300
0 + 20p400

0

≈0.00226, (3.31)

respectively 0p
000
0 = p00 ≈(1−0.00226)=0.99774. Then, after age zero, we present

the occupancy probabilities, obtained by the numerical solution of the Kolmogorov

forward equations (see Sections 3.4 and 3.5) at time step 0.0005 years, in each state

in the epidemiological model under the baseline assumptions in Figure 3.10:

• Females have higher occupancy probabilities in state 0, no events (the upper

left plot) than males because they are less likely to develop late-onset of HCM

(Section 3.8.2) and to die by all-cause of mortality than males (Section 3.10).

• Up to age 30, the curve of the occupancy probabilities in state 1, non-fatal

HCM (the upper right plot) is upward steep because the transition intensity

of non-fatal HCM between ages 7–29 is at its highest rate, see Table 3.6.

The occupancy probabilities in state 2, other dead (the lower left plot) and

state 3, fatal HCM (the lower right plot) are also consistent with the assumed

transition intensities, see Figure 3.9 and Section 3.9.7.

We will replicate the sensitivity assumptions presented in this chapter for the

adverse selection costs in Chapter 9 since our ultimate interest is to measure the

insurance costs under adverse selection.
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Chapter 3: A Mathematical Model of the Epidemiology of Hypertrophic
Cardiomyopathy (HCM)
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Figure 3.6: The survival function from age 20 (sp20) associated with HCM-related
hazard rates (including and excluding non-fatal HCM) under Assumption 3.4.
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Figure 3.7: The survival function from age 20 (sp20) associated with HCM-related
hazard rates (including and excluding non-fatal HCM) under Assumption 3.5.
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Figure 3.8: The survival function from age 20 (sp20) associated with HCM-related
hazard rates (including and excluding non-fatal HCM) under Assumption 3.6.
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Figure 3.9: Estimated hazard rates of all-cause mortality from the reported mor-
tality rates in Life Tables, United States (US), 2013 (Arias et al. 2017).
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Chapter 4

Genetic Testing in Hypertrophic

Cardiomyopathy (HCM)

4.1 Introduction

We described the genetic substrate of HCM in Chapter 2, and left the methodology

of genetic testing in HCM for this chapter. In Chapter 1, we stated that this study

ultimately attempts to model the impact of genetic testing in HCM for the life

insurance market. We do so, starting in Chapter 5, by specifying ‘the testing model’

of HCM adding genetic testing states to the epidemiological model in Chapter 3,

and then in Chapter 7, by specifying ‘the adverse selection model’ of HCM for a life

insurance market by adding insurance states to the testing model. The mathematical

foundations of the testing and adverse selection models are established not only by

adding more states to the epidemiological model, but also by specifying models of

testing and insurance purchase behaviour on the part of individuals in HCM families.

(Note that an HCM family is a new term in this study describing a mutation carrier

family member and relatives of this member of the family).

The epidemiological model, in Chapter 3, modelled the life history of a single

individual, mainly exposed to the risk of adverse HCM-related events, such as non-

fatal and fatal HCM. In this chapter, we explain the nature of genetic testing in

HCM families. In Section 4.2, we introduce the form of genetic testing, called

cascade genetic testing, which is widely used in HCM. In Section 4.3, we present the
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uptake rates of cascade genetic testing in HCM, reported in medical studies and we

show how we incorporate these rates into our study. Section 4.4 discusses how we

can represent the nature of cascade genetic testing in HCM through a mathematical

model.

4.2 Cascade Genetic Testing

The form of genetic testing most associated with HCM is cascade genetic testing.

This begins when a person is clinically diagnosed with HCM. If they are a member

of a family with no previously known cases of HCM, this event reveals the presence

of a mutation in the family. Cascade genetic testing means that genetic testing is

offered to the affected person, their parents, their siblings and their children (known

as ‘first-degree relatives’). Depending on the results, genetic testing may then be

offered to more distant relatives, for example the siblings of an affected parent or

the children of an affected sibling.

Hence the process of genetic testing can ‘cascade’ through an extended family

tree. Elliott et al. (2014) describe the process.

(a) The person in a family first clinically diagnosed with HCM is called the index

patient or proband. In our model, for simplicity, we assume that the first

family member to manifest HCM always initiates cascade genetic testing and

is the proband. They are said to be phenotype-positive (phenotype:+), (the

phenotype is the physical manifestation of a gene variety). The proband is

advised to undergo genetic counselling, then genetic testing. They are not

obliged to undergo either.

(b) The proband may be found to carry a known HCM-related mutation, denoted

by (phenotype:+, genotype:+). Then, all first-degree relatives may be advised

to undergo counselling and genetic testing.

(i) Relatives who are found to be genetically and clinically affected by HCM

(genotype:+, phenotype:+) or genetically, but not clinically, affected by
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HCM (genotype:+, phenotype:−) are followed up clinically. Genetic test-

ing may be offered to their first-degree relatives in cascade fashion as

described above.

(ii) Relatives who are found to be genotype-negative are evaluated as not at

risk of HCM.

(c) The proband may be found not to carry a known HCM-related mutation,

denoted by (phenotype:+, genotype:−). It means that the genetic substrate

of these patients is ‘unknown’; either genetic testing cannot detect a known

HCM-related mutation or finds a variant of unknown significance (VUS). Due

to the presumption in Section 2.3.1.2, we assume that they carry a mutation

yet to be identified. Genetic testing cannot be carried out on their relatives,

who are still at risk of HCM, however. Therefore, cascade clinical screening

may be offered to the relatives. Those found to be phenotype-negative are

advised to repeat clinical screening at intervals, as they do not have the clear

indication of a negative genetic test for a known mutation. Those found to be

phenotype-positive can receive appropriate treatment.

(d) If the gene mutation in the proband is found to be a variant of unknown/uncer-

tain significance (VUS), segregation analysis is recommended if possible, and

then either cascade genetic testing or cascade clinical screening is advised for

the relatives.

(e) Points (b) and (c) above clarify that a proband can be detected by:

(i) Variants which are known and known to be associated with a phenotype.

In this study, they are referred as ‘known mutations’. Any person carrying

such a mutation is referred to ‘a carrier of a known HCM mutation’.

(ii) Variants which are presumed to exist because of observed phenotype but

which have not been detected. Or, variants which are known but whose

association with a phenotype is uncertain, called variant of unknown

significance (VUS). In this study, they are all referred to as ‘unknown
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mutations’. A proband tested with an unknown HCM mutation is re-

ferred to ‘a carrier of an unknown HCM mutation’. The relatives of such

a proband, as pointed out above, do not undergo genetic testing, but they

are clinically followed up at intervals.

4.3 Uptake Rates of Genetic Testing

Not all relatives offered genetic testing agree to undergo it. We call the proportion

who do agree to undertake it the ‘uptake rate’ of genetic testing. In what follows

we discuss significant aspects of the uptake rates of cascade genetic testing.

(a) First and foremost, we need a proband to start cascade genetic testing in the

family.

(b) Secondly, we define the offer rate to be the proportion of new probands, diag-

nosed as phenotype +, who are referred to a genetics clinic to initiate cascade

testing of their relatives. Khouzam et al. (2015) conducted a questionnaire

study aiming to determine the factors influencing the uptake of genetic ser-

vices in HCM in the USA. The study was limited to first-degree relatives

and did not identify probands and their relatives separately. It included 306

persons; of whom, 264 replied to the question of whether they were either

discussed or offered to take-up genetic testing. 210 of 264 (80%) claimed that

they were offered genetic testing. The offer rate seems to be less than 100%.

More results from this questionnaire study will be shown in Table 4.1.

(c) Thirdly, we define the take-up rate in probands to be the proportion of the

probands who were offered genetic testing that did eventually take up the

testing. There are no strong data available to quantify this rate. Geelen et al.

(2012) suggest that the take-up rate in probands is less than 100%. However,

this study does not estimate this take-up rate. The study sample is also very

small (four HCM families) and its aim was to find out the behavioural reasons

for not taking up genetic testing in either probands or their relatives.
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(d) Based on these observations, all probands are assumed to be offered and to

take up the genetic testing in our model as a conservative assumption.

Actually, the main purpose of cascade genetic testing in HCM is to detect geneti-

cally affected, but clinically undiagnosed, or asymptomatic, at-risk relatives of the

proband to improve their treatment by early care. Then the term ‘the uptake rate

of testing’ will be mostly used here to refer to the proportion of the at-risk relatives

of a proband who take up the offer of testing.

4.3.1 Uptake Rates of Genetic Testing in Medical Studies

We show our literature review on the uptake rates of the testing in or related to

HCM in Table 4.1. However, the studies generally reported uptake rates without a

follow-up period between the detection of the mutation in probands and the testing

of the at-risk relatives of the probands. Therefore, we checked the uptake rates of

testing of at-risk relatives of a proband in genetic disorders other than HCM, with

their follow-up periods, shown in Table 4.2.

4.3.2 Uptake Rates of Genetic Testing in This Study

A ‘rate’ in these studies (see Tables 4.1 and 4.2) refers to the cumulative probability

that a person is tested between ages x and x + s. Based on the reported uptake

rates or probabilities of being tested in medical studies, we pick a baseline constant

proportion which is 50% of the at-risk relatives of the proband taking up genetic

testing, during the first year since (if) a proband exists in the family (see Tables 4.1

and 4.2). There is no age restriction on taking up either genetic testing or clinical

screening for the at-risk relatives of probands. If there is a proband in a family with

young children, the ESC guidelines (Elliott et al. 2014) recommend to start genetic

testing or clinical screening of the at-risk relatives after age 10. The guidelines also

state that the first-degree relatives at ages less than 10 could take up both genetic

testing and clinical screening if they have an adverse family history or they have the

symptoms of HCM at these early ages. The highest ages at genetic testing were 66

years in Charron et al. (2002) and 70 years in Brook et al. (2004). The other studies

59



Chapter 4: Genetic Testing in Hypertrophic Cardiomyopathy (HCM)

T
ab

le
4.

1:
U

p
ta

ke
ra

te
s

of
ge

n
et

ic
te

st
in

g
in

/r
el

at
ed

to
H

C
M

at
-r

is
k

re
la

ti
ve

s
of

m
u
ta

ti
on

ca
rr

ie
r

p
ro

b
an

d
s.

F
D

R
:

F
ir

st
-d

eg
re

e
re

la
ti

ve
,

S
D

R
:

S
ec

on
d
-d

eg
re

e
re

la
ti

ve
,

F
ol

lo
w

-U
p

P
er

io
d
:

O
b
se

rv
at

io
n

ti
m

e
b

et
w

ee
n

th
e

d
et

ec
ti

on
of

fa
m

il
y

m
u
ta

ti
on

in
p
ro

b
an

d
s

an
d

th
e

te
st

in
g

of
th

e
re

la
ti

ve
s

of
th

e
p
ro

b
an

d
s.

P
op

u
la

ti
on

A
ge

(y
r)

D
is

or
d
er

(C
au

si
n
g

M
u
ta

n
t

G
en

es
)

F
am

il
y

P
ed

ig
re

e
F

ol
lo

w
-U

p
P

er
io

d
U

p
ta

ke
R

at
e

of
G

en
et

ic
T

es
ti

n
g

R
ef

er
en

ce

U
p

to
se

co
n
d
-d

eg
re

e
at

-r
is

k
re

la
ti

ve
s

in
F

ra
n
ce

.
16

–6
6

H
C

M
(M

a
jo

ri
ty

w
it

h
M

Y
B

P
C

3
or

M
Y

H
7)

-
-

-
C

h
ar

ro
n

et
al

.
(2

00
2)
∗

F
ir

st
an

d
se

co
n
d
-d

eg
re

e
re

la
ti

ve
s

th
at

in
cl

u
de

d
on

th
e

co
n

di
ti

on
of

de
at

h
of

th
e

fi
rs

t-
de

gr
ee

re
la

ti
ve

in
th

e
N

et
h
er

la
n
d
s.

>
10

H
C

M
(M

a
jo

ri
ty

w
it

h
M

Y
B

P
C

3)
O

ve
ra

ll
1

ye
ar

38
.6

1%
C

h
ri

st
ia

an
s

et
al

.
(2

01
1)
†

A
sa

m
p
le

of
30

6
p

er
so

n
s.

O
f

w
h
om

,
27

0
cl

in
ic

al
H

C
M

p
at

ie
n
ts

an
d

36
at

-r
is

k
fi
rs

t-
d
eg

re
e

re
la

ti
ve

s
in

th
e

U
S
A

.
>

18
H

C
M

-
-

53
%

K
h
ou

za
m

et
al

.
(2

01
5)
‡

F
ir

st
an

d
se

co
n
d
-d

eg
re

e
at

-r
is

k
re

la
ti

ve
s

in
th

e
U

S
A

.
-

H
C

M
an

d
D

C
M

(A
la

rg
e

va
ri

et
y
)

F
D

R
s

S
D

R
s

O
ve

ra
ll

-
51

%
16

%
39

%

M
il
le

r
et

al
.

(2
01

3)
¶

A
t-

ri
sk

ch
il
d
re

n
in

58
fa

m
il
ie

s
in

C
an

ad
a.

29
fa

m
il
ie

s
h
ad

th
ei

r
ch

il
d
re

n
te

st
ed

.
<

18
L

Q
T

S
,

H
C

M
,

an
d

A
R

V
C

O
n
ly

ch
il
d
re

n
-

66
%

C
h
ri

st
ia

n
et

al
.

(2
01

8)
§

∗
In

C
h
a
rr

o
n

e
t

a
l.

(2
0
0
2
),

60
su

b
je

ct
s

h
ad

a
fa

m
il
y

h
is

to
ry

w
it

h
H

C
M

.
O

f
w

h
om

,
(a

)
29

w
er

e
ad

u
lt

re
la

ti
ve

s
ta

k
in

g
u
p

ge
n
et

ic
co

u
n
se

ll
in

g
at

ag
es

18
–6

6
ye

ar
s

ol
d
.

26
of

29
(9

0%
)

w
er

e
fi
rs

t
an

d
3

of
29

(1
0%

)
w

er
e

se
co

n
d
-d

eg
re

e
re

la
ti

ve
s.

19
of

29
to

ok
u
p

th
e

te
st

in
g.

(b
)

9
of

60
w

er
e

co
u
p
le

s
ta

k
in

g
u
p

ge
n
et

ic
co

u
n
se

ll
in

g
fo

r
th

ei
r

ch
il
d
re

n
at

ag
es

15
m

on
th

s
to

16
ye

ar
s.

4
of

9
h
ad

th
ei

r
tw

o
ch

il
d
re

n
co

u
n
se

ll
ed

w
h
il
e

th
e

re
st

of
9

h
ad

th
ei

r
on

e
ch

il
d

co
u
n
se

ll
ed

(t
ot

al
n
u
m

b
er

of
ch

il
d
re

n
of

ea
ch

co
u
p
le

w
er

e
n
ot

su
b
m

it
te

d
).

T
h
er

ef
or

e,
th

is
sa

m
p
le

in
to

ta
l

co
n
ta

in
ed

13
ch

il
d
re

n
.

H
ow

ev
er

,
on

ly
on

e
co

u
p
le

h
ad

th
ei

r
ch

il
d

te
st

ed
.

(c
)

22
of

60
w

er
e

co
u
p
le

s
ta

k
in

g
u
p

p
re

n
at

al
co

u
n
se

ll
in

g
si

n
ce

th
es

e
co

u
p
le

s
h
ad

fa
m

il
y

h
is

to
ry

w
it

h
H

C
M

.
N

on
e

of
th

em
w

er
e

off
er

ed
to

ta
ke

-u
p

th
e

te
st

in
g.

†
In

C
h
ri

st
ia

a
n
s

e
t

a
l.

(2
0
0
8
),

at
-r

is
k

re
la

ti
ve

s
of

97
H

C
M

m
u
ta

ti
on

ca
rr

ie
r

p
ro

b
an

d
s

w
er

e
in

cl
u
d
ed

.
O

f
w

h
om

,
(a

)
68

p
ro

b
an

d
s

(7
0%

)
to

ok
u
p

th
e

co
u
n
se

ll
in

g
in

th
e

fi
rs

t
ye

ar
.

N
ot

e
th

at
99

%
of

th
e

re
la

ti
ve

s
of

th
es

e
si

x
ty

-e
ig

h
t

p
ro

b
an

d
s

ta
k
in

g
u
p

th
e

co
u
n
se

ll
in

g
to

ok
u
p

th
e

te
st

in
g

in
th

e
fi
rs

t
ye

ar
.

A
ls

o,
th

e
u
p
ta

ke
ra

te
of

th
e

co
u
n
se

ll
in

g
w

as
40

.4
%

in
fi
rs

t
an

d
27

.5
%

in
se

co
n
d
-d

eg
re

e
re

la
ti

ve
s.

(b
)

N
on

e
of

th
e

re
la

ti
ve

s
of

th
e

re
m

ai
n
in

g
29

(%
30

)
to

ok
u
p

th
e

co
u
n
se

ll
in

g
in

th
e

fi
rs

t
ye

ar
.

T
h
e

re
la

ti
ve

s
of

16
of

29
p
ro

b
an

d
s

to
ok

u
p

th
e

co
u
n
se

ll
in

g
af

te
r

th
e

fi
rs

t
ye

ar
.

T
h
e

re
la

ti
ve

s
of

13
of

29
p
ro

b
an

d
s

d
id

n
ot

ta
ke

-u
p

th
e

co
u
n
se

ll
in

g
at

al
l

d
u
ri

n
g

th
e

m
ea

n
fo

ll
ow

-u
p

p
er

io
d

53
m

on
th

s
of

a
ra

n
ge

of
16

–1
03

m
on

th
s.

(c
)

T
h
e

u
p
ta

ke
of

ge
n
et

ic
co

u
n
se

ll
in

g
in

H
C

M
w

as
n
ot

si
gn

ifi
ca

n
tl

y
re

la
te

d
to

ag
e,

ge
n
d
er

,
or

fa
m

il
y

h
is

to
ry

w
it

h
S
C

D
.

‡
In

K
h
o
u
za

m
e
t

a
l.

(2
0
1
5
),

th
e

re
su

lt
s

of
a

q
u
es

ti
on

n
ai

re
st

u
d
y

w
er

e
re

p
or

te
d
.

(a
)

T
h
e

st
u
d
y

m
ai

n
ly

fo
cu

se
d

to
d
et

er
m

in
e

th
e

fa
ct

or
s

aff
ec

ti
n
g

u
p
ta

ke
of

ge
n
et

ic
te

st
in

g
in

H
C

M
.

(b
)

T
h
e

st
u
d
y

d
id

n
ot

q
u
es

ti
on

on
fo

ll
ow

u
p

p
er

io
d

of
th

e
p
ro

ce
ss

of
u
p
ta

ke
of

ge
n
et

ic
te

st
in

g
in

H
C

M
.

(c
)

T
h
e

st
u
d
y

d
id

n
ot

fi
n
d

si
gn

ifi
ca

n
t

re
la

ti
on

sh
ip

b
et

w
ee

n
u
p
ta

ke
of

ge
n
et

ic
te

st
in

g
an

d
ge

n
d
er

,
n
or

fa
m

il
y

h
is

to
ry

w
it

h
S
C

D
.

¶
In

M
il
le

r
e
t

a
l.

(2
0
1
3
),

at
-r

is
k

re
la

ti
ve

s
of

40
H

C
M

-
or

D
C

M
-r

el
at

ed
m

u
ta

ti
on

ca
rr

ie
r

p
ro

b
an

d
s

w
er

e
ex

am
in

ed
.

O
f

w
h
om

,
34

(8
5%

)
w

er
e

H
C

M
-

an
d

6
(1

5%
)

w
er

e
D

C
M

-r
el

at
ed

m
u
ta

ti
on

ca
rr

ie
rs

.
U

p
ta

ke
of

ge
n
et

ic
te

st
in

g
w

as
n
ot

si
gn

ifi
ca

n
tl

y
as

so
ci

at
ed

w
it

h
ei

th
er

ag
e

or
fa

m
il
y

h
is

to
ry

w
it

h
S
C

D
.

§
In

C
h
ri

st
ia

n
e
t

a
l.

(2
0
1
8
),

th
e

h
ig

h
u
p
ta

ke
ra

te
of

ge
n
et

ic
te

st
in

g
co

m
p
ar

ed
to

p
re

v
io

u
s

st
u
d
ie

s
w

as
ex

p
la

in
ed

in
th

e
st

u
d
y

as
fo

ll
ow

s:
(a

)
m

u
ta

ti
on

ca
rr

ie
r

p
ar

en
ts

al
re

ad
y

ta
ke

n
u
p

th
e

te
st

in
g

w
er

e
p
re

fe
rr

ed
an

d
(b

)
sa

m
p
le

co
n
si

st
ed

of
m

u
ta

ti
on

ca
rr

ie
r

p
ar

en
ts

of
L

Q
T

S
,

H
C

M
,

A
R

V
C

d
is

or
d
er

s.

60



Chapter 4: Genetic Testing in Hypertrophic Cardiomyopathy (HCM)

T
ab

le
4.

2:
U

p
ta

ke
ra

te
s

of
ge

n
et

ic
te

st
in

g
in

ot
h
er

in
h
er

it
ed

d
is

or
d
er

s
at

-r
is

k
re

la
ti

ve
s

of
m

u
ta

ti
on

ca
rr

ie
r

p
ro

b
an

d
s.

F
D

R
:

F
ir

st
-d

eg
re

e
re

la
ti

ve
,

S
D

R
:

S
ec

on
d
-d

eg
re

e
re

la
ti

ve
,

D
R

:
D

is
ta

n
t

re
la

ti
ve

,
P

-T
ri

sk
:

P
re

-t
es

t
ri

sk
of

in
h
er

it
in

g
of

a
k
n
ow

n
fa

m
il
y

m
u
ta

ti
on

,
F

ol
lo

w
-U

p
P

er
io

d
:

O
b
se

rv
at

io
n

ti
m

e
b

et
w

ee
n

th
e

d
et

ec
ti

on
of

fa
m

il
y

m
u
ta

ti
on

in
p
ro

b
an

d
s

an
d

th
e

te
st

in
g

of
th

e
re

la
ti

ve
s

of
th

e
p
ro

b
an

d
s.

P
op

u
la

ti
on

A
ge

(y
r)

D
is

or
d
er

(C
au

si
n
g

M
u
ta

n
t

G
en

es
)

F
am

il
y

P
ed

ig
re

e
F

ol
lo

w
-U

p
P

er
io

d
U

p
ta

ke
R

at
e

of
G

en
et

ic
T

es
ti

n
g

R
ef

er
en

ce

50
%

an
d

25
%

P
-T

ri
sk

re
la

ti
ve

s
in

th
e

N
et

h
er

la
n
d
s.

≥
20

B
re

as
t/

O
va

ri
an

C
an

ce
r

(B
R

C
A

1/
2)

50
%

P
-T

50
%

P
-T

9
m

on
th

s,
1

ye
ar

,2
ye

ar
9

m
on

th
s,

1
ye

ar
,2

ye
ar

51
%

,5
4%

,5
8%

in
w

om
en

19
%

,1
9%

,2
4%

in
m

en
M

ei
je

rs
-H

ei
jb

o
er

et
al

.
(2

00
0)

50
%

,
25

%
,

12
.5

%
P

-T
ri

sk
re

la
ti

ve
s

“i
n

ea
ch

ve
rt

i-
ca

l
bl

oo
d

li
n

e
in

th
e

fa
m

il
y

pe
di

gr
ee

”
in

M
an

ch
es

te
r

(M
C

R
)

an
d

L
on

d
on

(L
D

N
)

in
th

e
U

K
.

18
–7

0
B

re
as

t/
O

va
ri

an
C

an
ce

r
(B

R
C

A
1/

2)
F

D
R

s,
M

C
R

F
D

R
s,

L
D

N
S
D

R
s,

M
C

R
S
D

R
s,

L
D

N
D

R
s,

M
C

R
D

R
s,

L
D

N
O

ve
ra

ll
,

M
C

R
O

ve
ra

ll
,

L
D

N

- - - - - - m
ea

n
1.

3
ye

ar
s

(0
.1

–5
.8

)
m

ea
n

1
ye

ar
(0

.1
–4

.1
)

52
.8

%
w

om
en

;
14

.7
%

m
en

23
.5

%
w

om
en

;
7.

4%
m

en
46

.7
%

w
om

en
;

16
%

m
en

25
%

w
om

en
;

0%
m

en
61

%
w

om
en

;
4.

9%
m

en
45

%
w

om
en

;
66

%
m

en
33

%
(5

3%
w

om
en

;1
2.

3%
m

en
)

21
%

(2
8.

6%
w

om
en

;1
1.

4%
m

en
)

B
ro

ok
et

al
.

(2
00

4)

F
ir

st
an

d
se

co
n
d
-d

eg
re

e,
an

d
m

or
e

d
is

ta
n
t

at
-r

is
k

re
la

ti
ve

s
in

S
co

tl
an

d
in

th
e

U
K

.
<

18
an

d
≥

18

B
re

as
t/

O
va

ri
an

C
an

ce
r

(B
R

C
A

1/
2)

F
D

R
s

S
D

R
&

D
R

s
O

ve
ra

ll

m
ed

ia
n

7
m

on
th

s
(1

–5
6)

m
ed

ia
n

14
m

on
th

s
(2

–6
1)

m
ed

ia
n

37
m

on
th

s

39
%

(5
8%

w
om

en
;8

%
m

en
)

26
%

(3
9%

w
om

en
;9

%
m

en
)

32
%

(4
7%

w
om

en
;8

%
m

en
)

H
ol

lo
w

ay
et

al
.

(2
00

8)

F
ir

st
an

d
se

co
n
d
-d

eg
re

e
at

-r
is

k
re

la
ti

ve
s

in
S
p
ai

n
.

≥
18

B
re

as
t/

O
va

ri
an

C
an

ce
r

(B
R

C
A

1/
2)

F
D

R
s

S
D

R
s

O
ve

ra
ll

m
ed

ia
n

2
m

on
th

s
(0

–1
13

)
m

ed
ia

n
6

m
on

th
s

(0
–7

3)
m

ed
ia

n
3.

3
m

on
th

s
(0

–1
13

)

60
%

(7
6%

w
om

en
;3

9%
m

en
)

28
%

(3
7%

w
om

en
;1

7%
m

en
)

44
%

(5
8%

w
om

en
;2

9%
m

en
)

S
an

z
et

al
.

(2
01

0)

10
0%

(t
ho

se
w

ho
ha

d
H

N
P

C
C

tu
m

or
),

50
%

,
25

%
P

-T
ri

sk
re

la
ti

ve
s

in
th

e
N

et
h
er

la
n
d
s.

≥
18

H
N

P
C

C
(M

S
H

2,
M

L
H

1,
or

M
S
H

6)
10

0%
P

-T
50

%
P

-T
25

%
P

-T
O

ve
ra

ll

- - - m
ea

n
42

m
on

th
s

(1
2–

74
)

87
%

57
%
∗∗

21
%

50
%

W
ag

n
er

et
al

.
(2

00
2)

50
%

an
d

25
%

P
-T

ri
sk

re
la

ti
ve

s
in

A
u
st

ra
li
a.

≥
16

B
re

as
t/

O
va

ri
an

C
an

ce
r

(B
R

C
A

1/
2)

,
H

N
P

C
C

(M
L

H
1,

M
S
H

2,
M

S
H

6)
,

C
ow

d
en

S
y
n
d
ro

m
e

(P
T

E
N

,
on

ly
1

re
la

ti
ve

).

-
2

ye
ar

s
40

%
S
u
th

er
s

et
al

.
(2

00
6)

A
sy

st
em

at
ic

re
v
ie

w
st

u
d
y

fo
r

at
-r

is
k

re
la

ti
ve

s
-

L
y
n
ch

S
y
n
d
ro

m
e‖

F
D

R
s

-
34

–5
2%

S
h
ar

af
et

al
.

(2
01

3)
A

sy
st

em
at

ic
re

v
ie

w
st

u
d
y

fo
r

at
-r

is
k

re
la

ti
ve

s
-

B
re

as
t

C
an

ce
r

-
-

m
ea

n
59

%
(2

5–
96

%
)

R
op

ka
et

al
.

(2
00

6)

∗∗
41

%
,

58
%

,
an

d
65

%
of

57
%

to
ok

u
p

th
e

te
st

in
g

in
1

ye
ar

,
2,

an
d

3
ye

ar
s.

‖
L

y
n
ch

S
y
n
d
ro

m
e

is
al

so
k
n
ow

n
as

H
N

P
C

C
.

61



Chapter 4: Genetic Testing in Hypertrophic Cardiomyopathy (HCM)

did not report the upper age limit of taking up genetic testing. Therefore, this study

conservatively assumes the uptake ages of genetic testing of at-risk relatives in HCM

to be in the range 0–70 years. Note that we have little interest after age 60 since we

assume individuals leave the life insurance market at age 60.

Then, the hazard rate of the uptake of the testing at-risk relatives in our study,

see Section 3.9.8, is taken into account as follows:

µx,z =


− log(0.5) = 0.6931472, 0 < x < 70, 0 < z ≤ 1.

0, otherwise.

(4.1)

where µx,z is the hazard rate for an individual who transfers from an ‘untested’ state

to a ‘tested’ state. Label x is the age of the individual and z is the duration in an

‘untested’ state since the appearance of the proband.

In addition, the assumption above allows individuals in HCM families to take

up genetic testing immediately after a proband appears in the family. We extend

this assumption, which will be conservative for our purposes, by allowing children

to take up genetic testing at birth if either parent is a proband. See Section 5.9.3.

Moreover, all the uptake rates described above were based on the relatives of

probands who were detected with a ‘known mutation’ leading to the genetic disor-

ders. In our study, if probands are detected with an ‘unknown mutation’, we assume

that the uptake rate of testing of the at-risk relatives of these probands is always

zero, because testing is not offered.

4.4 From Genetic Testing in HCM to a Mathe-

matical Model of the Uptake of Genetic Test-

ing in HCM

Here we consider how to reflect the nature of cascade genetic testing in a mathemat-

ical model. In Chapter 3, the epidemiological model of HCM was a multiple-state

Markov model for the life history of a single individual in which transition inten-
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sities depend only on the current state and age, so we could compute occupancy

probabilities using the Kolmogorov forward equations. We can easily extend the

state space of the epidemiological model by adding testing states. By this we mean,

adding transitions into new model states, with the transition representing the event

of taking up a genetic test.

In cascade genetic testing, the appearance of a proband in a family will change

the testing behaviour of other family members. A mathematical model of cascade

genetic testing should capture who is the proband and when the proband appeared

in the family. A proband appearing in a family is an event that happens at a random

time, which then modifies the behaviour of other family members. From this, we

conclude the following.

(a) We must model the whole family, not just model its members separately. We

have to capture the changed behaviour of family members when a proband

appears, at a random time.

(b) If we model the life history of a family member as a multiple-state model

(which we do) then the model is no longer Markov, for two reasons.

(i) Transition intensities (representing uptake of genetic testing) now depend

on the states occupied by other family members.

(ii) The same transition intensities depend on duration since a proband ap-

peared (equation (4.1)).

Without a vast increase in complication, we cannot specify even a semi-Markov

model (allowing for point (b) (ii) above) representing the whole family. Our ap-

proach, described in Chapter 5, is to abandon the Kolmogorov equations in these

circumstances and simulate the linked life histories of all the members of a family

in which an HCM-related mutation is present.
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Chapter 5

A Simulation Model of the Uptake

of Genetic Testing in

Hypertrophic Cardiomyopathy

(HCM)

5.1 HCM and Non-HCM Families

The epidemiological model, developed in Chapter 3, was a model of the life history

of a single individual. It is easy to extend this to allow for genetic testing by adding

one or more transitions from untested to tested states, which we do in Section 5.2.

However, when genetic testing occurs in cascade fashion (see Section 4.2), the

transition intensity from an untested state to a tested state depends on whether or

not there is a proband (index case) in the family; and, duration in the untested state

since (if) a proband exists in the family, see Section 4.3.2. It means that transition

intensities depend on information other than time or age and the state currently

occupied, so the model is not Markov. This has two major consequences, which we

describe in this chapter.

1. We cannot use the Kolmogorov forward equations to obtain occupancy prob-

abilities.
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2. The additional information, upon which the transition intensities relating to

genetic testing depend, relates to the life histories of other family members,

namely the presence or absence of a proband in the family. We cannot now

model just the life history of a single individual, we have to model, simultane-

ously in calendar time, the joint life histories of all the members of a family.

(Note that the transition intensities of genetic testing also depend on duration

in the ‘untested’ state after (if) a proband appears in the family.)

The approach we adopt is to simulate the life histories of all the members of

a family in which one parent has an HCM-related mutation. For this purpose we

define a ‘family’ to be a nuclear family consisting of two parents and a number of

children (possibly zero). (See Section 4.1 for the definition of an HCM family in

which this study models a nuclear family, or a family up to two generations). Since

such families are a small minority in the general population, we adopt a two-pronged

approach.

(a) For these families, which we call ‘HCM families’ we simulate life histories

explicitly. This is time-consuming, but unavoidable. See Sections 5.4, 5.6,

and 5.9. Note that these families are a mixture of individuals in HCM and

non-HCM populations defined in Section 5.2. Figures 5.2 and 5.3 clarify what

an HCM population and HCM family refers to in our model.

(b) For other families, the great majority, which we call ‘non-HCM families’ cas-

cade genetic testing for HCM can never be initiated and life histories are

Markov. Therefore, we may still model life histories in these families by the

more efficient method of solving numerically the Kolmogorov equations. See

Sections 5.5, 5.7, and 5.8. Note that these families are always part of non-HCM

population, see also Figures 5.2 and 5.3.

We want to simulate the testing behaviour in HCM families. Before doing so, we

introduce the testing model in Section 5.2. We show how we represent families in

the general population and model their life histories in Section 5.3. In Sections 5.4

and 5.5, we form HCM and non-HCM families by pairing of spouses. In Sections 5.6
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State i0
Untested

No Events

State i1
Tested

No Events

State i2
Non-Fatal

HCM

State i3
Other

Dead

State i4
Fatal

HCM

µi01x,z

µi02xµi03x

µi04x

µi12x

µi13x

µi14x

µi23x µi24x

Figure 5.1: A mathematical model of uptake of genetic testing in HCM, representing
the uptake of genetic testing of a person in the ith of several sub-populations defined
by HCM genotype. In µi01

x,z, z refers to duration in state i0 since (if) a proband exists
in the family.

and 5.7, we add children to the HCM and non-HCM families so formed. In Section

5.8, we present the life histories in respect of non-HCM families. In Section 5.9,

we describe the simulation algorithm to simulate testing behaviour in HCM families

and show the simulation results of the life histories in respect of HCM families. We

discuss the testing model in Section 5.10.

5.2 The Testing Model

Our mathematical model of genetic testing in HCM, which is similar to the epidemio-

logical model in Figure 3.1, but including genetic testing states, is the multiple-state

model shown in Figure 5.1. Therefore, the mathematical basis of the testing model

is not significantly different from that of the epidemiological model introduced in

Section 3.3; we have just added one more model state in all sub-populations, repre-

senting genetic testing.

The testing model contains 45 states (nine sub-populations where each sub-

population contains five sub-states). The sub-populations in the epidemiological

model only show that individuals either carry or do not carry an HCM-related mu-

tation (see Section 3.2). Non-carriers of HCM-related mutations were there repre-

sented in one sub-population in non-HCM population while carriers of HCM-related
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mutations were there represented in four sub-populations, based on the type of the

mutation, in HCM population (see Figure 3.2).

However, in the testing model, we also divide non-carriers of HCM-related mu-

tations into different sub-populations in non-HCM population because testing be-

haviour may change in all family members, both non-carriers (in non-HCM popula-

tion) and carriers (in HCM population), in HCM families. For example, a non-carrier

member of a family (in non-HCM population, but in HCM family) affected with a

known HCM mutation will learn they are a non-carrier only after being tested. Fig-

ures 5.2 and 5.3 show all the testing model states with the nine sub-populations (note

that both figures refer to the same model) in which each sub-population is classified

by belonging to two kinds which are population (HCM or non-HCM population, see

Figure 5.2) and family (HCM or non-HCM families, see Figure 5.3).

The new sub-populations are labelled i = 1, 3, 5, 7. The corresponding carrier

sub-populations are now labelled i = 2, 4, 6, 8. Sub-populations i = 1, 3, 5, 7 will

only contain two types of individuals:

(a) Spouses of individuals in a carrier sub-population.

(b) Non-carrier children born to a couple, one of whom is a carrier.

We need to distinguish such individuals from other non-carriers in sub-population

i = 0 (in non-HCM population and non-HCM families) because, while their biologi-

cal risks are identical, their genetic testing and (in Chapter 7) insurance-purchasing

behaviour may not be. We may refer to sub-population i = 1, 3, 5, 7 (in non-

HCM population and HCM families) as being the complements of sub-populations

i = 2, 4, 6, 8 (in HCM population and HCM families) respectively.

In Figure 5.1, the genotype is known and fixed. In Figures 5.2 and 5.3 (we noted

above that both figures refer to the same model), the genotype is unknown, which

allows us to model probabilistically the life history of an individual. When we talk

of modelling a family, we mean a collection of models of the kind shown in Figures

5.1, 5.2, and 5.3, one for each member of the family. The individual models in the

collection are not independent because events in one model may change transition

intensities in the others.

67



Chapter 5: A Simulation Model of the Uptake of Genetic Testing in Hypertrophic
Cardiomyopathy (HCM)

State 00
Untested

No Events

State 01
Tested

No Events

State 02
Non-Fatal

HCM

State 03
Other
Dead

State 04
Fatal
HCM

State 10
Untested

No Events

State 11
Tested

No Events

State 12
Non-Fatal

HCM

State 13
Other
Dead

State 14
Fatal
HCM

State 20
Untested

No Events

State 21
Tested

No Events

State 22
Non-Fatal

HCM

State 23
Other
Dead

State 24
Fatal
HCM

State 30
Untested

No Events

State 31
Tested

No Events

State 32
Non-Fatal

HCM

State 33
Other
Dead

State 34
Fatal
HCM

State 40
Untested

No Events

State 41
Tested

No Events

State 42
Non-Fatal

HCM

State 43
Other
Dead

State 44
Fatal
HCM

State 50
Untested

No Events

State 51
Tested

No Events

State 52
Non-Fatal

HCM

State 53
Other
Dead

State 54
Fatal
HCM

State 60
Untested

No Events
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State 71
Tested

No Events
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State 80
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State 81
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State 82
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HCM

State 83
Other
Dead

State 84
Fatal
HCM

HCM Population

Non-HCM Population
i : 0, Not at Risk of HCM

i : 1, A Known Early-Onset HCM Mutation Absent i : 2, A Known Early-Onset HCM Mutation Present

i : 3, A Known Late-Onset HCM Mutation Absent i : 4, A Known Late-Onset HCM Mutation Present

i : 5, An Unknown Early-Onset HCM Mutation Absent i : 6, An Unknown Early-Onset HCM Mutation Present

i : 7, An Unknown Late-Onset HCM Mutation Absent i : 8, An Unknown Late-Onset HCM Mutation Present

Figure 5.2: A mathematical model of uptake of genetic testing in HCM for a
population with nine sub-populations associated with HCM genotype in which each
sub-population is classified as being a part of the HCM or non-HCM population.
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Figure 5.3: A mathematical model of uptake of genetic testing in HCM for a
population with nine sub-populations associated with HCM genotype in which each
sub-population is classified as being a part of HCM or non-HCM families.
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5.2.1 The Necessity of Simulation in the Testing Model

Occupancy probabilities in a multiple-state Markov model can be found by solving

the Kolmogorov forward equations (see Section 3.4) with the help of a numerical

method such as the fourth-order Runge-Kutta method (see Section 3.5). We obtain

occupancy probabilities in the epidemiological model in this way.

However, these techniques cannot be applied to obtain occupancy probabilities

in HCM families in the testing model due to the nature of cascade genetic testing

in these families (see Section 4.2). Briefly, in cascade genetic testing, we need a

proband (index patient), who will trigger genetic testing in some or all of the family

members or relatives in a cascade style. It means that until a proband exists in a

family, the uptake rate of testing among all family members is zero.

The appearance of a proband in a family is an event that occurs at a random time

and which changes the subsequent testing behaviour of at-risk relatives. We do not

know when a proband may appear, nor who it will be. For that reason, we develop

a stochastic simulation method to simulate cascade genetic testing in HCM families.

We mainly aim to simulate insurance cash flows directly in each simulated sample

path of the model, which will be discussed in Chapter 7. However, in this chapter,

in Section 5.9.3, we present simulated life histories and occupancy probabilities in

the testing model states in respect of HCM families during the whole life time.

5.2.2 The Parameters of the Testing Model

We need prevalence rates of HCM-related mutations, which were reported in Section

3.7. Also, we need the transition intensities which are the key parameters for the

simulation model. Many of them were reported in detail in Sections 3.7, 3.8, 3.9

and 3.10 in Chapter 3 where we modelled the epidemiology of HCM. Table 3.10

summarized baseline assumptions for the epidemiological model. We adopt these

baseline assumptions for the testing model in this chapter and the rest of the study.

We also include the baseline uptake rate of genetic testing in Section 4.3.2. And, we

present our baseline assumptions for the testing model in Table 5.1. These are used

for all the computations in the following sections. Note that the average number of

70



Chapter 5: A Simulation Model of the Uptake of Genetic Testing in Hypertrophic
Cardiomyopathy (HCM)

T
ab

le
5.

1:
B

as
el

in
e

as
su

m
p
ti

on
s

fo
r

th
e

te
st

in
g

m
o
d
el

p
ar

am
et

er
s.

E
p
id

em
io

lo
gi

ca
l

P
ar

am
et

er
s

T
ab

le
3.

10
S
ec

ti
on

3.
11

P
re

va
le

n
ce

of
n
on

-H
C

M
m

u
ta

ti
on

s
in

th
e

ge
n
er

al
p

op
u
la

ti
on

at
ag

e
20

0.
99

8
S
ec

ti
on

3.
7.

1
P

re
va

le
n
ce

of
H

C
M

m
u
ta

ti
on

s
in

th
e

ge
n
er

al
p

op
u
la

ti
on

at
ag

e
20

0.
00

2
S
ec

ti
on

3.
7.

1
P

re
va

le
n
ce

of
k
n
ow

n
ea

rl
y
-o

n
se

t
m

u
ta

ti
on

s
in

th
e

H
C

M
p

op
u
la

ti
on

at
b
ir

th
0.

5
S
ec

ti
on

3.
7.

2
P

re
va

le
n
ce

of
k
n
ow

n
la

te
-o

n
se

t
m

u
ta

ti
on

s
in

th
e

H
C

M
p

op
u
la

ti
on

at
b
ir

th
0.

16
67

S
ec

ti
on

3.
7.

2
P

re
va

le
n
ce

of
u
n
k
n
ow

n
ea

rl
y
-o

n
se

t
m

u
ta

ti
on

s
in

th
e

H
C

M
p

op
u
la

ti
on

at
b
ir

th
0.

25
S
ec

ti
on

3.
7.

2
P

re
va

le
n
ce

of
u
n
k
n
ow

n
la

te
-o

n
se

t
m

u
ta

ti
on

s
in

th
e

H
C

M
p

op
u
la

ti
on

at
b
ir

th
0.

08
33

S
ec

ti
on

3.
7.

2
P

en
et

ra
n
ce

of
ea

rl
y
-o

n
se

t
H

C
M

at
ag

e
20

10
0%

S
ec

ti
on

3.
8.

1
P

en
et

ra
n
ce

of
la

te
-o

n
se

t
H

C
M

at
ag

es
20

–7
0

F
ig

u
re

3.
4

S
ec

ti
on

3.
8.

2
H

az
ar

d
ra

te
of

fa
ta

l
H

C
M

p
er

an
n
u
m

fo
r

al
l

ag
es

0.
00

55
S
ec

ti
on

3.
9.

7
H

az
ar

d
ra

te
of

n
on

-f
at

al
H

C
M

p
er

an
n
u
m

fo
r

al
l

ag
es

T
ab

le
3.

6
S
ec

ti
on

3.
9.

7
H

az
ar

d
ra

te
of

al
l

ot
h
er

d
ea

th
p

er
an

n
u
m

fo
r

al
l

ag
es

F
ig

u
re

3.
9

S
ec

ti
on

3.
10

H
az

ar
d

ra
te

of
te

st
in

g
in

on
e

ye
ar

at
ag

es
0–

70
if

p
ro

b
an

d
ex

is
ts

in
fa

m
il
y

0.
69

31
47

2
S
ec

ti
on

4.
3.

2

∗
S
ee

al
so

th
e

p
ar

am
et

ri
sa

ti
on

of
av

er
ag

e
n
u
m

b
er

of
ch

il
d
re

n
p

er
ea

ch
fa

m
il
y

in
S
ec

ti
on

5.
6.

1.

71



Chapter 5: A Simulation Model of the Uptake of Genetic Testing in Hypertrophic
Cardiomyopathy (HCM)

children per each family has not been described yet. Therefore, this parameter is

not shown in Table 5.1, but it will discussed and parametrised later in Section 5.6.1.

5.2.3 Time Steps in the Numerical Computations

The Kolmogorov forward equations, when needed, in this chapter are numerically

solved with time step 0.0005 years (see Section 3.11). We use time step 0.005 years

for the simulation of the life histories of HCM families, which we find to be practically

as accurate as using 0.0005 years. See the supplementary figures in Section 8.6.3.

5.3 Creation of Families

5.3.1 Nuclear Families

In the testing model, the general population is treated as a population consisting of

independent nuclear families. A nuclear family is a family including both parents

and their children. We allow the number of children to be zero. See Section 5.1.

A nuclear family embodies two generations: the generations of parents and chil-

dren which we label respectively as the zeroth and first generations. In order to

model, simultaneously, the life histories of all family members, the natural time

scale to adopt is calendar time. At any given calendar time, different family mem-

bers will be of different ages. For simplicity, it is assumed that individuals in the

same generation are always born at the same calendar time. We assume all children

are born when their parents are 30 years old, so the calendar time at birth for the

zeroth generation is 0 while that of the first generation is 30.

5.3.2 Critical Times

The critical times in our stylized model of a family are as follows:

(a) Calendar time t = 0: Persons of the zeroth generation are born.

(b) Calendar time t = 20: Persons of the zeroth generation (if still alive) do

two things. Firstly, they pair off randomly in male and female couples to
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form families. Secondly, they enter the insurance market, and may move from

‘uninsured’ to ‘insured’ states (see Chapter 7).

(c) Calendar time t = 30: Persons of the first generation are born to surviving

couples of the zeroth generation.

(d) Calendar time t = 50: Persons of the first generation enter the insurance

market at age 20.

(e) Calendar time t = 60: Persons of the zeroth generation exit the insurance

market: purchase of new insurance policies ceases.

(f) Calendar time t = 90: Persons of the first generation reach age 60 and exit

the insurance market.

We expand on some of the details of this process below.

5.3.3 Prevalence Rates at Calendar Time t = 0

The prevalence rate of HCM-related mutations is about 0.002 at ages 23–35 in the

general population (Maron et al. 1995), which is conservatively assumed to apply at

calendar time and age 20 in the zeroth generation in our model (Table 5.1). (Note

that Maron et al. (1995) was based on observation of clinical HCM rather than

genetic testing, but we still adopt this rate as a baseline in our model because it

is conservative for our purposes, see Section 3.7.1. Also, Howard (2014) relied on

the same rate to describe the prevalence of HCM-related mutation carriers in the

general population, see Section 1.3.)

However, we need the prevalence rate of HCM-related mutation carriers at calen-

dar time and age zero in the zeroth generation. Therefore, we calculate occupancy

probabilities in alive states at age and calendar time 20 in the zeroth generation

in the mutation carrier sub-populations (i = 2, i = 4, i = 6, and i = 8) in HCM

population. Note that until this time, the Kolmogorov forward equations can still be

used even when we consider families because there is no family established such that

the appearance of a proband can affect the testing behaviour of at-risk relatives. In
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Table 5.2: The prevalence rate in non-HCM and HCM populations in the zeroth
generation for males and females separately. See Table 5.1.

Population Gender Calendar Time and Age 20 Calendar Time and Age 0

Non-HCM Male 0.998 ≈0.99774
Female 0.998 ≈0.99774

HCM Male 0.002 ≈0.00226
Female 0.002 ≈0.00226

Table 5.3: The prevalence rate in each sub-population in the zeroth generation for
males and females separately. See Table 5.1.

Calender Time and Age 0
Population Gender Sub-population State ij Prevalence Rate

Non-HCM Male i = 0 00 0.99774
Female i = 0 00 0.99774

HCM Male i = 2 20 0.00113
Female i = 2 20 0.00113
Male i = 4 40 0.000377

Female i = 4 40 0.000377
Male i = 6 60 0.000565

Female i = 6 60 0.000565
Male i = 8 80 0.000188

Female i = 8 80 0.000188

other words, up to calendar time t = 20, the life history of a single individual in the

testing model is Markov.

Recall that sp
ijk
x (see equation (3.2)) denotes the probability that a person who is

in state ij at age x will be in state ik at age x+ s, for males and females separately.

The baseline prevalence rates of mutation carrier sub-populations (i = 2, i = 4,

i = 6, and i = 8) in HCM population, at calendar time and age zero in the zeroth

generation for males and females separately can be calculated as follows (see Tables

5.2 and 5.3):

0.002

20p200
0 + 20p400

0 + 20p600
0 + 20p800

0

, (5.1)

see also equation (3.31).

Up to calendar time 20, we treat the general population as five sub-populations:

four HCM mutation carrier sub-populations (i = 2, 4, 6, 8) with initial prevalence

rates, shown in Table 5.3; and a single non-carrier sub-population (i = 0) with initial
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prevalence (1− 0.00226) = 0.99774. We keep males and females separate.

Then, at calendar time 20, we model family formation by removing individuals

who “marry” HCM mutation carriers (in sub-populations i = 2, 4, 6, 8) from sub-

population i = 0 and placing them in sub-populations i = 1, 3, 5, 7 respectively.

Thus sub-populations i = 1, 3, 5, 7 are empty until calendar time 20, when they are

populated by the spouses of mutation carriers.

5.3.4 Population Size and Composition at Calendar Time

t = 0

Start at calendar time t = 0 with a fixed population of 5 million persons (2.5 million

each of males and females) at age zero, which is sufficient to satisfy the actuarial

equivalence principle of insurance losses under no adverse selection in our model,

see Chapters 6 and 8.

The number of each sex in the HCM population (the collection of four carrier

sub-populations i = 2, i = 4, i = 6, and i = 8) is:

2, 500, 000×0.00226 = 5, 650, (5.2)

and in the non-HCM population (non-carrier sub-population i = 0):

2, 500, 000×0.99774 = 2, 494, 350. (5.3)

5.4 Family Formation: HCM Families

Table 5.4 shows the number alive at calendar time (and age) 20 in each carrier

sub-population, to each of whom a spouse has been allocated to form a family. We

explain by means of an example. Note that the numbers below are all rounded to

integer values.

• At calendar time t = 20, there are 2, 467, 999 surviving males in the non-carrier

sub-population (state 00) and 2, 476, 010 surviving females.
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Table 5.4: Total number of HCM families consisted of alive carriers and their
assigned alive non-carrier spouses at calendar time and age 20.

Carrier Population Spouse Population
Gender State ij Size Gender State ij Size

Male 20 2406 Female 10 2406
Female 20 2413 Male 10 2413
Male 40 932 Female 30 932

Female 40 935 Male 30 935
Male 60 1203 Female 50 1203

Female 60 1207 Male 50 1207
Male 80 466 Female 70 466

Female 80 467 Male 70 467
Male 22 237 Female 10 237

Female 22 238 Male 10 238
Male 42 0 Female 30 0

Female 42 0 Male 30 0
Male 62 119 Female 50 119

Female 62 119 Male 50 119
Male 82 0 Female 70 0

Female 82 0 Male 70 0
10,742 10,742

• At calendar time t = 20, there are 2406 surviving males in the ‘known early-

onset mutation carrier’ sub-population who have not suffered an HCM event

(state 20) and 2413 surviving females.

• At calendar time t = 20, each of those 2406 surviving males is allocated a

female spouse who moves from state 00 to state 10. Hence state 10 (females)

now contains 2406 persons, and the number in state 00 (females) is 2406 less.

• We do the same for female survivors in state 20, thus populating state 10

(males) with 2413 individuals and reducing the number in state 00 (males) by

the same number.

• We do the same for the 237 male survivors and 238 female survivors in state 22

(males and females respectively) thus adding a further 237 and 238 individuals

to each of state 10 (females and males) and reducing the numbers in state 00

(males and females) accordingly.

• We repeat the process for all the other carrier sub-populations (i = 4, 6, 8) and
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then again for individuals in each carrier sub-population who have survived

but suffered an HCM-related event (states 42, 62, 82).

• At the end of this process the non-carriers’ state 00 contains 2, 462, 620 males

and 2, 470, 647 females.

Note that we ignore the small probability that both spouses are mutation carriers.

All HCM families at calendar time t = 20 consists of one carrier and a non-carrier

spouse.

5.5 Family Formation: Non-HCM Families

The individuals in non-HCM families are not affected with any HCM-related muta-

tions at all. No one in these families will ever have a genetic test, and (in Chapter 7)

their insurance purchasing behaviour remains constant. Therefore, numerical solu-

tion of the Kolmogorov forward equations can still be used throughout their lifetime,

a great computational advantage.

From the non-carriers remaining in sub-population i = 0 (male and female),

we can form a total of 2, 462, 620 spouse pairs. In due course, at calendar time

t = 30, children will be born in those families in which both spouses are alive, the

same as in HCM families. These families then provide the ‘normal’ pool of insurance

purchasers, against which the cost of adverse selection can be measured (see Chapter

7).

5.6 Population Size and Composition at Calendar

Time t = 30: HCM Families

5.6.1 Birth of Children

If both spouses are alive at age and calendar time 30, then they have a random

number of children. We assume the number of children to have a Poisson (λ) dis-

tribution. Since we rely on the recent data for either fatal HCM or all other causes
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Table 5.5: Average number of children per female in the US (Martin et al. 2018)
and the UK (Office for National Statistics 2018) between years 2013–2017.

Year US UK

2013 1.86 1.85
2014 1.86 1.83
2015 1.84 1.82
2016 1.82 1.81
2017 1.77 1.76

of mortality from the US, it would be realistic to look into the average number of

children per female in the US. For this purpose, in Table 5.5, we present the average

number of children per female in the US (Martin et al. 2018) and compare them

with figures for the UK (Office for National Statistics 2018). We assume λ = 1.8 as

a baseline assumption for the average number of children per female (or family) in

our model which seems appropriate for both the US and the UK.

5.6.2 Gender of Children

The gender of parents, or individuals in the zeroth generation, is deterministically

determined at birth. See Section 5.3. The gender of any child, an individual in the

first generation, in an HCM family is randomly determined at birth, being male or

female with probability 0.5. Note that the percentage of male versus female babies

is not quite 50% in most countries.

5.6.3 Sub-populations

See Sections 5.3 and 5.4 for the sub-populations of carrier parents and their non-

carrier spouses in the zeroth generation in HCM families. Each child in an HCM

family is randomly assigned a genotype based on Mendel’s law. Therefore, each

child is allocated to a sub-population at birth. If the carrier parent’s sub-population

is i = 2 (respectively i = 4, i = 6, i = 8), the child is allocated to sub-population

i = 2 (respectively i = 4, i = 6, i = 8) with probability 0.5, or else to sub-population

i = 1 (respectively i = 3, i = 5, i = 7).
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5.7 Population Size and Composition at Calendar

Time t = 30: Non-HCM Families

5.7.1 Birth and Gender of Children

We create children for the non-HCM families at calendar time t = 30 if both spouses

are then alive.

(a) At calendar time t = 20, we created 2, 462, 620 spouse-pairs, non-HCM fami-

lies, in sub-population i = 0 (Sections 5.4 and 5.5).

(b) At calendar time t = 30, we obtain the total number of families in which

both spouses survive (rounded to integer values), where we assume the future

lifetimes of both spouses are independent, as follows:

2, 462, 620×10p
000,male
20 ×10p

000,female
20 = 2, 418, 869. (5.4)

The number and gender of children in non-HCM families is modelled determin-

istically at calendar time t = 30, we assume that each family has λ/2 male children

and λ/2 female children, where λ is as in Section 5.6.1. Since λ = 1.8 is our base-

line assumption, the numbers of male and female children separately at age zero at

calendar time t = 30 are (rounded to integer values):

2, 418, 869× 0.9 = 2, 176, 982, (5.5)

which we will refer to as the first generation in non-HCM families.

5.7.2 Sub-populations

These children in non-HCM families will also be in sub-population i = 0 at birth.

From this point on, family relationships do not matter in the i = 0 sub-population,

since there is no genetic testing and no adverse selection. We do not need to re-

sort to simulation of these life histories, we can calculate occupancy probabilities
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directly using the Kolmogorov equations and (in Chapter 7) expected present value

of insurance cash flows using Thiele’s equations.

5.8 Non-HCM Families at Calendar Times t =

20− 90

At calendar times 20–90, the life histories of parents and children in non-HCM

families, or in sub-population i = 0, are always Markov, since they never have

genetic testing. Therefore we can always find occupancy probabilities in any state

in this sub-population by solving the Kolmogorov forward equations. Individuals

in these families, or in sub-population i = 0, will no longer be discussed in this

chapter because they are never genetically tested. Nevertheless, they will be vital

when we estimate adverse selection costs because they will be ‘normal’ purchasers

of insurance.

5.9 HCM Families at Calendar Times t = 20− 90

5.9.1 Simulating Life Histories of HCM Families

An HCM family consists of one mutation carrier parent, one non-carrier spouse and

a number of children (which can be zero), each a carrier or non-carrier according

to Mendel’s law. Each member is identified by generation, age, gender, and sub-

population. We assume all families to be statistically independent of each other.

We now describe our simulation algorithm, which simulates simultaneously in

calendar time each family member’s life history over short time steps. This process

allows the transition intensities in respect of each person to depend on the life

histories of all family members, see Section 5.1.

In what follows, we give the recipe of the simulation algorithm, which was pro-

grammed in C++. The algorithm simulates the transitions made from calendar

time t to t + dt by each family member simultaneously over a suitably small time

step of length dt.
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(a) Suppose the family has γ members, labelled by 1, 2, ..., γ.

(b) Loop through the γ family members one by one.

(c) Suppose the rth member (r = 1, 2, ..., γ) is in state ij (that is sub-state j of

sub-population i) and at calendar time t is age x.

(d) Approximate the probability of moving from state ij to state ik in time dt,

from equation (3.4), by:

dtp
ijk
x ≈µijkx dt, j 6=k. (5.6)

Note that if X(t) is the occupied state at calendar time t, then dtp
ijk
x is:

dtp
ijk
x ≈P [X(t+ dt) = ik|X(t) = ij] . (5.7)

(e) Check that
∑
k

µijkx dt < 1, (dt has to be small enough that this check never

fails) and simulate a U(0,1) random variable, denoted by U .

(f) If
k−1∑
l=0

µijlx dt < U ≤
k∑
l=0

µijlx dt (k = {1, 2, 3, 4}) record transition from state ij

to state ik during time dt. Otherwise, record that the family member did not

leave state ij during time dt.

5.9.2 Genetic Testing Behaviour in HCM Families

We now consider the genetic testing behaviour of individuals, respectively, in differ-

ent sub-populations.

(a) Figure 5.4 represents individuals in sub-population i = 0. They never have

genetic tests.

(b) Figure 5.5 and Figure 5.7 represent non-carrier and carrier individuals, respec-

tively, in families affected with a known HCM mutation. It is assumed that

nobody would be tested in an HCM family if no proband exists in the family.

If a proband exists in the family, then the testing behaviour of at-risk relatives
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changes. If the proband is the carrier parent, the spouse of the carrier parent

would not take up genetic testing, as their risk of carrying a mutation is un-

changed, but the children of the carrier parent would take up genetic testing

at some assumed rate. If the proband is a carrier child, the siblings of the

carrier child and both parents would take up genetic testing at some assumed

rate. Their insurance purchasing behaviour might change either because of

test results if they were tested or because of their Mendelian risk if they were

not tested, see Chapter 7. Note that we assume the testing is a joint decision

in both parents.

(c) Figure 5.6 and Figure 5.8 represent non-carrier and carrier individuals, re-

spectively, in families affected with an unknown HCM mutation. In this case,

it is assumed that the proband is tested and found not to carry any known

HCM mutation. Therefore, at-risk family members would be monitored clini-

cally but not genetically tested. Their insurance purchasing behaviour might

change because of their Mendelian risk, see Chapter 7.

5.9.3 Simulation Results

In Section 5.9.1, we explained how we simulate life histories in HCM families. In this

section, we show the mean and standard deviation of 500 independent simulations of

the occupancy probabilities in the testing model states in respect of HCM families.

In Figure 5.9, we present the mean of the occupancy probabilities of simulated

lives of the parents/the zeroth generation obtained from 500 independent simulations

in each state in the testing model in respect of the HCM families. In Figure 5.9:

• Females (compare to males) are more likely to occupy state 0, untested no

events (the upper left plot) at calendar time 20–90 because they are less likely

to be exposed to the risks of late-onset HCM and have lower all-cause mortality

than males. See Sections 3.8.2 and 3.10.

• No parent takes up genetic testing at calendar time 20–30 (state 1, tested no

events, the upper right plot) because we form children to families at calendar
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time 30. That is why, there would be no child probands during this time that

can make their parents take up genetic testing.

In Figure 5.10, we present the mean of the occupancy probabilities of simulated

lives of the children/the first generation obtained from 500 independent simulations

in each state in the testing model in respect of the HCM families. In Figure 5.10:

• Just after age zero and calendar time 30 in the first generation, there is a

jump, significant decrease, in the occupancy probabilities in state 0, untested

no events (the upper left plot) due to the infant mortality (see Figure 3.9).

For the same reason, there is a jump in the occupancy probabilities in state

3, other dead (the lower left plot).

• Just after age zero and calendar time 30 in the first generation, there is a

jump in the occupancy probabilities in state 1, tested no events (the upper

right plot) because we conservatively (for insurance purposes) assume children

can take up genetic testing at birth if they have a proband parent (see Section

4.3.2).

The standard deviations of Figures 5.9 and 5.10 are observed as approximately

zero at all ages (due to very large number of individuals in the simulation), so they

will not be displayed.

5.10 Discussion

For the same reason as in Section 3.11, we do not make any sensitivity analysis

for the results reported through this chapter because our study mainly focuses on

measuring the insurance costs under adverse selection. Therefore, the sensitivity

assumptions for the model parameters, see Chapters 3 and 4, will appear in the

sensitivity analysis for the adverse selection costs in Chapter 9.

Furthermore, during this chapter, we established a mathematical model of cas-

cade genetic testing in HCM, called ‘the testing model’. As with our epidemiological

model in Chapter 3, this model also can be treated as a medical model. However,
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some may argue whether or not the testing model answers the questions that clinical

practitioners are interested in rather than insurers. In daily practice, if a proband

arises in an HCM family, clinicians recommend the proband to see a geneticist to

learn the genetic substrate of the disorder and let the relatives know about their risks

to carry the identical mutation. The questions mostly asked by the geneticist are

about how they would manage the risks of developing the disorder (onset of HCM)

at different ages. For example, the ESC Guidelines (Elliott et al. 2014) and the

ACCF/AHA Guidelines (Gersh et al. 2011) recommend a life-long clinical check-up

of the heart at regular time intervals for the HCM individuals tested with carrying

the HCM-related mutations, but did not clinically develop the disorder. This is a

significant burden both physically and economically for these individuals. A medical

doctor might be more interested in finding a way of reducing this burden. There are

also upcoming studies focusing on these problems. For example, Wordsworth et al.

(2010) presented a cost-effectiveness model which observes slight increases in the life

expectancies of the individuals who undergo cascade genetic testing in HCM. Note

that the HCM-related hazard rates do not depend on genetic testing in our model.

We can now introduce ‘a life insurance model of HCM’ to measure the impact of

adverse selection among individuals with genetic tests, since we have a clear picture

of the epidemiology of HCM and of genetic testing in HCM with their corresponding

mathematical models in Chapter 3 and Chapter 5. Before doing so in Chapter 7,

we discuss the fundamental theory of life insurance mathematics in Chapter 6.
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State i0
Untested

No Events

State i1
Tested

No Events

State i2
Non-Fatal

HCM

State i3
Other

Dead

State i4
Fatal

HCM

µi03x

Fixed Rates:
• µi03

x = annual mortality rate of all other causes at all ages.

Figure 5.4: A mathematical model of a life history of an individual r, a member of
a family in the i = 0 risk sub-population in the testing model.
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State i0
Untested

No Events

State i1
Tested

No Events

State i2
Non-Fatal

HCM

State i3
Other

Dead

State i4
Fatal

HCM

µi01x,z

µi03x µi13x

i : 1, A Known Early-Onset Mutation Absent

or

i : 3, A Known Late-Onset Mutation Absent

Fixed Rates:
• µij3

x = annual mortality rate of all other causes at all ages.
If no proband exists in family:
• µi01

x,z = 0, uptake rate of testing per annum at any age.
If carrier parent becomes proband with a known mutation in family:

(a) r is a spouse of carrier parent;
• µi01

x,z = 0, uptake rate of testing per annum at any age.
(b) r is a non-carrier child of carrier parent;

• µi01
x,z = normal uptake rate of testing per annum at all ages.

If a carrier child becomes proband with a known mutation in family:
(a) r is a spouse of carrier parent not tested nor become a subsequent proband; or,

r is a non-carrier sibling of the carrier child;
• µi01

x,z = normal uptake rate of testing per annum at all ages.
(b) r is a spouse of carrier parent tested or become a subsequent proband;

• µi01
x,z = 0, uptake rate of testing per annum at any age.

Figure 5.5: A mathematical model of a life history of an individual r, a non-carrier
member in which one carrier parent carries a known HCM mutation, in the i = 1
or i = 3 risk sub-populations in the testing model. In µi01

x,z, z refers to duration in
state i0 since (if) a proband exists in the family.
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State i0
Untested

No Events

State i1
Tested

No Events

State i2
Non-Fatal

HCM

State i3
Other

Dead

State i4
Fatal

HCM

µi03x

i : 5, An Unknown Early-Onset Mutation Absent

or

i : 7, An Unknown Late-Onset Mutation Absent

Fixed Rates:
• µi03

x = annual mortality rate of all other causes at all ages.

Figure 5.6: A mathematical model of a life history of an individual r, a non-carrier
member in which one carrier parent carries an unknown HCM mutation, in the i = 5
or i = 7 risk sub-populations in the testing model.
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State i0
Untested

No Events

State i1
Tested

No Events

State i2
Non-Fatal

HCM

State i3
Other

Dead

State i4
Fatal

HCM

µi01x,z

µi02xµi03x

µi04x

µi12x

µi13x

µi14x

µi23x µi24x

i : 2, A Known Early-Onset Mutation Present

or

i : 4, A Known Late-Onset Mutation Present

Fixed Rates:
• µi02

x = µi12
x = proportioned, respective to penetrance of clinical HCM, non-

fatal HCM rate per annum at all ages.
• µij3

x = annual mortality rate of all other causes at all ages.
• µi04

x = µi14
x+t = proportioned, respective to penetrance of clinical HCM, fatal

HCM rate per annum at all ages.
• µi24

x = fatal HCM rate per annum at all ages.
If no proband exists in family:
• µi01

x,z = 0, uptake rate of testing per annum at any age.
If a proband exists (who not matter) with a known mutation in family:
• µi01

x,z = normal uptake rate of testing per annum at all ages.

Figure 5.7: A mathematical model of a life history of an individual r, a carrier
member in which one carrier parent carries a known HCM mutation, in the i = 2
or i = 4 risk sub-populations in the testing model. In µi01

x,z, z refers to duration in
state i0 since (if) a proband exists in the family.
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State i0
Untested

No Events

State i1
Tested

No Events

State i2
Non-Fatal

HCM

State i3
Other

Dead

State i4
Fatal

HCM

µi02xµi03x µi04x

µi23x µi24x

i : 6, An Unknown Early-Onset Mutation Present

or

i : 8, An Unknown Late-Onset Mutation Present

Fixed Rates:
• µi02

x = proportioned, respective to penetrance of clinical HCM, non-fatal
HCM rate per annum at all ages.
• µij3

x = annual mortality rate of all other causes at all ages.
• µi04

x = proportioned, respective to penetrance of clinical HCM, fatal HCM
rate per annum at all ages.
• µi24

x = fatal HCM rate per annum at all ages.

Figure 5.8: A mathematical model of a life history of an individual r, a carrier
member in which one carrier parent carries with an unknown HCM mutation, in the
i = 6 or i = 8 risk sub-populations in the testing model.
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Chapter 6

Life Insurance Mathematics

6.1 Introduction

In this chapter, we discuss principles of life insurance mathematics. So far, we have

developed two models: an epidemiological model of HCM in Chapter 3 and a simu-

lation model of cascade genetic testing in HCM in Chapter 5. Both models focused

on the life histories of individuals with/without the risk of HCM. The epidemiolog-

ical model, in Chapter 3, was a multiple-state Markov model, which models the life

history of a single individual, a carrier or a non-carrier of an HCM mutation. The

critical endpoint in the epidemiological model was fatal HCM, to the risk of which

HCM mutation carriers only are exposed. The testing model, in Chapter 5, was

also a multiple-state model, similar to the epidemiological model with more model

states. However, in the testing model, the life history of a single individual was

not always Markov any more because transition intensities representing uptake of

genetic testing by individuals depended on family history as well as on the currently

occupied state. The transition intensity from an ‘untested’ state to a ‘tested’ state

also depended on the duration since a family history (proband) appeared.

The adverse selection model, in Chapter 7, is based on the testing model, ex-

tended with the addition of ‘insured’ states. In addition to simulating the life his-

tories of family members, it will record the cash flows associated with the purchase

of life insurance. From the adverse selection model, we will present our measure of

the adverse selection costs in Chapter 8 and obtain the results with regard to the
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measure in Chapter 9.

In this chapter, we introduce the necessary life insurance mathematics that will

be fundamental in Chapters 7, 8, and 9. In Section 6.2, we give a very basic in-

troduction to life insurance mathematics. In Section 6.3, we model cash flows and

insurance losses. In Section 6.4, we model insurance losses based on the life history

of a single individual, represented by a two-state model. In Section 6.5, we extend

the two-state model of insurance losses into multiple-state models for the life history

of a single individual. In Section 6.6, we define policy values. All these sections pro-

ceed under the assumption that there is no adverse selection for insurers. In Section

6.7, we evaluate insurance losses and policy values under adverse selection. In Sec-

tion 6.8, and Appendix A, we consider how to extend the model of a single life in a

known population to a model in which a life may be in one of several populations,

which one being possibly not known by an insurer or by the individual themselves.

Good references for this chapter are Norberg (1991, 1992), Cairns et al. (1998),

Dickson et al. (2013), and Macdonald et al. (2018).

6.2 Basics of Life Insurance Mathematics

A life insurance policy is a financial product, sold by a company called the insurer,

to an individual life, namely the insured, and pays benefits, generally a lump sum

payment to the beneficiaries of the insured in the event of the death of the in-

sured. The insured pays premiums to the insurer which represents the price of the

product. The premium payments are commonly made at regular intervals (such as

every month, every year, etc.). A series of regular premium payments is technically

identified as an annuity.

The business agreement between the insurer and the insured is legalized by a

contract called an insurance policy. The time during which the policy will be in

force is called the policy term. An insurance policy mainly regulates the following

obligations for both parties; the insurer who sells the policy and the insured, also

called the policyholder, who buys the policy:

(a) The obligation of the insurer is to fulfil the liability of paying a benefit, if the
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State a
Insured

Alive

State d
Insured

Dead

µadr,t

Figure 6.1: A mathematical model of life insurance for insured individual r.

insured dies during the policy term, to the beneficiaries of the insured.

(b) The obligation of the insured is to make a series of regular premium payments,

until the event of death or the policy ends, to the insurer.

Life insurance mathematics describes money transactions between the insurer

and the insured. By convention, we regard payments by the insurer as positive, and

payments to the insurer as negative. We will not discuss all types of life insurance

products. We will focus on ‘term life insurance’, which can also be designed in many

ways. In our study, the features of a term life insurance product are that a lump

sum payment is paid by the insurer as an outgo, if the insured dies during the policy

term, and premiums are paid by the insured as an income, as long as the insured is

alive during the policy term or until the policy ends.

In the following section, we construct a mathematical function of the payment

stream evaluating cash flows in respect of term life insurance.

6.3 Cash Flows and Insurance Losses

An insurance loss is a random variable which measures the present value of cash flows

from an insurance product created by benefit paid and premium income earned,

depending on the random event of death of the insured during the policy term. We

model the event of the death of the insured as a random event indexed by time, or

a stochastic process.

Cairns et al. (1998) formulate loss random variables in the framework of stochas-

tic processes, in particular in a two-state model. We evaluate insurance losses in

Section 6.4 for a single individual from such a simple model. We obtain insurance

losses in Section 6.5 for a single individual in multiple-state models referring to the
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work of Norberg (1991, 1992). We present policy values of these models in Section

6.6. Until Section 6.7, we assume there is no adverse selection for insurers. Section

6.7 presents an actuarial measure of losses suffered by an insurer if an adverse se-

lection risk arises. See also Macdonald et al. (2018) for background of the mortality

basis in these sections.

In Chapter 7, our time unit will be calendar time rather than age. It is convenient

to define xr(t) to be the age, at calendar time t, of an individual labelled by r. In this

chapter, we define transition intensities of the general form µr,t to mean a transition

intensity applying to individual r at calendar time t, making use of xr(t) if the

transition intensity depends on age.

6.4 Insurance Losses in a Two-State Model

Figure 6.1 represents the life history of insured individual r in a two-state model

labelled by state a for ‘insured alive’ and state d for ‘insured dead’ where we suppose

the insurance contract was purchased at calendar time zero. We denote by µadr,t the

transition intensity of insured individual r per annum between state a and state d

at calendar time t, which depends only on calendar time t, and therefore satisfies

the Markov assumption (see Assumption 3.1). Thus, Figure 6.1 can also be viewed

as a simple case of a Markov model.

In Chapter 3, we gave an explanation of transition intensities in a multiple-state

Markov model, which we used to model the epidemiology of HCM. The numerical

solution of the Kolmogorov forward differential equations, in Sections 3.4 and 3.5,

can be applied to the two-state alive-dead model to obtain occupancy probabilities in

both states. More generally, we formulate a stochastic process model of the payment

stream associated with a life insurance contract.

6.4.1 Benefit Outgo in the Alive-Dead Model

Benefit payment is made in the event of the death of an insured individual r. There-

fore, let Nad
r (t) count the number of transitions of insured individual r from state a

to state d up to and including calendar time t. Nad
r (t) is a 0-1 or one-jump counting
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process, with non-decreasing and right-continuous sample paths, defined as follows:

Nad
r (t) =


1, insured individual r is dead at calendar time t;

0, insured individual r is alive at calendar time t.

(6.1)

The benefit payment is the lump sum payment of amount Aadr (t) (assumed to be

previsible) if insured individual r dies at calendar time t. In regard to continuous

time, we can express the benefit outgo to insured individual r at calendar time t as

follows:

Aadr (t)dNad
r (t) (6.2)

where dNad
r (t) counts the number of transitions of insured individual r from state a

to state d between calendar time t and t+ dt:

dNad
r (t) = lim

dt→0

[
Nad
r (t)−Nad

r (t− dt)
]
. (6.3)

6.4.2 Premium Income in the Alive-Dead Model

Premium income is obtained as long as insured individual r is alive and the policy

is in force. Therefore, define Iar (t) to be an indicator function as follows:

Iar (t) =


1, insured individual r is alive at calendar time t−;

0, otherwise.

(6.4)

Then denote by aar(t) (assumed to be previsible) the annual rate of continuous

premium payment made by insured individual r alive at calendar time t−. In regard

to continuous time, we can express the premium income from insured individual r

between calendar time t and t+ dt as follows:

aar(t)I
a
r (t)dt. (6.5)
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6.4.3 Insurance Loss in the Alive-Dead Model

The insurance loss arising from insured individual r in the alive-dead model between

calendar time t and t+ dt, denoted by dLr(t), is defined as:

dLr(t) = Aadr (t)dNad
r (t)− aar(t)Iar (t)dt. (6.6)

The cumulative insurance losses from calendar time zero up to calendar time T (as-

suming payments up to calendar time T where T can be∞) from insured individual

r is:

Lr(T ) =

∫ T

0

dLr(t). (6.7)

The present value of the insurance losses at calendar time zero, with the constant

force of interest δ per annum, is:

Lr =

∫ T

0

e−δtdLr(t). (6.8)

6.4.4 The Actuarial Equivalence Principle

The actuarial equivalence principle allows the premiums should be determined at

outset such that

E [Lr] = 0. (6.9)

This principle implies that aar(t) can be any function of calendar time t as long as

equation (6.9) is satisfied.

(a) Most commonly, the premiums are paid at a constant rate such that aar(t) = πr

at calendar time t where πr denotes the level premiums made by individual r

in state a.

(b) However, in our model, the premiums will not be constant for each individual

(aar(t)6=πr) because in Chapter 7 et. seq. it will be convenient if all insured

individuals pay the same rate of premiums depending on their current age (or

the current calendar time), but not the age (or the calendar time) at which

they purchased their insurance policy.
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(c) Instead, our intuition here to determine aar(t) is to utilize martingales.

Following Cairns et al. (1998) and Macdonald et al. (2018), we define Mad
r (t)

to be the counting process martingale of individual r in the alive-dead model as

follows:

Mad
r (t) = Nad

r (t)−
∫ t

0

Iar (w)µadr,wdw. (6.10)

Then, since e−δtAadr (t) is a deterministic (therefore previsible) function of calendar

time t, ∫ ∞
0

e−δtAadr (t)dMad
r (t) (6.11)

is also a martingale. Defining F0 to be the complete life history of individual r at

calendar time 0, we have:

E

[∫ ∞
0

e−δtAadr (t)dMad
r (t)

∣∣∣∣F0

]
= 0 (6.12)

which satisfies the equivalence principle. Note that what we do is much stronger

than applying the equivalence principle to an individual in state a at calendar time

zero. It ensures that E[dLr(t)] = 0 for all t. This result enables us to state the

premiums as follows:

aar(t) = Aadr (t)µadr,t, (6.13)

which does not depend on the age (or the calendar time) at which insurance was

purchased.

6.5 Insurance Losses in Multiple-State Models

Now we extend the alive-dead model (Figure 6.1) into a multiple-state model. Thus

define a multiple-state model consisting of model states, which may include insured

state(s), labelled by 0, 1, ...,Ψ. Suppose individual r starts at state 0 at calendar

time zero and might transfer to any model state, including an ‘insured’ state, after

calendar time zero.

Let N jk
r (t) be the number of transitions of individual r from state j to state k

for all j 6=k up to and including calendar time t. Denote by Ajkr (t) (assumed to be
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previsible like Aadr (t) in the two-state model) the lump sum payment (possibly zero)

payable to individual r under the transition j→k at calendar time t. Ijr (t) is defined

to be an indicator function as follows:

Ijr (t) =


1, individual r is in state j at calendar time t−;

0, otherwise.

(6.14)

Define ajr(t) (assumed to be previsible like aadr (t) in the two-state model) to be the

rate per annum of premium payment (possibly zero) made if individual r is in state

j at calendar time t−.

The insurance loss arising from individual r in state j between calendar time t

and t+ dt is then:

dLjr(t) =

(∑
k:j 6=k

Ajkr (t)dN jk
r (t)− ajr(t)Ijr (t)dt

)
. (6.15)

We showed, in equation (6.13), a premium rate function in the alive-dead model,

which is motivated and obtained by utilizing martingales. Here, we follow the same

motivation to determine ajr(t), which a premium rate satisfying the actuarial equiva-

lence principle (see Section 6.4.4). Define M jk
r (t) be the counting process martingale

of individual r in state j as follows:

M jk
r (t) = N jk

r (t)−
∫ t

0

Ijr (w)µjkr,wdw. (6.16)

Then, in which we assume e−δtAjkr (t) is previsible,

∫ ∞
0

e−δtAjkr (t)dM jk
r (t) (6.17)

is a martingale; similarly,
∑

k:j 6=kM
jk
r (t) is also a martingale at which we can con-

clude that:

E

[∫ ∞
0

∑
k;j 6=k

e−δtAjkr (t)dM jk
r (t)

∣∣∣∣F0

]
= 0 (6.18)
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and the rate of premium is then:

ajr(t) =
∑
k:j 6=k

Ajkr (t)µjkr,t, (6.19)

that is, the sum of the intensities out of state j, weighted by the relevant benefits

payable, which does not depend on the calendar time of entry to state j. Substituting

this into equation (6.15) we see that the actuarial equivalence principle is satisfied

as in Section 6.4.4.

6.6 Policy Values

A policy value for the insurance product is the expected present value (EPV) of

future losses at calendar time t conditional on Ft, the complete life history up to and

including calendar time t. (Note that a policy value in life insurance mathematics

logically is a measure of the expected present value of future cash flows at any

calendar time conditioning on current calendar time. This measure enables the

insurers to quantify the amount of reserve they should keep to meet their future

liabilities to the policyholders.)

(a) Denote by Vt the policy value at calendar time t in the alive-dead model (given

that being in state a at calendar time t):

Vt = E[Lr(t)|Ft] = E

[
eδt
∫ ∞
t

e−δwdLr(w)

∣∣∣∣Iar (t) = 1

]
. (6.20)

(b) Denote by V j
t the policy value at calendar time t in state j in the multiple-state

model (given that being in state j at calendar time t):

V j
t = E[Ljr(t)|Ft] = E

[
eδt
∫ ∞
t

∑
l

e−δwdLlr(w)

∣∣∣∣Ijr (t) = 1

]
. (6.21)

Policy values can also be computed as the solution of Thiele’s differential equa-

tion. Norberg (1992) states Thiele’s differential equation is a special case of equa-

tions (6.20) and (6.21) when the life history of a single individual is modelled in a
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Markovian setting. In other words, as Cairns et al. (1998) express, conditioning on

Ft is basically meant to be conditioning only on the occupied state at calendar time

t. Let n be the term of the insurance policy.

(a) The policy value Vt which is conditional on being in state a at calendar time t

in the alive-dead model, is given by the solution of Thiele’s differential equation

as follows:

d

dt
Vt = δVt + aar(t)− µadr,t(Aadr (t)− Vt). (6.22)

(b) The policy value V j
t which is conditional on being in state j at calendar time t

in multiple-state models is given by the solution of the general form of Thiele’s

differential equations as follows:

d

dt
V j
t = δV j

t + ajr(t)−
∑
k:j 6=k

µjkr,t(A
jk
r (t) + V k

t − V
j
t ). (6.23)

We use the fourth-order Runge-Kutta method (Section 3.5) to solve the general

form of Thiele’s equations (which can easily be applied to the solution of

Thiele’s differential equation of the alive-dead model). Note that we solve the

equations backwards since the known boundary condition for the policy value,

where the policy term is n years, is V j
t+n = 0; thus dt < 0. Now, we can find

the policy values at any calendar time t in any state j.

6.7 A Measure of Insurance Losses under Adverse

Selection

Until now, we assumed that insurers would charge individuals some ‘correct’ pre-

miums satisfying the equivalence principle, see equation (6.9). This assumes that

the transition intensities used by the insurer in equation (6.19) are ‘correct’, in the

sense of estimating the true biological and other risks represented by the intensities

in the model.

Now suppose that instead of the ‘correct’ premium rate ajr(t) associated with the

true nature of individual r, the insurer charges a premium rate ãjr(t). In this case,
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the insurer either will observe, if ãjr(t) > ajr(t), a profit:

E

[∫ ∞
0

∑
j

∑
k:j 6=k

e−δt
(
Ajkr (t)N jk

r (t)− ãjr(t)Ijr (t)dt
) ∣∣∣∣F0

]
<0, (6.24)

or, if ãjr(t) < ajr(t), a loss:

E

[∫ ∞
0

∑
j

∑
k:j 6=k

e−δt
(
Ajkr (t)N jk

r (t)− ãjr(t)Ijr (t)dt
) ∣∣∣∣F0

]
>0. (6.25)

In our model, adverse selection arises when the policyholder has information

indicating elevated risk, which is not available to the insurer, such that ãjr(t) < ajr(t).

This could occur in two ways:

(a) insurers are not allowed to access genetic test results;

(b) insurers are not allowed to access genetic test results and family history.

In both cases, equation (6.25) is satisfied. This leads us to define a measure of the

expected individual cost of adverse selection over all states j (note that we assume

everyone starts in state 0 at calendar time zero) as follows:

E

[∫∞
0

∑
j

∑
k:j 6=k e

−δt (Ajkr (t)N jk
r (t)− ãjr(t)Ijr (t)dt

) ∣∣∣∣F0

]
− E

[∫∞
0

∑
j

∑
k:j 6=k e

−δt (Ajkr (t)N jk
r (t)− ajr(t)Ijr (t)dt

) ∣∣∣∣F0

]
E

[∫∞
0

∑
j

∑
k:j 6=k e

−δtãjr(t)I
j
r (t)dt

∣∣∣∣F0

] (6.26)

and since

E

[∫ ∞
0

∑
j

∑
k:j 6=k

e−δt
(
Ajkr (t)N jk

r (t)− ajr(t)Ijr (t)dt
) ∣∣∣∣F0

]
= 0, (6.27)

this measure is:

E

[∫∞
0

∑
j

∑
k:j 6=k e

−δt (Ajkr (t)N jk
r (t)− ãjr(t)Ijr (t)dt

) ∣∣∣∣F0

]
E

[∫∞
0

∑
j

∑
k:j 6=k e

−δtãjr(t)I
j
r (t)dt

∣∣∣∣F0

] . (6.28)

This measure is interpreted as the uniform proportion by which premium rates would
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have to increase to compensate the insurer for the losses due to adverse selection.

6.8 Multiple-State Multiple-Population Models

We so far presented ‘a two-state model’ in Section 6.4 and a ‘multiple-state model’

in Section 6.5 for the life history of a single individual occupying only one distinct

population.

However, in our model, each individual will occupy one of the many popula-

tions (or sub-populations) that make up the whole population, in which each sub-

population will have the same multiple-state space. And, the sub-populations of

individuals will not be generally known to insurers. Our actuarial mathematics so

far would be enough if the insurers could learn about the sub-populations of in-

dividuals. This material in this chapter needs to be extended to a ‘multiple-state

multiple-population model’. We do this in Appendix A because the rather elaborate

notations of that model will be overcomplicated at this stage. Instead, in Chapter 7,

we first present an example of ‘multiple-state multiple-population models’, which is

the adverse selection model of HCM for life insurance. We then present the theory

behind ‘multiple-state multiple-population models’ in Appendix A.
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Chapter 7

An Adverse Selection Model of

Hypertrophic Cardiomyopathy

(HCM) for Life Insurance I:

Model Specification

7.1 Introduction

In this chapter, we introduce a model for the adverse selection risk presented by HCM

in a life insurance market and define the methodology for calculating insurance losses

in respect of a single individual. (See also the necessary life insurance mathematics

in Chapter 6 and Appendix A, which describe the technicalities of life insurance

mathematics in this chapter; the computation and measure of the adverse selection

costs in the whole population in Chapter 8; and, the results associated with the

measure in Chapter 9).

In Section 7.2, we describe the adverse selection model as an extension of the

testing model (Chapter 5). In Section 7.3, we give a brief introduction to our

approach to calculating expected insurance losses in the adverse selection model.

Sections 7.4 and 7.5 explain how insurers and individuals behave in the adverse

selection model. Section 7.6 shows examples of life histories of HCM families in the

adverse selection model. Section 7.7 presents the methodology to calculate insurance
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State i0
Untested

Uninsured

State i1
Untested

Insured

State i2
Tested

Uninsured

State i3
Tested

Insured

State i4
Untested-Insured

Non-Fatal HCM

State i5
Tested-Insured

Non-Fatal HCM

State i6
Uninsured

Non-Fatal HCM

State i7
Other

Dead

State i8
Fatal

HCM

µi01x µi02x,z µi23x

µi14x

µi17x

µi18x µi07x

µi06x

µi08x µi27x

µi26x

µi28x µi37x

µi38x

µi35x

µi47x µi48x µi57x µi58x

µi67x µi68x

Figure 7.1: A mathematical model of adverse selection in HCM for a person in the
ith of several sub-populations defined by HCM genotype in a life insurance market.
In µi02

x,z, z refers to duration in state i0 since (if) a proband exists in the family.

losses in respect of a single individual in the adverse selection model. We discuss

the adverse selection model in Section 7.8.

7.2 The Adverse Selection Model

In Chapter 5, we modelled the testing behaviour of individuals in HCM families.

Our computational approach was to implement a simulation model. A key piece of

family history information in the testing model was whether or not a proband exists

in the family. Moreover, transition intensities from ‘untested’ states to ‘tested’ states

of such a model also depended on duration since (if) a proband exists in the family.

Therefore, the model was not Markov, even for an individual family member.

The adverse selection model extends the testing model by adding transitions

into new ‘insured’ states, to represent the purchase of life insurance. It is shown in

Figures 7.1, 7.2, and 7.3.

(a) Figure 7.1 shows a life history of an individual in a given sub-population in

the adverse selection model, which has a bigger state space, compared to the

testing model (Figure 5.1), due to adding insurance purchasing states.
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(b) Figure 7.2 shows the nine sub-populations from the testing model, each ex-

panded by the addition of the ‘insured’ states. The subdivision into the HCM

population (i = 2, 4, 6, 8) and the non-HCM population (i = 0, 1, 3, 5, 7) is in-

dicated by the dashed boxes. Figure 7.3 shows the same nine sub-populations,

but subdivided into HCM families (i = 1, 2, ..., 8) and non-HCM families

(i = 0). This makes the distinction between membership of the HCM popula-

tion and membership of HCM families clear.

A family is represented by a collection of such models (Figures 7.1, 7.2, and 7.3),

one per family member, which are linked by a common calendar time scale and

genotypes inherited according to Mendel’s law. The new states add two capabilities

to the model.

• A person who is uninsured, and has not suffered death or an HCM-related

event, can purchase insurance by moving into an ‘insured’ state. This can

happen before genetic testing (state i1 in Figure 7.1) or after genetic testing

(state i3 in Figure 7.1).

• Life insurance remains in force if an insured person suffers a non-fatal HCM-

related event. Therefore, two additional states (i4 and i5 in Figure 7.1) are

needed to allow for the insurance states if an HCM-related event occurs.

Note that there are no transitions from non-fatal HCM states into insured states

because we assume that such a transition would be medically underwritten and

would not lead to adverse selection.

We assume that the purchasing behaviour of carrier and non-carrier members

in the ‘untested uninsured’ state of an HCM family can change as their testing

behaviour changes. This means that we assume that insurance purchase rates before

genetic testing depend on both the currently occupied state and family history

(either there is a proband or there is no proband in the family) similar to the uptake

rates of genetic testing. If individuals in HCM families take up genetic testing before

purchasing insurance (in which the uptake of genetic testing depends on both the

currently occupied state and family history), then, purchase rates depend on the
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Figure 7.2: A mathematical model of adverse selection in HCM for a population with
nine sub-populations associated with HCM genotype, in which each sub-population
is classified as being a part of the HCM or non-HCM population, in a life insurance
market.
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Figure 7.3: A mathematical model of adverse selection in HCM for a population with
nine sub-populations associated with HCM genotype, in which each sub-population
is classified as being a part of HCM or non-HCM families, in a life insurance market.
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genetic test results, or the currently occupied state. The fundamental feature of the

adverse selection model is the following:

(I) In the absence of any family history of HCM, individuals purchase insurance

at some ‘normal’ rate. By default this rate always applies to the individuals in

non-HCM families (in sub-population i = 0). Individuals purchase insurance

between ages 20 and 60.

(II) In the presence of a family history of HCM, individuals purchase insurance

based on the information available to them, namely the knowledge of their

Mendelian risk if they have not been tested, or the genetic test result if they

have been tested.

(III) In the presence of a family history of HCM, insurers charge premiums based

on the information they have, or are allowed to use.

Adverse selection may arise because of discrepancies between the information used

by individuals in (II) and by insurers in (III).

Note that not every transition, illustrated in Figures 7.2 and 7.3 (note that both

figures refer to the same model, see point (b) in this section), is feasible at all

times in all sub-populations. For example, genetic testing never occurs in non-HCM

families (in sub-population i = 0), or in the sub-population representing individuals

in HCM families carrying an unidentified, or ‘unknown’, mutation, i = 5, 6, 7, 8. For

simplicity, we base our model on copies of the model in Figure 7.1, and impossible

transitions have intensity zero.

7.3 Modelling Insurance Losses in the Adverse

Selection Model

Another difference between the testing model and the adverse selection model is the

way that cash flows arise in the latter. In this case, the insurer would have cash

flows arising in two ways (Section 6.2):
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(a) Paying a benefit/sum assured as an outgo, if the insured dies while insured

during the policy term.

(b) Receiving a series of regular premium payments (actually a continuous cash-

flow in our model) as an income, after insurance purchase and until the event

of death or the expiry of the policy.

In the adverse selection model, we have a multiple-state multiple-population

model, see Appendix A, but cash flows arise as in the two-state model only if a

person is in one of the ‘insured’ states, see Section 6.4. In Sections 8.3.1 and 8.3.2,

we implement this scheme to compute insurance losses in the adverse selection model.

7.3.1 Insurance Losses in HCM and Non-HCM Families

The testing model started with a fixed population at calendar time zero in the zeroth

generation (see Section 5.3.4). Then, we paired off persons still alive at calendar

time 20 in the zeroth generation and created HCM and non-HCM families. After

that, we only focused on HCM families because uptake of genetic testing in non-

HCM families is zero. However, we include all the individuals in non-HCM families

in the adverse selection model since they will be ‘normal’ purchasers of insurance.

In Section 8.3.1, we obtain expected total insurance losses arising from non-HCM

families by solving Thiele’s differential equations (see Section 6.6 and Appendix

A.1.2). Note that family history in non-HCM families has no effect on transition

rates. Therefore, the life history of a single individual in non-HCM families is Markov

with deterministic transition intensities and Thiele’s differential equations are valid.

The sum of the expected insurance losses in respect of each single individual will

give us the expected total insurance losses in non-HCM families.

In Section 8.3.2, we obtain expected total insurance losses arising from HCM

families. Insurance losses are much more complicated in HCM families partly be-

cause the life histories of single individuals are not Markov, and Thiele’s equations

are not valid. But the simulation model that we developed in Chapter 5 can be

adapted to simulate cash flows in the adverse selection model. Insurance losses are
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also complicated by the fact that individuals make insurance purchasing decisions

and insurers set insurance premiums based on the information available to them.

As a result, we separately estimate expected total insurance losses in non-HCM

families by solving Thiele’s equations, and in HCM families by Monte Carlo simu-

lation (Chapter 8), then we combine them.

7.3.2 How Do Adverse Selection Costs Arise?

Adverse selection gives rise to losses because the insurer calculates premium rates

assuming that no adverse selection occurs. That is, that all insurance purchasing

is ‘normal’ whereas in reality some insurance purchasing exploits information not

available to the insurer. Measuring the resulting loss therefore involves two stages

(see Section 6.7 and Appendix A.1.3):

(a) First, calculate the premium rates the insurer will charge based on available

information and assuming no adverse selection. In our model, ‘no adverse

selection’ equates to the absence of genetic testing, the non-Markov properties

of the testing model described in Chapter 5 are absent, and premium rates can

be calculated by solving the Kolmogorov equations under ‘normal’ purchasing

behaviour (see Section 7.4.5).

(b) Second, calculate the expected present value (EPV) of the insurance losses that

arise due to purchasers acting upon information not available to the insurer,

while being charged the rates of premium calculated in (a) above.

7.4 Information and Decisions—Insurers

7.4.1 Underwriting Classes

The decisions made by insurers is based on the information available to them. In

the basic scenarios this is the presence, or not, of a proband in the family. In other

scenarios even this might not be known. Mathematically, we represent this quite

simply by the definition of an underwriting class. At every point of time the insurer
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allocates each individual to an underwriting class and the pricing decision is based

on that. In our study, by default genetic test results are not disclosed to the insurer,

but we assume family history might or might not be disclosed to the insurer. Note

that, as a baseline assumption, ‘negative’ genetic test results are disclosed in our

study based on the practice in the UK case, see Section 1.1. Then, the insurer will

determine either one or two underwriting classes for the purchasers of insurance:

(a) In the case that insurers are allowed to use family medical history in under-

writing, there will be two underwriting classes: persons with a family history

of HCM (a proband in the family) and persons with no family history of HCM.

(b) In the case that insurers are not allowed to use family medical history in under-

writing, there will be just one underwriting class, containing everyone. Note

that the individuals tested negative will also be belong to this underwriting

class.

The insurer will calculate premium rates based on that. This allows us to write down

mathematical statements such as equation (7.1). See the mathematical derivation

of equation (7.1) in Appendix A.1.1.

7.4.2 Age-Dependent Premium Rates

A common way to calculate premium rates in private insurance is as a level regular

premium representing the fair price for the mortality risk that each individual brings

to the insurance pool at the age when they purchase insurance. For this reason,

insurers would charge different level premium rates at different ages of insurance

purchase.

However, in our study, we do not use that method to determine premium rates

because it would make the numerical solution of the problem messy, see Macdonald

& Yu (2011). The reason is that our model includes the purchase of insurance as an

event that may happen at any age between 20 and 60 (or not at all). If the insurer

charged level premiums depending on the age at purchase, then at any given age x,

persons in an insured state would be paying different premiums, depending on when

they purchased their policies.
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It is not impossible to use such a model, but it is very much simpler if all

persons in an insured state at any given age x are paying the same rate of premium.

Therefore, we define an underwriting class to be a set of insured states, based on

family history information available to the insurer, such that all persons in any such

state at a given age x are paying the same rate of premium. If individuals with

different mortality rates are in the same underwriting class then the premium rate

for that underwriting class must be a suitable some weighted average of the different

rates of mortality. See Appendix A.1.1.

7.4.3 Calculating Premium Rates

We follow equation (A.6) to set up premium rates. This equation expresses the fact

that if the insurer charges the insured a rate of premium equal to their mortality

hazard rate multiplying the sum assured, the expected insurance loss between calen-

dar time t and t+ dt would be zero, which will also satisfy the actuarial equivalence

principle, that the expected present value of insurance losses at the inception of the

policy should be zero.

Afterwards, we can charge premium rates based only on the mortality rates at

age x (associated with purchased £1 sum assured), which are the weighted average

transition intensities over all either the nine or the eight model sub-populations

based on the information available to insurers (see Figure 7.4 and Section 7.4.4),

from the ‘insured model states’ at age x (see the model states i1, i3, i4, and i5 in

Figure 7.1) into the benefit claim model states, i.e ‘dead states’, in small time dt at

age x+ dt (see the model states i7 and i8 in Figure 7.1).

Therefore, such a premium rate (for £1 sum assured) as a function of age x,

denoted by φCr
r (x), can be formulated as follows:

φCr
r (x) =

∑
ijεCr

pi xp
i0j
0 (µij7x + µij8x )∑

ijεCr

pi xp
i0j
0

. (7.1)

(See the proof of equation (7.1) in Appendix A.1.1.) Label r specifies an insurance

buyer and all the quantities in the equation are associated with individual r. Cr

113



Chapter 7: An Adverse Selection Model of Hypertrophic Cardiomyopathy (HCM)
for Life Insurance I: Model Specification

denotes the underwriting class to which insured individual r belongs. Cr consists of

a set of pairs ij in which i is a sub-population and j is an insured sub-state in the ith

sub-population. And, x is age in years; pi is the prevalence rate at birth of being in

the ith sub-population; xp
i0j
0 is the (occupancy) probability of being in state ij at age

x given in state i0 at age 0 (see Section 3.3 where we define occupancy probabilities

in a multiple-state Markov model). Finally, µij7x or µij8x are the transition intensities

from the insured states to the dead states (ij→i7 or ij→i8) in our model.

7.4.4 Premium Rates with Different Underwriting Classes

Different underwriting classes may arise from either having no proband or a proband

in the family at the age of insurance purchase. Another difference will arise from

gender because the cumulative probabilities of late-onset of HCM (see Figures 3.4

and 3.5) and the hazard rates of all-cause mortality are gender-related (see Figure

3.9). Note that we assume insurers are allowed to use gender to calculate premium

rates (which has not been the case in the EU since 2012). Therefore, an underwriting

class consists of a set of pairs ij for males and females separately. We determine the

underwriting classes for male and female buyers separately under different scenarios

as follows:

(a) An underwriting class is defined by the level of information that the insurer

has, or is allowed to use. If that information, or prohibition on its use, means

that the insurer cannot distinguish between presence in two or more insured

states, these states must be in the same underwriting class.

(b) Assume that insurers are not allowed to use genetic test results (exceptionally

negative test results are disclosed to the insurers in our model based on the

UK case, see Sections 1.1 and 7.4.1) in underwriting. They may be allowed

to use family history, which here means knowing whether or not there is a

proband in the family. This creates two underwriting classes.

(i) If there is no proband in the family when one of its members purchases

insurance, the insurer knows only that the purchaser at the time of the
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Figure 7.4: Involved model states to determine premium rates under different un-
derwriting classes for males and females separately.
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purchase is in one of the states i1 or i3 (i = 0, 1, ..., 8) but not which one.

After the purchase of insurance, the insurer also does not know when (if)

the individuals will transit into one of the ‘insured non-fatal HCM’ states

i4 or i5. Therefore, the underwriting class contains all of these states.

Denote this class by C0 for males and females separately. See the solid

box in Figure 7.4. Note that the persons tested negative (the UK case)

are always in the underwriting class C0 in our model.

(ii) If there is a proband in the family when one of its members purchases

insurance, the insurer knows that the purchaser is in one of the states

i1 or i3 (i = 1, 2, ..., 8) but is not in state 01 or 03. After the pur-

chase of insurance, similar to point (i) above, individuals’ transition into

one of the ‘insured non-fatal HCM’ states i4 or i5 is unobserved by the

insurer. Therefore, the underwriting class contains just these eight sub-

populations. Denote this class by C1 for males and females separately.

See the dashed box in Figure 7.4.

If an individual labelled by r buys insurance at age x, the insurer determines the

underwriting class to which they belong, denoted by Cr, for the purpose of deciding

what premium rate in equation (7.1) to apply. If there is no proband in the family or

individual r tested negative, Cr = C0 (for males and females separately), otherwise,

if there is a proband in the family, Cr = C1 (for males and females separately).

They are thereafter charged the rate of premium appropriate for that underwriting

class regardless of subsequent events.

An individual is allocated to an underwriting class at the time of insurance

purchase on the basis of family history at that time, see Figure 7.4. This is yet

another reason why the adverse selection model is not Markov.

In earlier work (Gui et al. (2006) and Lu et al. (2007)) the development of a

family history (e.g. two or more female first-degree relatives diagnosed with breast

cancer before age 55) was represented by adding a ‘family history’ state to the

model, transitions into this state being governed by a transition intensity obtained

by building a separate external model to derive the distribution of the age at ‘onset’
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Figure 7.5: Estimated weighted average premium rates per unit benefit with the
baseline assumptions (Table 7.1) under different underwriting classes. All rates
converge to each other at older ages.

of a family history. Then, family history was embedded in the model in a way that

preserved the Markov property. For our study of HCM, we needed to model families

directly in order to model cascade genetic testing explicitly, so the earlier approach

was not sufficient.

7.4.5 Calculated Premium Rates

We obtain the estimated premium rates shown in Figure 7.5 as follows:

(a) Determine the assumptions listed in Table 7.1 which extends the baseline

assumptions in the epidemiological and testing model, see Tables 3.10 and

5.1, by adding the new assumptions associated with the insurance states in

the adverse selection model: 0.05 normal purchase rate per annum (annual

hazard rate of normal purchase of insurance) in a large market at ages 20–60

(Macdonald & Yu 2011); £1 normal sum assured; 0.05 force of interest per

annum.

(b) Apply equation (7.1) with the assumptions represented in Table 7.1 under

different underwriting classes.
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(c) Calculate the occupancy probabilities to quantify premium rates as if genetic

testing does not exist (see point (a) in Section 7.3.2). Therefore, they can be

found by solving the Kolmogorov forward equations. See Sections 3.4 and 3.5

for the derivation and numerical solution of the Kolmogorov forward equations.

As we noted in Sections 3.11 and 5.2.3, the Kolmogorov forward equations are

numerically solved with time step 0.0005 years in this study.

We explain four components forming Figure 7.5 as follows:

• The solid line in the figure describes the premium rates at age x of a male

buyer of insurance if there was no proband in the family at the time of the

insurance purchase. This represents C0 for males.

• The dashed line in the figure describes the premium rates at age x of a female

buyer of insurance if there was no proband in the family at the time of the

insurance purchase. This represents C0 for females.

• The dotted line in the figure describes the premium rates at age x of a male

buyer of insurance if there was a proband in the family at the time of the

insurance purchase. This represents C1 for males.

• The dotdash line in the figure describes the premium rates at age x of a

female buyer of insurance if there was a proband in the family at the time of

the insurance purchase. This represents C1 for females.

Note that, following the UK case (Sections 1.1 and 7.4.1), we assume (as a baseline)

the underwriting class of the individuals tested negative is C0 (for both genders).

7.5 Information and Decisions—Individuals

7.5.1 ‘Information Classes’ and Purchase Rates

The decisions made by individuals are based on the information available to them.

We allocate each individual at any point in time to in one of four ‘information

classes’ (as distinct from states in the multiple-state model). These are analogues

of the insurers’ underwriting classes.
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(a) Information Class ζn. No information exists that suggests any HCM risk.

This applies to non-HCM families always, and to members of HCM families

before a proband has appeared. This also applies for the spouse of (when) the

proband carrier parent, see (b) (i) below.

(b) Information Class ζ50. An unaffected member of a family with a proband,

who is at 50% risk of carrying a mutation. This applies to untested members

of sub-populations i = 1 to i = 8 splitting into two cases.

(i) The proband is a parent. Then all untested children are in information

class ζ50, but the spouse of the proband is deemed to be in information

class ζn.

(ii) The proband is a child. Then all untested children and both parents are

in information class ζ50 if untested.

(c) Information Class ζ100. A family member who was in information class ζ50

has been tested and carries a known mutation. This applies in sub-populations

i = 2 and i = 4.

(d) Information Class ζ0. A family member who was in information class ζ50

has been tested and does not carry a known mutation. This applies in sub-

populations i = 1 and i = 3.

All of which moves us closer to a mathematical model of the costs of adverse

selection. Our baseline assumptions are:

• If individuals in information class ζ100 buy insurance at more than the ‘normal

purchase rate’, they will increase adverse selection costs.

• If individuals, who choose not to be tested, or are in sub-population i = 5 to

i = 8, and are in information class ζ50 buy insurance more than at the ‘normal

purchase rate’, those in sub-populations i = 2, i = 4, i = 6, or i = 8 will

increase adverse selection costs while those in sub-populations i = 1, i = 3,

i = 5, or i = 7 will decrease adverse selection costs.
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Table 7.2: Baseline assumptions for insurance purchase (hazard) rates per annum
depending on the information class in a large market. ζn: No knowledge of any HCM
risk in the family/a non-carrier parent with his/her spouse becoming proband. ζ50:
Believe themselves to be at 50% risk of carrying an HCM mutation. ζ100: As a
result of genetic testing, knows they carry an identical mutation. ζ0: As a result of
genetic testing, knows they do not carry an identical mutation.

Adverse Information Class
Selection ζn ζ50 ζ100 ζ0

None 0.05 0.05 0.05 0.05
Mild 0.05 0.1 0.1 0.05
Severe 0.05 0.25 0.25 0.05

• Note that adverse selectors (or individuals in class ζ100 and ζ50) are assumed,

as a baseline, to purchase at £1 normal sum assured. We consider, in Chapter

9, higher sums assured for the adverse selectors (either their purchase rate is

normal or different than normal).

Table 7.2 shows the (baseline) annual purchase (hazard) rates based on the ‘in-

formation classes’ of individuals where 0.05 represents baseline normal purchase rate

per annum (Table 7.1). These baseline purchase rates assume that individuals in

class ζ50 behave (in terms of insurance purchasing) the same as class ζ100. However,

we do not really know whether or not they will behave in the same way as individuals

in class ζ100 because they are not tested. In Chapter 9, we will relax this assumption

by which individuals in class ζ50 might behave differently than class ζ100.

7.5.2 Non-HCM Families: Risk Sub-population i = 0

Figure 7.6 shows the possible life histories of the individuals in non-HCM families

(in sub-population i = 0). Note that these individuals never have genetic testing

and they will always buy insurance at the ‘normal purchase rate’. As a result, their

life histories are Markov (see Sections 5.7 and 5.8). Then Figure 7.6 represents

a multiple-state Markov model. So, occupancy probabilities in such a model can

be found by solving the Kolmogorov forward equations (see Sections 3.4 and 3.5),

and expected present value of insurance cash flows can be found by solving Thiele’s

equations (see Section 6.6 and Appendix A.1.2).
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State i0
Untested

Uninsured

State i1
Untested

Insured

State i2
Tested

Uninsured

State i3
Tested

Insured

State i4
Untested-Insured

Non-Fatal HCM

State i5
Tested-Insured

Non-Fatal HCM

State i6
Uninsured

Non-Fatal HCM

State i7
Other

Dead

State i8
Fatal

HCM

µi01x

µi17x µi07x

i = 0, Not at Risk of HCM

Fixed Rates:
• µi01

x = normal purchase rate (not change) per annum at ages 20–60.
• µij7

x = annual mortality rate of all other causes at all ages.

Figure 7.6: A mathematical model of a life history of an individual who is a member
of the i = 0 risk sub-population.

7.5.3 HCM Families: The Risk Sub-populations

Suppose HCM families contain a set of individuals H = {1, 2, ...,Ω}, partitioned

into a collection of HCM families F1, ..., Fω where each Fa⊂H. Let m ∈ Fa be a

member of an HCM family Fa.

7.5.3.1 Age of Individual m

Let bm be the calendar time at the birth of individual m. The age of individual m

at calendar time t, denoted by xm(t) is:

xm(t) = t− bm. (7.2)

Calendar time is the natural timescale to use because parents and children have

different ages at the same calendar time t. For simplicity, individuals in the same

generation are assumed to be born at the same calendar time. See Section 5.3.1.
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7.5.3.2 Generation of Individual m

Define:

Gm =


1, if individual m is a child, born at calendar time bm = 30,

0, if individual m is a parent, born at calendar time bm = 0.

(7.3)

Note that we assume that families have children (if their number is not zero) at

calendar time 30. Therefore, bm = 30 for children. See Section 5.3.1.

7.5.3.3 Gender of Individual m

Let gm be the gender of individual m:

gm =


1, if individual m is a female,

0, if individual m is a male.

(7.4)

We noted, in Section 5.3, that the gender of parents is deterministically determined

at birth at calendar time t = 0, while we noted in Section 5.6.2 that the gender of

each child in HCM families is randomly determined at birth at calendar time t = 30,

with probability 0.5 of being male or female.

7.5.3.4 Sub-population of Individual m

Let im be the sub-population to which individual m belongs, where im ∈ {1, ..., 8}.

Individual m is identified as a person in an HCM family, so im 6= 0. See Figure 7.3.

7.5.3.5 Information Classes and Decisions of Individual m

We can at any time assign to individual m who has not themselves suffered HCM,

to one of the four information classes defined in Section 7.5.1; and, the testing and

insurance purchasing decisions of individual m is based on that. We modelled the

life history, including the testing behaviour, of an individual in an HCM family in

Section 5.9.2. Here, additionally, we expand the life history to include insurance

purchasing behaviour.
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Table 7.3: Information classes for each family member in an HCM family in which
one parent carries a known HCM mutation.

Carrier Parent Proband A Carrier Child Proband
A Known Mutation Before Testing After Testing Before Testing After Testing

Non-carrier Parent ζn - ζ50 ζ0

Carrier Parent - - ζ50 ζ100

Non-carrier Child ζ50 ζ0 - -
Carrier Child ζ50 ζ100 - -
Non-carrier Sibling - - ζ50 ζ0

Carrier Sibling - - ζ50 ζ100

Table 7.4: Information classes for each family member in a family in which one
parent carries an unknown HCM mutation.

An Unknown Mutation Carrier Parent Proband A Carrier Child Proband
Non-carrier Parent ζn ζ50

Carrier Parent - ζ50

Non-carrier Child ζ50 -
Carrier Child ζ50 -
Non-carrier Sibling - ζ50

Carrier Sibling - ζ50
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(a) The information class of individual m, based on the events in the family, is

shown in Tables 7.3 and 7.4. See also Table 7.2 for insurance purchase rates

associated with each information class.

(b) The life history of individual m (based on the testing and purchasing decisions

of individual m) is shown in Figures 7.7, 7.8, 7.9, and 7.10. Note that the

testing of both parents is assumed to be a joint decision (see Section 5.9.2).

7.6 Simulated Life Histories in HCM Families

This section is similar to Section 5.9.3 in which we presented the simulated life his-

tories of HCM families in the testing model. In this section, we demonstrate the

simulated life histories corresponding to the adverse selection model, represented

by the mean and standard deviation of 500 independent simulations of the occu-

pancy probabilities in each state in the adverse selection model in respect of HCM

families. They are obtained, represented in Figures 7.11 and 7.12, by the following

assumptions for the adverse selection model parameters: the baseline assumptions

in the testing model shown in Table 5.1; the average number of children per family

(λ) assumed to be 1.8 (Section 5.6.1); all individuals (including adverse selectors)

assumed to purchase insurance at the normal rate of 0.05 per annum (Section 7.5.1)

(meaning that there is no adverse selection); and, time step 0.005 years used for

the numerical computations in the simulation because it is found to be nearly as

accurate as using 0.0005 years in Section 8.6.3 (Section 5.2.3).

In Figure 7.11, we present the mean of the occupancy probabilities of the sim-

ulated lives of the parents/the zeroth generation obtained from 500 independent

simulations in each state in the adverse selection model in respect of the HCM

families. In Figure 7.11:

• Differently from the testing model, the adverse selection model has insurance

purchasing states.

• The conclusion is that the occupancy probabilities in state 3, tested insured

(the middle left plot) are much less than that of in state 1, untested insured (the
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upper middle plot). In other words, we do observe not so many individuals

in the zeroth generation who take up genetic testing at ages 20–90 mainly

because of the small number of child probands.

• No parent takes up genetic testing at ages 20–30 (state 2, tested uninsured

state, the upper right plot) because we allow parents to have children at age

30. See Section 5.9.3.

In Figure 7.12, we present the mean of the occupancy probabilities of the simu-

lated lives of the children/the first generation obtained from 500 independent simu-

lations in each state in the adverse selection model in respect of the HCM families.

In Figure 7.12:

• The occupancy probabilities in insured states are zero up to age 20 because

we assume the purchase rate is zero before age 20.

• The occupancy probabilities in state 3, tested insured (the middle left plot)

are much higher compared to that of the parents’ generation mainly because

we observe more parent probands than child probands.

• Due to the infant mortality, there is a significant jump in state 0, untested

uninsured (the upper left plot) correlated with state 7, other dead (the lower

middle plot) just after age zero. See Section 5.9.3. Moreover, due to our

conservative assumption that children whose carrier parents proband can be

tested at age zero at calendar time 30, there is a significant jump in state 2,

tested uninsured state (the upper right plot) at age zero. See Sections 4.3.2

and 5.9.3.

The standard deviations corresponding to Figures 7.11 and 7.12 are not shown

since they are approximately zero at all ages.

Moreover, from the same reasoning in Sections 3.11 and 5.10, we do not make

any sensitivity analysis for the simulated life histories in the adverse selection model

since we aim to measure the insurance costs under adverse selection.
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State i0
Untested

Uninsured

State i1
Untested

Insured

State i2
Tested

Uninsured

State i3
Tested

Insured

State i4
Untested-Insured

Non-Fatal HCM

State i5
Tested-Insured

Non-Fatal HCM

State i6
Uninsured

Non-Fatal HCM

State i7
Other

Dead

State i8
Fatal

HCM

µi01x µi02x,z µi23x

µi17x µi07x µi27x µi37x

i : 1, A Known Early-Onset HCM Mutation Absent
or

i : 3, A Known Late-Onset HCM Mutation Absent

Fixed Rates:
• µij7

x = annual mortality rate of all other causes at all ages.
If no proband exists in family:
ζm = ζn;
• µi01

x = normal purchase rate (not change) per annum at ages 20–60.
• µi02

x,z = 0, uptake rate of testing per annum at any age.
If carrier parent becomes proband with a known mutation:

(a) m is a spouse of carrier parent, ζm = ζn;
• µi01

x = normal purchase rate (not change) per annum at ages 20–60.
• µi02

x,z = 0, uptake rate of testing per annum at any age.

(b) m is a non-carrier child of carrier parent, ζm = ζ50; or, ζm = ζ0.
• µi01

x = normal purchase rate (might change) per annum at ages 20–60.
• µi02

x,z = normal uptake rate of testing per annum at all ages.

• µi23
x = normal purchase rate (not change) per annum at ages 20–60.

If a carrier child becomes proband with a known mutation:
(a) m is a spouse of carrier parent not tested nor become a subsequent proband;

or, m is a non-carrier sibling of the carrier child, ζm = ζ50; or, ζm = ζ0.
• µi01

x = normal purchase rate (might change) per annum at ages 20–60.
• µi02

x,z = normal uptake rate of testing per annum at all ages.

• µi23
x = normal purchase rate (not change) per annum at ages 20–60.

(b) m is a spouse of carrier parent tested or become a subsequent proband, ζm = ζ0

or ζm = ζn;
• µi01

x = µi23
x = normal purchase rate (not change) per annum at ages

20–60.

Figure 7.7: A mathematical model of a life history of an individual m, a non-carrier
member in which one parent carries a known HCM mutation, in the i = 1 or i = 3
risk sub-populations in the adverse selection model of HCM for life insurance. In
µi02
x,z, z refers to duration in state i0 since (if) a proband exists in the family. ζm

refers to an information class for individual m. See Section 7.5.1 and Tables 7.2,
7.3, and 7.4 for information classes.
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State i0
Untested

Uninsured

State i1
Untested

Insured

State i2
Tested

Uninsured

State i3
Tested

Insured

State i4
Untested-Insured

Non-Fatal HCM

State i5
Tested-Insured

Non-Fatal HCM

State i6
Uninsured

Non-Fatal HCM

State i7
Other

Dead

State i8
Fatal

HCM

µi01x

µi17x µi07x

i : 5, An Unknown Early-Onset Mutation Absent

or

i : 7, An Unknown Late-Onset Mutation Absent

Fixed Rates:
• µij7

x = annual mortality rate of all other causes at all ages.
If no proband exists in family:
ζm = ζn;
• µi01

x = normal purchase rate (not change) per annum at ages 20–60.
If carrier parent becomes proband with an unknown mutation in family:

(a) m is a spouse of carrier parent, ζm = ζn;
• µi01

x = normal purchase rate (not change) per annum at ages 20–60.
(b) m is a non-carrier child of carrier parent, ζm = ζ50;

• µi01
x = normal purchase rate (might change) per annum at ages 20–60.

If a carrier child becomes proband with an unknown mutation in family:
(a) m is a spouse of carrier parent not become a subsequent proband; or, m is a

non-carrier sibling of the carrier child, ζm = ζ50;
• µi01

x = normal purchase rate (might change) per annum at ages 20–60.
(b) m is a spouse of carrier parent become a subsequent proband, ζm = ζn ;

• µi01
x = normal purchase rate (not change) per annum at ages 20–60.

Figure 7.8: A mathematical model of a life history of an individual m, a non-carrier
member in which one parent carries an unknown HCM mutation, in the i = 5 or
i = 7 risk sub-populations in the adverse selection model of HCM for life insurance.
ζm refers to an information class for individual m. See Section 7.5.1 and Tables 7.2,
7.3, and 7.4 for information classes.
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State i0
Untested

Uninsured

State i1
Untested

Insured

State i2
Tested

Uninsured

State i3
Tested

Insured

State i4
Untested-Insured

Non-Fatal HCM

State i5
Tested-Insured

Non-Fatal HCM

State i6
Uninsured

Non-Fatal HCM

State i7
Other

Dead

State i8
Fatal

HCM

µi01x µi02x,z µi23x

µi14x

µi17x

µi18x µi07x

µi06x

µi08x µi27x

µi26x

µi28x µi37x

µi38x

µi35x

µi47x µi48x µi57x µi58x

µi67x µi68x

i : 2, A Known Early-Onset HCM Mutation Present
or

i : 4, A Known Late-Onset HCM Mutation Present

Fixed Rates:
• µi06

x = µi14
x = µi26

x = µi35
x = proportioned, respective to penetrance of clin-

ical HCM, non-fatal HCM rate per annum at all ages.
• µij7

x = annual mortality rate of all other causes at all ages.
• µi08

x = µi18
x = µi28

x = µi38
x = proportioned, respective to penetrance of clin-

ical HCM, fatal HCM rate per annum at all ages.
• µi48

x = µi58
x = µi68

x = fatal HCM rate per annum at all ages.
If no proband exists in family:
ζm = ζn;
• µi01

x = normal purchase rate (not change) per annum at ages 20–60.
• µi02

x,z = 0, uptake rate of testing per annum at any age.
If a proband exists (who not matter) with a known mutation in family:
ζm = ζ50; or, ζm = ζ100;
• µi01

x = normal purchase rate (might change) per annum at ages 20–60.
• µi02

x,z = normal uptake rate of testing per annum at all ages.

• µi23
x = normal purchase rate (might change) per annum at ages 20–60.

Figure 7.9: A mathematical model of a life history of an individual m, a carrier
member in which one parent carries a known HCM mutation, in the i = 2 or i = 4
risk sub-populations in the adverse selection model of HCM for life insurance. In
µi02
x,z, z refers to duration in state i0 since (if) a proband exists in the family. ζm

refers to an information class for individual m. See Section 7.5.1 and Tables 7.2,
7.3, and 7.4 for information classes.
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State i0
Untested

Uninsured

State i1
Untested

Insured

State i2
Tested

Uninsured

State i3
Tested

Insured

State i4
Untested-Insured

Non-Fatal HCM

State i5
Tested-Insured

Non-Fatal HCM

State i6
Uninsured

Non-Fatal HCM

State i7
Other

Dead

State i8
Fatal

HCM

µi01x

µi14x

µi17x

µi18x µi07x

µi06x

µi08x

µi47x µi48x

µi67x µi68x

i : 6, An Unknown Early-Onset HCM Mutation Present
or

i : 8, An Unknown Late-Onset HCM Mutation Present

Fixed Rates:
• µi06

x = µi14
x = proportioned, respective to penetrance of clinical HCM, non-

fatal HCM rate per annum at all ages.
• µij7

x = annual mortality rate of all other causes at all ages.
• µi08

x = µi18
x = proportioned, respective to penetrance of clinical HCM, fatal

HCM rate per annum at all ages.
• µi48

x = µi68
x = fatal HCM rate per annum at all ages.

If no proband exists in family:
ζm = ζn;
• µi01

x = normal purchase rate (not change) per annum at ages 20–60.
If a proband exists (who not matter) with a known mutation in family:
ζm = ζ50;
• µi01

x = normal purchase rate (might change) per annum at ages 20–60.

Figure 7.10: A mathematical model of a life history of an individual m, a carrier
member in which one parent carries an unknown HCM mutation, in the i = 6 or
i = 8 risk sub-populations in the adverse selection model of HCM for life insurance.
ζm refers to an information class for individual m. See Section 7.5.1 and Tables 7.2,
7.3, and 7.4 for information classes.
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7.7 Individual Insurance Cashflows and Losses

7.7.1 Insurance Purchase by Individual m

If individual m buys insurance at random calendar time τm, then the age at the

purchase time is:

xm(τm) = τm − bm. (7.5)

However, if individual m never buys insurance, then define:

τm =∞. (7.6)

All insurance contracts in our model are term life insurance expiring at age 60. We

assume that all such that insurance policies are sold between ages 20 and 60, so if

τm <∞ we have:

20≤xm(τm)≤60. (7.7)

7.7.2 Underwriting Class of Individual m

The underwriting class of individual m is determined based on information available

to the insurer at the calendar time of the insurance purchase, τm. A moratorium or

family history may shape the information available in respect of individual m.

(a) If genetic test results are undisclosed to the insurer (exceptionally negative

test results, see Sections 1.1 and 7.4.1), but family history is disclosed, the key

information of interest to the insurer is whether or not a proband exists in the

family of individual m at time τm. See the C1, see the dashed box in Figure

7.4, premium rates for males and females separately.

(b) If both genetic test results and family history are undisclosed to the insurer,

the insurer regards each individual as being in any of the sub-population with

the probabilities used to calculate the C0, see the solid box in Figure 7.4,

premium rates for males and females separately.

Being a proband in our model is only possible with the transitions to non-fatal
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HCM or fatal HCM model states (see the model states i4, i5, i6, or i8 in Figure 7.1).

Therefore, we can observe if there is a proband in the family of individual m at

calendar time t by counting the number of transitions into these states made by all

the members of the family Fa including individual m as follows:

Ψm(t) =
∑
r∈Fa

8∑
j=0

(
N irj4
r (t) +N irj5

r (t) +N irj6
r (t) +N irj8

r (t)
)
. (7.8)

If individual m has a proband in the family at (or rather, just before) the calendar

time of the purchase of insurance, τm, a useful indicator function of that event is:

Ym(τm) =


1, Ψm(τ−m) > 0 (a proband exists in family Fa at time τ−m),

0, Ψm(τ−m) = 0 (no proband exists in family Fa at time τ−m).

(7.9)

Then, Cm (for males and females separately) is the underwriting class of individual

m, already described in Section 7.4.4 as follows:

(a) If genetic test results are undisclosed to insurers, but family history is disclosed

(or individualm tested negative) the underwriting class of uninsured individual

m based on the information available to the insurer is:

Cm =


C0, if Ym(τm) = 0 or individual m tested negative,

C1, if Ym(τm) = 1.

(7.10)

(b) If both genetic test results and family history are undisclosed to insurers, the

underwriting class of individual m is always Cm = C0 (it does not matter

which family member that individual m represents).

Note that Cm is determined at the time of the insurance purchase. It stays the same

during the policy term. This definition assumes that negative tests are disclosed

to the insurer and may be used based on the case under the UK moratorium. See

Sections 1.1 and 7.4.1.

134



Chapter 7: An Adverse Selection Model of Hypertrophic Cardiomyopathy (HCM)
for Life Insurance I: Model Specification

7.7.3 Premium Rates of Individual m

Each person’s premium rates, see equation (7.1), are determined at the time of the

purchase of insurance, τm. They are functions of age given by equation (7.1) and

are denoted as follows:

φCm
m (xm(t)), τm < t, (7.11)

for males and females separately.

7.7.4 Premium Income from Individual m

See Section 6.4.2 for notation for this section. The individuals who moved into one

of the insured states in our model (states i1, i3, i4, or i5 in Figure 7.1) pay the

premiums determined in Section 7.7.3, as long as they are alive, or until their policy

ends.

Define an indicator function as follows:

Iam(t) =


1, the individual m is insured and alive at calendar time t−.

0, otherwise.

(7.12)

Therefore Iam(t) is equal to 1 if and only if the individual m pays premiums

at calendar time t, continuously at annual rate φCm
m (xm(t)) (for males and females

separately), see equation (7.11). Then, the present value at age 20 of the premium

payments of individual m is:

am =

∫ ∞
0

φCm
m (xm(t))e−δ(xm(t)−20)Iam(t)dt (7.13)

where δ is the constant rate of force of interest per annum.

7.7.5 Benefit Outgo in Respect of Individual m

See Section 6.4.1 for notation for this section. If an individual who is insured, moves

into the one of the dead states during the policy duration (states i7 or i8 in Figure

7.1), the benefit will be paid immediately. We assume that the benefit amount is
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Am(t).

Define N imjk
m (t) to be the total number of transitions made by individual m from

state imj to state imk up to and including time t. Then the total number of insurance

claims made by individual m up to and including time t, denoted by Nad
m (t), is.

Nad
m (t) =

∑
j=1,3,4,5

(
N imj7
m (t) +N imj8

m (t)
)

(7.14)

(Note that Nad
m (t) takes the values 0 or 1). Moreover, Am(t)Nad

m (t) is the total

amount of benefit paid to the insured individual m up to and including time t.

Therefore, the present value at age 20 of the lump sum payment of Am(t) is:

Am =

∫ ∞
0

Am(t)e−δ(xm(t)−20)dNad
m (t). (7.15)

7.7.6 The Insurance Loss in Respect of Individual m

See Section 6.4.3 for notation for this section. Then the present value at age 20 of

the future losses from the insured individual m is:

Lm = Am − am. (7.16)

If there is no adverse selection, the expected present value at age 20 of the future

losses from the insured individual m is zero (from the actuarial principle of premium

calculations):

E[Lm] = 0. (7.17)

If there is adverse selection in our model, the expected present value at age 20 of

the future losses from the insured individual m is not equal to zero (the actuarial

principle of premium calculations does not hold):

E[Lm]6=0. (7.18)
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7.8 Discussion

This chapter modelled the life history of a single individual in respect of genetic

testing and insurance purchasing behaviour. It also presented the computation of

the insurance losses in respect of a single individual. We are ready to discuss,

in Chapter 8, how we obtain the insurance losses from the whole population and

measure them under adverse selection. Afterwards, we will be ready to see the

estimated adverse selection costs in the whole population in Chapter 9.
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Chapter 8

An Adverse Selection Model of

Hypertrophic Cardiomyopathy

(HCM) for Life Insurance II:

Monte Carlo Simulation in HCM

Families

8.1 Introduction

In Chapter 5, we modelled a general population composed of independent nuclear

families and called the testing model. Each nuclear family contained two generations:

parents as the zeroth generation and their children as the first generation, the latter

possibly empty. Individuals but not families exist at calendar time zero (an equal

number of males and females at birth). The males and females alive at calendar

time 20 are paired off to create families. Two types of families arise: HCM and

non-HCM families. See Figure 5.3. In Chapter 7, we extend the testing model

with insurance purchasing states (called the adverse selection model) and discuss

the computation of individual insurance losses from these families. (See the sub-

populations in HCM and non-HCM families in the adverse selection model in Figure
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7.3). We obtain separately expected total insurance losses from HCM and non-HCM

families because we use different numerical techniques to measure expected total

insurance losses from both types of families; afterwards, we aggregate them to find

expected aggregated losses in the whole population. See Section 7.3.1.

In Section 8.2, we implement the overall methodology to compute the expected

present value (EPV) of aggregated insurance losses in the whole population. In

Sections 8.3 and 8.4, we explain the computation and combination of the EPVs of

total losses from non-HCM and HCM families in detail. In Section 8.5, we give a

list of baseline assumptions in the adverse selection model. The EPV of aggregated

losses with the baseline assumptions in our model is demonstrated and discussed

under no adverse selection in Section 8.6 and under some adverse selection scenarios

in Section 8.7. In Section 8.8, we introduce a measure of the adverse selection costs

and then present the corresponding results under many different adverse selection

scenarios in Chapter 9.

8.2 Monte Carlo Simulation

1. Decompose the present value (PV) of aggregated losses at age 20 in the whole

population denoted by L into two pieces:

L = LH + LN , (8.1)

in which we define

(a) LH, the PV of total losses at age 20 from HCM families.

(b) LN , the PV of total losses at age 20 from non-HCM families.

2. Denote E[L], the EPV of the aggregated losses at age 20 in the whole popu-

lation, defined as follows:

E[L] = E
[
LH + LN

]
(8.2)

in which
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(a) E[LH] is computed by Monte Carlo simulation of family life histories. See

Section 8.3.2.

(b) E[LN ] is computed by solving Thiele’s equations numerically. See Section

8.3.1.

8.3 Total Insurance Losses

8.3.1 Non-HCM Families

As we describe, in Sections 5.7, 5.8, and 7.5.2, the life history of a single individual

in non-HCM families (or in risk sub-population i = 0) is always Markov. Therefore,

we can calculate the expected present value (EPV) of future losses per an individual

for males and females separately by solving Thiele’s differential equations.

(a) If we set up the lump sum benefit £0 in Thiele’s equations, then we obtain

the EPV of future premium income in respect of a single individual for males

and females separately.

(b) Similarly, if we set up the premium income to zero in Thiele’s equations, we

obtain the EPV of future benefit outgo in respect of a single individual for

males and females separately.

See, in Appendix A.1.2, the general form of Thiele’s equations for a multiple-

state multiple-population Markov model. We denoted by V ij
t the expected present

value (the prospective policy value) of future losses in respect of an individual in

state ij at calendar time t (given that being in state ij at calendar time t). We

calculate the following in respect of an individual alive in state 00 at age 20 at

calendar time t (given that being in state 00 at age 20 at calendar time t) (note that

parents are age 20 at calendar time 20, but children are age 20 at calendar time 50,

see Section 5.3):

• the EPV of total future losses from an individual (for males and females sep-

arately) at age 20, denoted by V 00
t ,
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• the EPV of total future premium income from an individual (for males and

females separately) at age 20, denoted by I00
t ,

• the EPV of total future benefit outgo from an individual (for males and females

separately) at age 20, denoted by O00
t .

Then, we calculate the following in respect of non-HCM families consisting of N

individuals alive at age 20:

• the EPV of total future losses at age 20 from non-HCM families, denoted by

E
[
LN
]
, is:

E
[
LN
]

= N × V 00
t , (8.3)

• the EPV of total future premium income at age 20 from non-HCM families,

denoted by E[IN ], is:

E
[
IN
]

= N × I00
t , (8.4)

• the EPV of total future benefit outgo at age 20 from non-HCM families, de-

noted by E[ON ], is:

E
[
ON
]

= N ×O00
t . (8.5)

The EPVs of total future losses, total future premium income, and total future

benefit outgo at age 20 from non-HCM families above will be aggregated with the

corresponding quantities from HCM families which are obtained in Section 8.3.2.

8.3.2 HCM Families

As we describe, in Section 5.6, HCM families have children (possibly zero) if both

parents are alive at calendar time 30. An HCM family is a nuclear family: a mutation

carrier parent, spouse of the carrier parent (assumed to be a non-carrier), and their

children (if any). The total number of children in a family is assumed to be Poisson

distributed with parameter λ. Also, each child inherits the mutation with probability

0.5 based on Mendel’s law. In Sections 5.6, 5.9, and 7.5.3, we presented what are

the characteristics of an HCM family and how we simulate the life histories of HCM
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family members. Section 7.7 deals with insurance cashflows and losses arising from

an individual m in an HCM family. Then, we calculate the expected present value

of total future losses in HCM families which we compute by Monte Carlo simulation

of family life histories (see Section 7.7 for the following notations) as follows:

(a) Let Lm,e denote the present value of total future losses at age 20 in respect of

an individual m in HCM families under the Monte Carlo simulation e where

e ∈ {0, 1, ..., E}, see equation (7.16). We estimate E
[
LH
]

by the Monte-Carlo

estimate, denoted by Ê
[
LH
]
, as follows:

Ê
[
LH
]

=
1

E

E∑
e=1

(
Ωe∑
m=1

Lm,e

)
. (8.6)

Note that Ê
[
LH
]

converges to the (true) value of E
[
LH
]

as E→∞. Note

also that the total number of individuals in HCM families depends on the

simulation, so we denote it by Ωe.

(b) Let am,e denote the present value of total future premium income at age 20 in

respect of an individual m in HCM families under the Monte Carlo simulation

e where e ∈ {0, 1, ..., E}, see equation (7.13). We estimate E
[
IH
]

by the

Monte-Carlo estimate, denoted by Ê
[
IH
]
, as follows:

Ê
[
IH
]

=
1

E

E∑
e=1

(
Ωe∑
m=1

am,e

)
, (8.7)

Note that Ê
[
IH
]

converges to the (true) value of E
[
IH
]

as E→∞.

(c) Let Am,e denote the present value of total future benefit outgo at age 20 in

respect of an individual m in HCM families under the Monte Carlo simulation

e where e ∈ {0, 1, ..., E}, see equation (7.15). We estimate E
[
OH
]

by the

Monte-Carlo estimate, denoted by Ê
[
OH
]
, as follows:

Ê
[
OH
]

=
1

E

E∑
e=1

(
Ωe∑
m=1

Am,e

)
. (8.8)

Note that Ê
[
OH
]

converges to the (true) value of E
[
OH
]

as E→∞.
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8.4 Aggregated Insurance Losses

Here we explain how we combine the results from the HCM and non-HCM families:

(a) EPVs at age 20 in the non-HCM families are obtained by solving Thiele’s

equations and multiplying by the sum of:

(i) 2, 462, 620 males and 2, 470, 647 females surviving individuals at age 20

in the zeroth generation; and,

(ii) 2, 153, 983 males and 2, 160, 976 females surviving individuals at age 20

in the first generation.

Note that we compute the EPVs for males and females separately, see Section

8.3.1.

(b) EPVs at age 20 in the HCM families are estimated by the Monte Carlo simu-

lation, as described in Section 8.3.2, using 500 simulations (which is sufficient

to meet the actuarial equivalence principle, see the following sections). Con-

sequently, when quantile intervals are cited in any results, they relate only to

uncertainty arising from the simulation in respect of the HCM families. We

represent 95% quantile intervals (QI, 95%) of 500 simulations. Note that we

refer to QI not confidence intervals (CI) because of the small adjustment to

premium rates made in Section 8.6.2.

(c) Note that the simulated total losses at age 20 in the HCM families, see(∑Ωe

m=1 Lm,e

)
in equation (8.6), form a set of identically distributed and inde-

pendent random variables. From the Central Limit Theorem, the Monte-Carlo

sampling distribution of aggregated losses, E[LN ] + LH, is asymptomatically

normal, with

(i) mean 0 if there is no adverse selection,

(ii) mean>0 if there is adverse selection (in our study),

and some variance σ2
E depending on E .
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Figure 8.1: Distribution of aggregated losses at age 20, E[LN ] + LH, where all
families have zero children, under no adverse selection with the baseline assump-
tions in the whole population. PAMR: Premiums Associated with Mortality Rates.
PAWR: Premiums Associated with Weighted Average Rates Over All Nine Model
Sub-populations.

8.5 Baseline Assumptions

Table 8.1 summarises all the baseline assumptions in the adverse selection model

(Chapter 7). Many of these assumptions were shown in the earlier chapters (Tables

3.10, 5.1, 7.1, and 7.2). Our baseline λ = 1.8 for the average number of children per

family was mentioned in Section 5.6.1, but it was not shown in any table before,

therefore it was added here.

We pointed out before, we numerically solve the Kolmogorov forward equations

with time step 0.0005 years (Sections 3.11, 5.2.3, and 7.4.5) which is the same for

the numerical solution of Thiele’s equations. And, we simulate the lives in HCM

families by using time step 0.005 years (Sections 5.2.3 and 7.6) for the reason in the

following Section 8.6.3 in this chapter (See also Figure 8.4).

8.6 Aggregated Losses: No Adverse Selection

In Figure 8.1, we show the expected present value of aggregated losses at age 20

under no adverse selection in the zeroth generation only, which means neither HCM
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nor non-HCM families have children. In Figure 8.1:

• The upper left plot represents the histogram (of 500 simulations) of the ex-

pected present value of aggregated losses at age 20 where each insured person,

as long as they are alive during the policy term, is charged premium rates

associated with true mortality rates (PAMR) under no adverse selection (see

Section 6.5). This assumes that the insurer knows which sub-population each

individual is in and charges the correct mortality rate as the premium rate

(associated with the purchased £1 sum assured). Of course this is impossi-

ble, it simply serves as a check that the mean loss is zero (or if the actuarial

equivalence principle is satisfied).

• As a second check, we assume there is no adverse selection and calculate

premium rates as weighted average rates over all nine model sub-populations

(PAWR), see equation (7.1). This assumes that the insurers do not know

which sub-population any individual is in. See Appendix A.1. Therefore, the

upper right plot represents the histogram (of 500 simulations) of the expected

present value of aggregated losses at age 20 where each insured person, as long

as they are alive during the policy term, is charged these weighted average

premium rates (PAWR).

• The upper plots also present a kernel density estimate, mean and 95% quantile

intervals (QI, 95%). These plots are consistent with point (c) (i) in Section

8.4.

• The bottom plot compares the upper plots.

In Figure 8.2, we show the expected present value of aggregated losses at age 20,

under no adverse selection, including the zeroth and first generations, which means

we allow families to have children. In Figure 8.2:

• The upper left plot represents the histogram (of 500 simulations) of the ex-

pected present value of aggregated losses at age 20 where each insured person,

as long as they are alive during the policy term, is charged the PAMR premium

rates.
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Figure 8.2: Distribution of aggregated losses at age 20, E[LN ] + LH, under no
adverse selection with the baseline assumptions in the whole population. PAMR:
Premiums Associated with Mortality Rates. PAWR: Premiums Associated with
Weighted Average Rates Over All Nine Model Sub-populations.

• The upper right plot represents the histogram (of 500 simulations) of the ex-

pected present value of aggregated losses at age 20 where each insured person,

as long as they are alive during the policy term, is charged the PAWR premium

rates.

• The upper plots also present a kernel density estimate, mean and 95% quantile

intervals (QI, 95%). While the upper left plot is consistent with point (c) (i)

in Section 8.4, the upper right plot is not (it is negatively shifted). The reason

for this discrepancy is explained in Section 8.6.1.

• The bottom plot compares the upper plots and shows as a flat addition the

difference between two approaches of charging premium rates, PAMR and

PAWR.

8.6.1 Prevalences of Gene Mutations Over Time

In the adverse selection model, with the baseline assumptions in Table 8.1 , the

prevalence rate of HCM-related mutations is 0.00226 at birth in the zeroth genera-

tion. See Table 5.2. (Note that the prevalence 0.00226 represents the prevalence of
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HCM mutations at calendar time 0 in the general population in the testing model,

see Section 5.3.3. This prevalence is also same for the adverse selection model be-

cause nobody purchases insurance at calendar times 0–20). However, when families

have children at calendar time 30, we observe the prevalence of HCM-related muta-

tions at birth in the first generation to be less than 0.00226. This is because some

of the mutation carriers in the zeroth generation have died before age 30. So, if

we charge children premium rates based on mutation prevalence 0.00226, we charge

them too much. This ‘unexpected’ income gives a negative shift to the distribution

of the expected present value of aggregated losses at age 20.

This result has interesting consequences in our model.

• We proportionally have fewer individuals carrying HCM mutations in the first

generation compared to the zeroth generation.

• The prevalence of HCM-related mutations decreases over generations because

HCM-related mortality is quite high before the assumed reproductive age 30.

• It implies that if we run our simulation through many generations, then HCM-

related mutations would disappear over time.

The genetic literature (see Falconer & Mackay (1990) and Sudbery (2002)) dis-

cusses this phenomenon as follows:

• The replacement of ‘unfavourable’ gene mutations with ‘favourable’ ones over

time is called ‘selection’.

• However, ‘selection’ is not the only factor altering prevalences of gene muta-

tions over generations. New mutations might arise in unmutated genes as long

as selection then acts to eliminate them.

• There is an inverse relationship between ‘mutation’ and ‘selection’ which keeps

prevalences of gene mutations in balance over generations. It would be a signif-

icant factor if we had modelled more generations in this study. For simplicity,

we fix this issue with an adjustment, which is a constant premium factor ap-

pearing in Section 8.6.2.
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Table 8.2: Estimated value of E[L], the EPV of aggregated losses at age 20 in
the whole population, see equation (8.2) where the model uses different premium
rates approaches with the baseline assumptions. PAMR: Premiums Associated with
Mortality Rates. PAWR: Premiums Associated with Weighted Average Rates Over
All Nine Model Sub-populations. aPAWR: Adjusted PAWR. The numerics below
are rounded to six decimal points.

Premium Estimated EPV
Rates (Aggregated Losses)

PAMR −0.591222
PAWR −22.923866
aPAWR −0.058020

• There are, moreover, other factors changing prevalences of gene mutations,

such as random drift (random changes affecting prevalences of gene mutations)

and immigration which can both be significant in small populations. They

would not be significant factors for our model.

8.6.2 Premium Factor and Adjusted Premium Rates

Due to the reasons in Section 8.6.1, the estimated value of E[L] is negative (not

zero), see the upper right plot in Figure 8.2. We define a constant premium factor

Π, satisfying the condition in point (c) (i) in Section 8.4, obtained by the fraction of

the estimated value of EPV of aggregated future benefit at age 20, which is computed

by the combination of equations (8.5) and (8.8), over the estimated value of EPV

of aggregated future income at age 20, which is computed by the combination of

equations (8.4) and (8.7), under charging children higher premium rates.

We find, with the baseline assumptions in Table 8.1, Π = 0.999859. Table 8.2

shows the impact of the factor Π by comparing the estimated values of E[L] of three

kinds:

(a) the model uses the PAMR premium rates,

(b) the model uses the PAWR premium rates,

(c) the model uses the adjusted PAWR premium rates by the factor Π (for all

individuals) referring to this as aPAWR.
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Figure 8.3: Distribution of aggregated losses at age 20, E[LN ] + LH, under no
adverse selection with the baseline assumptions and adjusted premium rates in the
whole population. PAMR: Premiums Associated with Mortality Rates. aPAWR:
Adjusted Premiums Associated with Weighted Average Rates Over All Nine Model
Sub-populations.

Note that from now on the results in this chapter or the following chapters we will

base our model on the aPAWR premium rates.

In Figure 8.3, we show the expected present value of aggregated losses at age 20

under no adverse selection with the aPAWR premium rates. In Figure 8.3:

• The upper right plot shows the histogram (of 500 simulations) of the expected

present value of aggregated losses at age 20 under no adverse selection with

baseline assumptions in the whole population where we charge individuals the

aPAWR premium rates.

• The upper left plot is the same as that in Figure 8.2.

• The upper plots also present a kernel density estimate, mean and 95% quantile

intervals (QI, 95%).

• The bottom plot compares the upper plots, which are both consistent with

point (c) (i) in Section 8.4.
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Figure 8.4: Distribution of aggregated losses at age 20, E[LN ]+LH, under no adverse
selection with the baseline assumptions with different time step dt in the Monte Carlo
simulation. PAMR: Premiums Associated with Mortality Rates. PAWR: Premiums
Associated with Weighted Average Rates Over All Nine Model Sub-populations.
aPAWR: Adjusted PAWR.

8.6.3 Different Time Steps

In Sections 3.11, 5.2.3, 7.4.5, and 8.5, we mentioned that we always solve the Kol-

mogorov or Thiele’s equations with time step dt = 0.0005 in this study.

In Sections 5.2.3, 7.6, and 8.5, we mentioned that we simulate HCM families’ life

histories with time step dt = 0.005 because the expected present value of aggregated

insurance losses with dt = 0.005 is sufficiently accurate compared with dt = 0.0005

shown in Figure 8.4.

8.7 Aggregated Losses under Adverse Selection

In Figure 8.5, we present kernel density estimates with 95% quantile intervals (QI,

95%) of the histograms (of 500 simulations) of the expected present value of aggre-

gated losses at age 20 under different levels of adverse selection with the baseline

assumptions where family history is not known to insurers, and where family history

is known to insurers in Figure 8.6. In both figures:
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Figure 8.5: Distribution of aggregated losses at age 20 under different levels of
adverse selection where family history is not disclosed to insurers with the baseline
assumptions in the whole population. aPAWR: Adjusted Premiums Associated with
Weighted Average Rates Over all Nine Model Sub-populations.
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Weighted Average Rates Over All Nine/Eight Model Sub-populations.
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(a) The top plots show the expected present value of aggregated losses at age

20 under no adverse selection which is consisted with point (c) (i) in Section

8.4. Note that when family history is known to insurers and an individual

purchasing insurance with an appearing proband in the family:

(i) individual should be charged weighted average premium rates over all

eight sub-populations (in HCM families) in Figure 7.4.

(ii) However, as we stated before, (see Sections 1.1 and 7.4.1), we assume

negative test results are disclosed to insurers based on the UK case.

(iii) Therefore, the individuals with negative test results in our model is, as

a baseline assumption, charged weighted average premium rates over all

nine sub-populations in Figure 7.4.

(iv) Doing so under no adverse selection should have lead the distribution of

aggregated losses to have mean>0, which is not consistent with Figure

8.6. This is not happening because we use the aPAWR premium rates as

a baseline (Section 8.6.2). Note that this is conservative for our purposes.

(b) The middle and bottom plots shows the expected present value of aggregated

losses at age 20 under mild and severe adverse selection which are consistent

with point (c) (ii) in Section 8.4. See Table 7.2 for mild and severe purchase

scenarios under adverse selection.

(c) We observe the losses in both figures under no adverse selection are approx-

imately normally distributed around zero. However, with adverse selection,

the estimated mean losses in Figure 8.5 are approximately 2.7 times of those

in Figure 8.6.

8.8 A Measure of Adverse Selection Costs

We discussed through the thesis that we want to model changing behaviour of indi-

viduals under adverse selection and calculate the associated adverse selection costs.
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In this section, we summarise the discussion on adverse selection and introduce a

measure of its costs in our model.

Adverse selection by definition is an ‘asymmetry’ of access to information be-

tween insurers and individuals. In our model, individuals always have ‘more infor-

mation’ about their risks than insurers do under adverse selection because either:

genetic test results are not disclosed to the insurers, but family history is, or; both

genetic test results and family history are not disclosed to insurers. (Note that

negative test results are assumed to be disclosed in our model, see Sections 1.1 and

7.4.1).

Therefore, we assume in the presence of adverse selection (note that in the ab-

sence of adverse selection the expected present value of aggregated losses at age 20

is E [L] = E
[
LH + LN

]
= 0, see equation (8.2)):

(a) The adverse selectors might purchase insurance at a higher rate with the same

benefit as non-adverse selectors. Under adverse selection, the expected present

value of aggregated losses at age 20 with the same sum assured purchased by

all is:

E
[
L∗H + LN

]
> 0, (8.9)

where E
[
L∗H

]
refers to the expected present value of aggregated losses at

age 20 from HCM families under adverse selection. Following Section 6.7 and

Appendix A.1.3, we measure the adverse selection costs as follows:

E
[
L∗H + LN

]
E [I∗H + IN ]

(8.10)

where E
[
I∗H
]

refers to the expected present value of aggregated premium

income at age 20 from HCM families under adverse selection. This ratio can

be interpreted as the proportionate increase in all premiums that would be

necessary to recoup the cost of adverse selection.

(b) The adverse selectors might purchase insurance at a higher rate with a higher

benefit. Then, decompose L∗H into two pieces: L∗H(1), representing the losses

from adverse purchasers (higher rate and higher benefit) in HCM families,
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and L∗H(2), representing the losses from normal purchasers (normal rate and

normal benefit) in HCM families. Apply the same measure in equation (8.10):

E
[
αL∗H(1) + L∗H(2) + LN

]
E [αI∗H(1) + I∗H(2) + IN ]

(8.11)

where the individuals contributing to L∗H(1) purchase insurance of amount α

times the normal sum assured £1.
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Chapter 9

An Adverse Selection Model of

Hypertrophic Cardiomyopathy

(HCM) for Life Insurance III:

Results

9.1 Introduction

Chapter 7 presented the methodology of insurance loss calculations in respect of

an individual in the adverse selection model (Figure 7.1). Chapter 8 extended the

methodology to the whole population with a measure, see Section 8.8, capturing the

adverse selection costs in terms of increased premiums.

This chapter gives the results in respect of our measure in equation (8.10) for £1

sum assured or equation (8.11) for £α sum assured. They are the mean premium

increases (to redeem the mean adverse selection costs) with the 95% quantile inter-

vals (QI, 95%) obtained from 500 simulations of the HCM families where adverse

genetic test results are not disclosed to insurers (negative test results are disclosed

to insurers in our study based on the moratorium in the UK, see Sections 1.1 and

7.4.1). Family history may or may not be disclosed to insurers. Section 9.2 shows

the results under the baseline scenario. Sections 9.3; 9.4; 9.5, and 9.6 show the

results associated with changes in the epidemiological; genetic testing; pricing; and
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behavioural parameters in the baseline scenario. Section 9.7 discusses the results in

terms of which factors (or the model parameters) significantly amplify and diminish

the adverse selection costs.

9.2 Baseline Scenario, sc.0

Label sc.0 in Table 9.1 presents the mean premium increases in the baseline scenario

where all the adverse selection model parameters have the values given in Table 8.1.

(a) The mean premium increases seem very low (especially when family history is

allowed to insurers, it is statistically significant to state that insurers do not

suffer from adverse selection under the baseline scenario) even under severe

adverse selection. They are fractions of one percent.

(b) When family history is not known to insurers, the mean premium increases

are about 2.7 times of those when family history is known to insurers.

Also, in Table 9.2, we present the contributions of the different sub-populations in

HCM families (Figure 7.3) to the mean premium increases under adverse selection in

the baseline scenario. With family history not allowed, only 0.9775% and 0.8644%

of the premium increases under ‘mild’ and ‘severe’ adverse selection respectively

are explained by the late-onset mutations. With family history allowed, late-onset

mutations actually reduce premium increases, and the corresponding contributions

are −6.9075% and −7.2983%. The prevalences of early- and late-onset mutations

are clearly significant for the adverse selection costs, a point that we discuss further

in Section 9.3.3.

9.2.1 A Note on the Decimal Places of the Results

All the results represented in the baseline scenario or the scenarios in the following

sections are rounded to six decimal places; in the underlying calculations, although

they are represented as some percentage to four decimal places.

The mean premium increases under no adverse selection in almost all scenarios

are zero percent to four decimal places due to the small adjustment of premium
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rates described in detail in Section 8.6.2. Note also that in a couple of scenarios, the

mean premium increases under no adverse selection were −0.0001%, zero percent to

three decimal places and they were rounded to be 0.0000%, though they were still

zero percent to four decimal places before they were rounded to six decimal places.

9.3 Epidemiology

This section surveys what epidemiological parameters give significant increases or

decreases to the mean premium increases under adverse selection.

Table 9.3 presents the mean premium increases associated with changes in the

epidemiological parameters in the baseline scenario, sc.0, see Section 9.2.

• Section 9.3.1 describes the scenario labelled by sc.1 in Table 9.3.

• Section 9.3.2 describes the scenario labelled by sc.2 in Table 9.3.

• Section 9.3.3.2 describes the scenario labelled by sc.3 in Table 9.3.

• Section 9.3.4 describes the scenario labelled by sc.4 in Table 9.3.

9.3.1 Higher Mutation Prevalences: sc.1

In respect of Sections 2.5 and 3.7:

(a) The prevalence of clinical HCM in the general population, estimated to be 0.2%

in Maron et al. (1995), was assumed (as a baseline) to be the prevalence of

HCM-related mutations in the general population in this study. Doing so was

conservative for our purposes. Howard (2014) also assumed (as a baseline) that

the prevalence of HCM-related mutations is 0.2% in the general population,

see Section 1.3.

(b) However, Bick et al. (2012) estimated the prevalence of known HCM-related

mutations (0.6%) to be about three times higher than the prevalence of clinical

HCM (0.2%) in the general population. Extrapolating from Bick et al. (2012),

including for unknown mutations (see Section 3.7.2), the prevalence of HCM-

related mutations is estimated as 0.9% in this study.
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(c) From points (a) and (b) above, if clinical HCM is associated with 2/9 of HCM-

related mutations is 0.2%, something is causing the remaining 7/9 ‘silent’

HCM-related mutations. If we are to reproduce the observed incidence of

HCM-related events from selected populations in which clinical HCM is present,

then the penetrance of HCM might have been overestimated in the past. This

would lead the mean premium increases to be reduced under adverse selection

if either positive test result or family history is a strong incentive to purchase

more insurance since the number of adverse selectors is larger, but the number

of the individuals who are clinically affected by HCM does not change.

(d) Moreover, as Maron et al. (2016b) and Husser et al. (2018) showed not everyone

with clinical HCM is diagnosed as having HCM. These studies pointed out

that the prevalence of clinically-diagnosed HCM lies between 0.035–0.07%.

If we had modelled the onset of clinical HCM as a transition into a state,

this would reduce the adverse selection costs, since the early-onset mutation

carriers surviving up to age 20 are assumed all to have clinical HCM at age 20

(F (20) = 1, see Section 3.8.1).

Since the hazard rates of HCM-related events are conditional on the presence

of clinical HCM in the epidemiological literature, we can attribute the difference in

prevalence to reduced penetrance.

As a result, to obtain the same clinical outcomes with the mutation prevalence

of 0.9% as we had with the baseline assumptions (Table 8.1), we should adjust

F (x), the penetrance of HCM, see Sections 3.3.3 and 3.8. Doing so is not trivial

because F (x) is a function depending on age x. Our approach is simply to multiply

F (x) by a constant factor of 22% (≈0.002/0.009) because we have no basis for any

more sophisticated approach. This is crude (but no more so than the conservative

assumption that F (20) = 1 for early-onset mutations).

The results are shown in label sc.1 in Table 9.3. The adverse selection costs

diminish by a factor of about three. The prevalence of ‘silent’ HCM mutations

could be a significant factor for the adverse selection costs.
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9.3.2 The Penetrance of Late-Onset HCM: sc.2

We replace Christiaans et al. (2011) (Figure 3.4) with Terauchi et al. (2015) (Figure

3.5) for the penetrance of late-onset HCM (Section 3.8.2).

The results are shown in label sc.2 in Table 9.3. The adverse selection costs

are not significantly affected because of the small proportion of the contributions of

late-onset mutation carriers to the adverse selection costs, see Table 9.2.

9.3.3 The Proportions of HCM-Related Mutations

9.3.3.1 Late-Onset Mutations

We assume that the late-onset mutations account for 25% of mutations (see Table

3.2). From Table 9.2, we observe that the contributions of late-onset mutations to

the adverse selection costs are very small. The 25% was extrapolated to unknown

mutations. If doing this should be an underestimate, the adverse selection costs

would reduce. Note that we do not model this.

9.3.3.2 Known Mutations: sc.3

We also assume (see Table 3.2) that the known mutations, ignoring unrelated mu-

tations, account for 2/3 (baseline) to 3/4 (sensitivity) of the mutations.

(a) We presented the results in the baseline scenario, sc.0, see Table 9.1, when the

known mutations account for 2/3 of the mutations.

(b) This section shows the results when the known mutations account for 3/4 of

the mutations in the baseline scenario, sc.0, see Table 9.1.

The results are shown in label sc.3 in Table 9.3. This adjustment in the propor-

tions of known and unknown mutations seems to be not significant for the adverse

selection costs. We note the baseline assumption of the same purchase behaviour of

individuals in information classes ζ50 and ζ100 (see Table 7.2) (note that this was

conservative for our purposes). We will re-consider this analysis when we change

the assumption for the purchasing behaviour of the individuals in information class

ζ50 in Section 9.6.
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9.3.4 Higher HCM-Related Mortality: sc.4

In Section 3.9, we discussed the hazard rates of HCM-related endpoints, in particular

the hazard rate of fatal HCM. We also noted that an annual mortality rate of HCM

of qx = 0.01 was widely cited in the literature, see Section 1.5. This was used

in Howard (2014), see Sections 1.3 and 3.9.8, and is considerably higher than our

estimated annual hazard rate of 0.0055. Therefore, similar to Section 9.3.1, we make

a combined assumption by replacing the baseline hazard rate of fatal HCM (0.0055

per annum at all ages) with the sensitivity hazard rate of fatal HCM (0.01 per

annum at all ages), and setting the hazard rate of non-fatal HCM (Table 3.6) to be

zero at all ages.

The results are shown in label sc.4 in Table 9.3. The mean premium increases

are only slightly higher even though we almost doubled the hazard rate of fatal

HCM. This happens either because of our assumption that the hazard rate of non-

fatal HCM is zero while the hazard rate of fatal HCM is 0.01 per annum at all

ages, or the adverse selection costs are dominated by the other factors (or the other

parameters) of the model. Or, the insurer knows and uses the ‘true’ fatal HCM

hazard rate in calculating C1 (see Section 7.4.4) premium rates.

We will consider the other factors of the model such as genetic testing and

pricing in the following sections. However, this epidemiological parameter is quite

important. Partly this is because a life insurance study, and insurers pay benefits

to the policyholders on the event of death. It is partly because Macdonald & Yu

(2011) and Howard (2014) presumably agreed on the majority of difference between

the adverse selection costs reported in both studies was caused by cardiomyopathies

because these disorders showed higher mortality compared to the other disorders in

Howard (2014), see Section 1.1. It is partly because this epidemiological parameter

is subject to selection bias, see point (e) in Section 9.7.2. Therefore, we will probe

the impact of this epidemiological parameter on the adverse selection costs, by doing

a sensitivity analysis in Section 9.7.4.
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9.4 More Genetic Testing

9.4.1 Higher Test Rate in Nuclear Families: sc.5

In Section 4.3.2, we denoted the annual hazard rate of the uptake of the testing

at-risk relatives after an appearing proband in the family by µx,z where x is age

and z is duration in years in an untested state since the appearance of a proband in

the family. See equation (4.1) showing we assume (as a baseline) µx,z = 0.6931472

where 0 < z ≤ 1, equivalent to 50% of at-risk relatives being tested in one year after

a proband appearing in the family; otherwise, zero. We consider in this section an

higher rate of µx,z = 4.60517 where 0 < z ≤ 1, equivalent to 99% of at-risk relatives

being tested in one year after a proband appearing in the family; otherwise, zero.

The results are shown in label sc.5 in Table 9.4.

(a) When family history is not disclosed to insurers, the adverse selection costs

are almost identical since our baseline assumption of that the individuals in

information class ζ50 behave, in terms of purchasing insurance, in the same

way as those in information class ζ100 (see Table 7.2). This assumption is

relaxed in Section 9.6.

(b) When family history is disclosed to insurers:

(i) The adverse selection costs are higher because we calculate premium rates

as if negative genetic test results are not disclosed to the insurers (see

point (a) in Section 8.7). But as we follow the UK case in which nega-

tive test results are disclosed to the insurers, see Sections 1.1 and 7.4.1,

negatively tested individuals in our model are charged less than they are

supposed to be when family history is known to insurers.

(ii) As a result, the increased hazard rate of the uptake of genetic testing

brings more negatively tested individuals giving the adverse selection

costs to increase.

(iii) Note that the increased hazard rate of genetic testing brings more pos-

itively tested individuals, as well. However, since we keep our baseline
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assumption for the purchase behaviour of information class ζ50, see point

(a) above, we would not expect to see any impact of more positively

tested individuals on the adverse selection costs.

9.4.2 The Extension of Testing Beyond Nuclear Families:

sc.6− sc.8

We noted, in Sections 5.1 and 5.3.1, that this study models only nuclear families.

However, we can increase λ, the average number of children per family, see Section

5.6.1, as a proxy of cascade genetic testing (Section 4.2) spreading beyond the nuclear

family. This means that a single proband exposes more at-risk relatives to take up

genetic testing. In this case, each family has a larger number of children (the first

generation), however, the results are still reasonable since the nature of cascade

genetic testing implies any relative before taking up the testing is known to be a

mutation carrier with 1/2 probability.

The results are shown in labels sc.6, sc.7, and sc.8 for λ = 3.0, 5.0, and 7.0,

respectively in Table 9.4. The last of these increases the adverse selection costs by

a factor of 2.5. This is an approximation of ‘cascading’ genetic testing from the

proband’s family into roughly three other related nuclear families.

Moreover, it is fair to note that more genetic testing would bring more individuals

into treatment for HCM, and, if effective, this would reduce mortality. See point (f)

in Section 9.7.2.

9.5 Pricing

This section surveys what pricing parameters give significant increases or decreases

to the mean premium increases under adverse selection.

Table 9.5 presents the mean premium increases with changes in the pricing pa-

rameters in the baseline scenario, sc.0, see Section 9.2.

• Section 9.5.1 describes the scenario labelled by sc.9 in Table 9.5.

• Section 9.5.2 describes the scenarios labelled by sc.10− sc.12 in Table 9.5.
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Chapter 9: An Adverse Selection Model of Hypertrophic Cardiomyopathy (HCM)
for Life Insurance III: Results

9.5.1 A Smaller Life Insurance Market: sc.9

Our baseline assumption of normal purchase (hazard) rate per annum at ages 20–60

is 5%, representing a large life insurance market (Macdonald & Yu 2011) (Sections

7.4.5 and 7.5.1). Here we consider a smaller normal purchase (hazard) rate per

annum at ages 20–60 of 1%, representing a smaller life insurance market.

The results are shown in label sc.9 in Table 9.5. We observe significant increases

in the mean premium increases, approximately 1.6 and 6 times of those in the

baseline scenario under mild and severe adverse selection. The smaller purchase

rate causes the adverse selection costs to increase due to a smaller proportion of

non-HCM families purchasing insurance.

A similar effect would have been achieved by having a higher purchase rate

combined with a significant lapse rate. In Section 10.5, we model lapse with the

assumed lapse rates in Howard (2014) (see Section 10.2.3).

9.5.2 Higher Sums Assured: sc.10− sc.12

The adverse selection costs, in Gutiérrez & Macdonald (2004), were very nearly

proportionate to any increase in the sum assured taken out by adverse selectors

because the expected present value of the actuarial losses in each underwriting class

defined there were zero under no adverse selection. Therefore, the effect of larger

sums assured, when adverse selection arises in one or more of these underwriting

classes, could be computed as a multiple of the results obtained with £1 sum assured.

Here we measure differently the impact of higher sums assured, see equation

(8.11). In our case, it was not possible to partition states into fixed underwrit-

ing classes since the underwriting classes depend on the random appearance of a

proband. Thus, for large α, the term αL∗H(1) in the numerator in equation (8.11)

where α represents higher sum assured and L∗H(1) represents the losses from adverse

selectors, who purchase insurance at a higher rate, in HCM families, dominates the

numerator in the equation. Note that the dominator in equation (8.11) is dominated

by IN , representing the premium income from non-HCM families, the majority of

the population.
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We also assume that the individuals in information classes ζ100 and ζ50 who

purchase insurance purchase the same benefit. (Howard (2014) assumed that the

normal sum assured was $100, 000, and adverse selectors purchased sums assured of

10 times of the normal sum assured, $1, 000, 000. See Sections 1.3 and 10.2.2).

The results are shown in labels sc.10, sc.11, and sc.12 in Table 9.5 in respect of

purchase of sum assured £2, 4, and 10 in information classes ζ100 and ζ50 while the

rest purchase the normal sum assured of £1. Due to the reasoning from equation

(8.11), the mean premium increases are higher than in proportion to the sum assured.

9.6 Information Classes: sc.13− sc.16

We assume (as a baseline) that the individuals in information class ζ50 would behave

in the same way as those in information class ζ100, which was conservative for our

purposes. See Table 7.2. Here we relax this assumption and consider different

behaviours of the individuals in information class ζ50.

The results are shown in labels sc.13, sc.14, sc.15, and sc.16 in Table 9.6.

(a) When family history is not allowed to insurers, and where the individuals in

information class ζ50 purchase at the normal rate under mild or severe adverse

selection, the adverse selection costs diminish by a factor of about three. Some

of the results in Table 9.6 are not applicable (n/a) because we assume there

is no reason that the individuals in information class ζ50 would purchase at

a lower rate than normal, when there is only one underwriting class but this

might happen when family history is disclosed because the premium rates are

increased, based on the family history available to insurers, which is considered

in what follows.

(b) When family history is allowed to insurers, and where the individuals in in-

formation class ζ50 purchase at the normal rate under mild or severe adverse

selection, the adverse selection costs diminish by a factor of about 1.6. If these

individuals purchase at a lower rate than normal under mild or severe adverse

selection, the adverse selection costs diminish more. The most eye-catching
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result is that the adverse selection costs is almost zero when these individuals

in information class ζ50 do not purchase at all under mild adverse selection.

As a result, normal or decreasing purchase rate of the individuals in information

class ζ50 under adverse selection seems to be a significant factor diminishing the

adverse selection costs. Note that we do not consider different sums assured in

respect of information classes ζ50 and ζ100 under adverse selection. Doing so was

conservative for our purposes. We will return to this discussion on the purchased

sum assured in information classes ζ50 and ζ100 in point (a) in Section 9.7.2.

9.7 Discussion

9.7.1 Factors Amplifying Adverse Selection Costs

We summarise here the significant factors amplifying adverse selection costs based

on the results in the earlier sections in this chapter.

(a) Unavailability of family history. As we already noted that inability to use

family history in underwriting amplifies adverse selection costs considerably,

by a factor of about 2.7 in the baseline scenario, sc.0, Section 9.2. Though,

the adverse selection costs are still very small.

(b) More genetic testing. We obtained more genetic testing in two directions:

either a higher test rate in nuclear families (Section 9.4.1) or the same test rate

beyond nuclear families (Section 9.4.2) (note that we do not model a higher

test rate beyond nuclear families because of the reason in point (i) below).

(i) The first of these does not amplify adverse selection costs because of the

assumption of the same purchase behaviour of information class ζ50 as

information class ζ100 (note that this assumption was conservative for our

purposes),

(ii) The second of these amplifies adverse selection costs considerably, by

a factor of 2.5 when we approximate cascade genetic testing from the

proband’s family into roughly three other related nuclear families.
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(c) A smaller life insurance market. Replacing the 5% annual purchase rate,

representing a large market, with a 1% annual purchase rate, representing a

smaller market amplifies adverse selection costs considerably, by a factor of

1.6 and 6 under mild and severe adverse selection, respectively. See Section

9.5.1. We also noted that a similar effect can be obtained by modelling lapse

with a significant lapse rate in a large market, see Section 10.5.

(d) Higher sums assured. Adverse selectors insuring themselves at higher than

the normal sum assured (£1) amplifies adverse selection costs, considerably.

See Section 9.5.2.

(e) Higher HCM-related mortality. It is interesting to observe that increases

in adverse selection costs in a large market are small when we almost doubled

the annual hazard rate of HCM-related mortality. It might happen because

we also made the annual hazard rate of non-fatal HCM zero at all ages. Or, it

might happen the other model parameters (such as behavioural), in terms of

purchasing insurance, are more influential than this epidemiological parameter.

Or, the insurers use the ‘true’ fatal HCM hazard rate in calculating C1 (see

Section 7.4.4) premium rates. See Section 9.3.4. Thus, we do a sensitivity

analysis to understand in a broader perspective of the impact of fatal HCM

on adverse selection costs. See Section 9.7.4.

9.7.2 Factors Diminishing Adverse Selection Costs

In this section, we do two things: We summarise the factors diminishing adverse

selection costs based on the results in the earlier sections in this chapter. We also

consider other factors, diminishing adverse selection costs, not explicitly modelled

that actuaries should be aware of.

(a) Information classes. We consider the purchase behaviour in information

class ζ50. Assuming (as a baseline) that the purchase behaviour of the indi-

viduals in information class ζ50 is the same as those in information class ζ100

was conservative for our purposes. In reality, we really do not know how the
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individuals in information class ζ50 would behave in terms of purchasing insur-

ance since they know only that they carry a mutation with 50% probability.

Section 9.6 showed that a lower purchase rate of the individuals in information

class ζ50 than those in information class ζ100 reduces adverse selections costs,

considerably. Moreover, we did not consider a case such that the individuals

in information class ζ50 purchase a lower sum assured than the individuals in

information class ζ100. For example, in Table 9.5, we assumed the individuals

information class ζ50 purchase the same sum assured as those in information

class ζ100 (this was our baseline for the sums assured in both information

classes). See label sc.12 in Table 9.5 where the individuals in information

classes ζ50 and ζ100 both purchase insurance at the same sum assured which is

10 times higher than the normal sum assured of £1. Doing so was also conser-

vative for our purposes. In reality, would the individuals in information class

ζ50 purchase at the very high sum assured (such as £10) since they only know

that they have a 50% chance to carry the mutation? Would it be thought as

a good financial investment for the individuals in information class ζ50?

(b) Higher mutation prevalences. This topic is a central part of this study,

since it emphasises that actuaries should pay attention to the biases of epi-

demiological data of two kinds, see points (i) and (ii) below, and Section 9.3.1.

For example, in HCM,

(i) Prevalence of ‘silent’ mutations. Bick et al. (2012) estimated the

prevalence of HCM-related mutations in the general population to be

much higher than previously thought, based on a study by Maron et al.

(1995), which for used on the prevalence of clinical HCM in the general

population. The difference between these two studies show that there is

something causing a significant proportion of the mutations to be ‘silent’.

And, modelling this diminishes adverse selection costs considerably, by a

factor of about three. See point (c) in Section 9.3.1.

(ii) Modelling a state of the onset of clinical HCM. Recent studies

(Maron et al. (2016b) and Husser et al. (2018)) relying on large databases
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of reported cases of clinically affected HCM patients found that the preva-

lence of clinically-diagnosed HCM (0.035–0.07%) in the general popula-

tion is much less than that of clinically-present HCM (0.2%). Modelling

this would reduce the adverse selection costs since we assume F (20) = 1

for early-onset mutation carriers. See point (d) in Section 9.3.1.

(c) The proportion of late-onset mutations. This is related to our extrapola-

tion for the unknown mutations relying on the proportion of known mutations.

If our extrapolation is an underestimate, then we would observe decreases in

adverse selection costs had we modelled them. See Section 9.3.3.1.

(d) The manner of cascade testing for clinical HCM. In our model, we as-

sume that when a proband is tested and carries a known mutation, all at-risk

relatives are offered genetic testing and may then purchase insurance. The

model does not allow underwriters to acquire any other information. For ex-

ample, after a proband appears in the applicant’s family before purchasing

insurance, clinical diagnosis of the applicant (or at-risk relatives) with HCM

as a pre-existing condition by imaging machines (Section 2.2.2). This could

also include symptomatic patients seeking insurance, without a clinical diag-

nosis of HCM. In order to purchase insurance informed by a genetic test result

and nothing else, events would have to follow a very particular, and perhaps

unlikely, order. We have, in effect, assumed that this is always the case, which

is extreme. Furthermore, our approach would still be regarded as reasonable,

if all patients received and followed the advice given by the genetic counsellors

referred to in Lane et al. (2015) as follows: “In our study, counselors commonly

recommended that patients secure all insurance needs before undergoing ge-

netic testing” but also that “Generally, counselors reported advising patients

that family history of diseases may have a greater impact on their insurability

than genetic test results”.

(e) Allowance for selection bias. Our study, or similar studies, relies on the

genetic epidemiological literature, which evolves. Earlier studies revealing the
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substrate of a genetic disorder were based on small numbers of affected in-

dividuals or families and high mortality rates were observed. Over time, we

obtained the results of larger samples of less affected individuals, but who were

still selected, which resulted in estimated mortality rates still overestimated

as a result of selection bias. Carrying out population-based studies associated

with genetic disorders is difficult since these disorders are relatively rare in

the general population. Such studies based on genotype are still rarer, but

evolving, compared to those based on the associated phenotype. There is no

doubt that HCM is a good case study illustrating the evolving understanding

of genetic disorders. For example, in Section 2.4.4, we showed that the 3–6%

estimated HCM-related annual mortality rates between 1958–1990 dropped

to the widely-cited annual mortality rate of about 1% when the manner of

selection bias was significantly reduced. In the most recent studies, see also

Section 3.9.7, the HCM-related annual mortality was even estimated to be

about half of 1%. We also noted that, in Section 2.5.2, only four of twenty-

two tested persons who carried a known HCM-related mutation had clinical

HCM in Bick et al. (2012). They said in their paper: “This might reflect a

lower sensitivity of population screening echocardiograms or a lower disease

penetrance in the general population compared to previously studied HCM fam-

ilies” (emphasis added). Earlier actuarial studies conducted on genetics and

insurance discussed the bias, namely ascertainment bias, resulting from the

results of studies that only studied families and individuals which cause to the

attention of epidemiologists. Lemaire et al. (2000) said (emphasis added):

“The results of our research should be applied with caution. They are based on the

most recent data available from the medical literature, but new medical articles are

published regularly that often provide very different estimates of BC and OC risks,

depending on the demographic group studied. For instance, estimates of the lifetime

probability of developing ovarian cancer for a woman with a BRCA1 mutation range

from 11% to 84%. Also, there might be a systematic bias in medical studies due to

the selection of the sample, usually families with a strong family history ”.

176



Chapter 9: An Adverse Selection Model of Hypertrophic Cardiomyopathy (HCM)
for Life Insurance III: Results

Moreover, Macdonald et al. (2003b), a study of the impact of breast and

ovarian cancer on critical illness insurance suggested reducing estimated onset

rates by as much as 50% to 75% with regard to this bias. Note that we have not

done so in our model. In Section 9.7.4, in the sensitivity analysis of fatal HCM,

we present examples of selection bias in HCM in terms of the hazard rate of

fatal HCM. In respect of all the sources of potential bias in the epidemiological

studies, we are inclined to regard every value for premium increases we have

calculated as likely an overstatement.

As a result, in Table 9.10, we present several examples of the impact of selection

bias on the hazard rate of fatal HCM.

(f) Improved treatment of HCM. Even though we do not model the onset of

HCM as a state in the adverse selection model, some might argue that the

treatment of HCM will continue to improve and that will be another factor

reducing mortality. Even if we ignore future developments in the treatment

techniques, better diagnosis of clinical HCM would bring treatment to more

individuals with HCM, so that will reduce mortality. If this were the case, the

mean premium increases in Table 9.4 might be overstated.

9.7.3 Alternative Scenarios: sc.17− sc.20

Based on our analysis of the significant factors (the model parameters) for adverse

selection costs in Sections 9.7.1 and 9.7.2 above, we consider the combinations of

these parameters in this section.

(a) In Table 9.7,

(i) label sc.17 (a smaller market with mutation prevalence of 0.9%, and ‘ad-

verse selectors’ taking out the average sum insured), and

(ii) label sc.18 (a large market with mutation prevalence of 0.9%, and ‘adverse

selectors’ taking ten times the average sum insured)

present the results of the combination of higher mutation prevalence (mutation

prevalence being larger than the prevalence of clinical HCM, see point (b)
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(i) in Section 9.7.2) in a smaller market where adverse selectors purchase the

normal sum assured of £1 and a large market where adverse selectors purchase

10 times the normal sum assured of £1, see points (c) and (d) in Section 9.7.1

respectively.

A comparison of the results in labels sc.17 and sc.18 with those in labels sc.9

and sc.12 (the same assumptions in labels sc.17 and sc.18 but with mutation

prevalence of 0.2%) in Table 9.5, respectively, shows that the prevalence of

‘silent’ HCM mutations diminish the adverse selection costs by a factor of

about three. This conclusion overlaps with the conclusion of Section 9.3.1.

(b) Label sc.19 in Table 9.7 presents the results of the combination of a smaller

market and high sums assured with mutation prevalence of 0.2%, see points

(c) and (d) in Section 9.7.1 respectively. This scenario only focused on the

impact of two combined significant pricing parameters, where adverse selectors

purchase £10 sum assured in a smaller market, on the adverse selection costs,

and found that increases in the adverse selection costs are somewhat high

relative to those observed in the other scenarios.

Additionally, we present the results of a scenario, see label sc.20 in Table 9.8,

consisting of a combination of the extreme values of the significant factors rais-

ing the adverse selection costs to considerable increases, namely the extreme case

scenario. This scenario included assumptions of a smaller market, with mutation

prevalence of 0.2%, extensive cascade genetic testing (λ = 7.0), ‘severe’ adverse

selection and ‘adverse selectors’ taking ten times the average sum insured. This

helps us to understand an approximate upper limit of adverse selection costs under

extreme circumstances.

9.7.4 Sensitivity Analysis of Fatal HCM: sc.21− sc.28

We present a sensitivity analysis of fatal HCM as follows:

(a) We first consider the magnitude of this epidemiological parameter in a smaller

market, see label sc.21 in Table 9.9, where the annual hazard rate of fatal and
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non-fatal HCM is 0.01 and zero respectively. We presented the results of the

same assumptions in a large market shown in label sc.4 in Table 9.3.

A comparison of the scenario labelled by sc.21 with label sc.9 (a smaller market

with the annual hazard rate of fatal and non-fatal HCM is 0.0055 and Table

3.6 respectively) in Table 9.5 shows that the impact of this adjustment on the

mean premium increases is similar to that of the large market.

(b) In the scenario labelled by sc.4 in Table 9.3 (Section 9.3.4), we increased

the annual hazard rate of fatal HCM at all ages from 0.0055 to 0.01, but

we decreased the annual hazard rate of non-fatal HCM at all ages (Table

3.6) to zero. We observed that the adverse selection costs increase slightly

compared to those in the baseline scenario, sc.0, see Table 9.1. However, a

better comparison of sc.4 is the combination of the values of 0.0055 and zero

for the annual hazard rate of fatal and non-fatal HCM, respectively.

The results are shown in label sc.22 in Table 9.9. The mean premium increases

in sc.4 are 2.5 times of those in sc.22 under severe selection, even though they

are still very small in both scenarios (sc.4 and sc.22). It seems that modelling

non-fatal HCM stands as a significant factor for the adverse selection costs.

(c) We give examples of the adverse selection costs under the different circum-

stances of selection bias of the hazard rate of fatal HCM (see point (e) in

Section 9.7.2)

The results are shown, when the insurer calculates premium rates assuming

that the annual hazard rate of fatal and non-fatal HCM are 0.01 and zero

respectively, when in reality two kinds considered:

(i) the annual hazard rate of fatal and non-fatal HCM are 0.0055 and Table

3.6 in labels sc.23, sc.25, and sc.27 in Table 9.10;

(ii) the annual hazard rate of fatal and non-fatal HCM are 0.0055 and zero

in labels sc.24, sc.26, and sc.28 in Table 9.10.

The results are striking, especially when family history is allowed, because

insurers might profit under adverse selection.
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Chapter 10

Comparison with Howard (2014)

10.1 Introduction

Howard (2014) models 13 genetic disorders (including HCM) for the Canadian life

insurance market in which genetic test results are assumed not to be disclosed to life

insurers. The model estimates the benefit claim costs and changes in the overall mor-

tality experience because of adverse selection in the Canadian life insurance industry.

This chapter discusses the main aspects of the model in Howard (2014) such as the

model parameters, assumptions, and insurance costs in respect of HCM, in com-

parison with our model. Section 10.2 describes the baseline assumptions in respect

of HCM in Howard (2014). Section 10.3 exhibits the actuarial models calculating

the benefit claim costs and overall mortality experience under adverse selection in

Howard (2014). Section 10.4 compares Howard (2014) with our study. Section 10.5

models lapses which appeared in Howard (2014), but have not considered in our

model, so far.

10.2 Howard (2014): Baseline Assumptions

10.2.1 Prevalence, Penetrance and Mortality

The prevalence of HCM-related mutations is assumed to be 0.2% in the general

population. (The size of the Canadian population is assumed to be 35 million.)
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The penetrance of a genetic disorder is identified by the probability of a mutation

carrier developing the associated disorder and being exposed to its mortality risk.

This probability for HCM-related mutation carriers is assumed to be 69%.

Moreover, the mortality is classified in respect of the underwriting terms: ‘sub-

standard’ (the mortality rate after the phenotype has developed) and ‘standard’ (the

mortality rate in the absence of the phenotype). In other words, the individuals in

the sub-standard group have higher mortality rates than those in the standard group.

The annual mortality rate of HCM is assumed to be qx = 0.01, see Sections 1.3 and

3.9.8, in all years after phenotype has developed. This is treated as a flat addition

to the mortality rates of the standard group, the CIA 97-04 mortality tables.

Note that except for inherited breast cancer, the risks associated with the genetic

disorders are assumed to be not gender-related.

10.2.2 Genetic Testing and Insurance Purchase

Since insurers are assumed not to be allowed to use genetic test results, it is assumed

that 75% of the individuals who tested positive for any of the genetic disorders in-

cluded in the model would attempt to purchase life insurance at $1 million sum as-

sured (a ‘normal’ sum assured of $100,000 is assumed to be already in force, therefore

positively-tested individuals are assumed to purchase an additional $900,000 sum

assured). However, the model had more parameters associated with genetic testing

such as the following.

(a) ‘Predicted’ is a model parameter referring to the proportion of positively tested

individuals assumed to be detected in the underwriting process based on fam-

ily history or early manifestation of the disorders at the time of insurance

purchase. This proportion is 50% for HCM.

(b) ‘Tested’ is a model parameter referring to the proportion of the mutation car-

riers taking up genetic testing at an assumed average age. All the individuals

supposed to be carrying the mutations causing these disorders are assumed to

take up genetic testing at an average age specific to each genetic disorder in

the model. This average age is 25 for HCM.
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10.2.3 Lapse Rate

Except for Long QT syndrome, the lapse rate for the sub-standard and standard

group is assumed to be 0.5% and 3% per annum in all years, respectively. See

Section 10.5.2.

10.2.4 Interest Rate

The interest rate is assumed to be 4% per annum in all years.

10.2.5 Other

Other baseline assumptions such as the declination rate of insurance applicants, rep-

resentative policy, conversion and expenses will not be significant for our purposes.

10.3 Howard (2014): Models and Results

10.3.1 The Cost Sub-model

The cost sub-model calculates the expected present value of the additional benefit

claim costs under adverse selection. It compares the estimated adverse selection

costs with $3.5 billion, the total amount of individual death claims in the Canadian

life insurance industry in 2012.

(a) Under baseline assumptions, the expected present value of adverse selection

costs is about 12% (or exactly 11.6%) ($405,455,952) of the total claim costs

arising from all life insurance products in Canada ($3.5 billion). Also about

22% ($89,187,658) of the 12% is explained by HCM, which was the second high-

est single contribution to the costs. For comparison, only 1.3% ($5,363,834)

of the 12% is explained by inherited breast cancer.

(b) Moreover, the expected present value of adverse selection costs as a percentage

of the total claim costs would be:

(i) 9.6% if the interest rate is 5% (instead of 4%);
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(ii) 8.7% if 75% of the mutation carriers are tested (instead of all);

(iii) 11.7% if the standard group lapse rate is 0.5% (instead of 3%).

(iv) 12.9% if the sub-standard group lapse rate is 0% (instead of 0.5%); and,

(v) 12.9% if $1M additional sum assured is purchased (instead of $900K).

Note that these results were not shown separately for each genetic disorder as

was done in the baseline scenario.

(c) Changes in the other model parameters such as expenses, declination rate, or

premium rates give similar adverse selection costs in the baseline scenario, but

mostly in a lower degree.

10.3.2 The Experience Sub-model

The experience sub-model calculates the expected increases in mortality rates with

regard to the CIA mortality tables in which insurers classify mistakenly individuals

in the sub-standard group as being in the standard group under adverse selection.

Under baseline assumptions, the overall mortality experience could increase by

43.8% (36% for males and 58% for females at ages 20–60). This figure would:

(a) decrease to the lowest level of 33.3% with the same change in the proportion

of the mutation carriers being tested in point (b) (ii) in Section 10.3.1.

(b) increase to the highest level of 48.4% with the same change in the sum assured

in point (b) (v) in Section 10.3.1.

10.3.3 An Alternative Scenario

In an alternative scenario, Howard (2014) estimated the adverse selection costs in

which genetic test results are not disclosed to insurers up to $100,000 sum assured.

Also, 25% of tested positive individuals are assumed to have already purchased an

insurance sum assured of more than $100,000 or have not purchased any at all. It is

observed that the additional claim costs are about 1.8% of the total claim costs and

the overall mortality experience could increase by 3% for males and 8% for females.
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Table 10.1: Percentage increases in premium rates associated with a change in
the force of interest in the baseline scenario, sc.0, in our model, see Table 9.1. sc:
Scenario.

Force of Adverse %Mean Premium Increases (QI,95%)
Interest Selection Family History: 7 Family History: X

sc.0 0.05 None %0.0000 (−0.0239, 0.0245) %0.0000 (−0.0250, 0.0242)
Mild 0.0259 (0.0025, 0.0503) 0.0094 (−0.0145, 0.0349)
Severe 0.0550 (0.0294, 0.0786) 0.0198 (−0.0071, 0.0436)

sc.29 0.04 None 0.0000 (−0.0218, 0.0230) 0.0000 (−0.0227, 0.0228)
Mild 0.0232 (0.0017,0.0460) 0.0084 (−0.0131, 0.0317)
Severe 0.0482 (0.0255,0.0699) 0.0174 (−0.0062, 0.0390)

These results are much less compared to those in the baseline scenario in Howard

(2014).

The author applies this scenario is presumably because the Canadian law (GNDA)

(Section 1.1) prohibiting insurers to use genetic test results; which were not specifi-

cally for insurers, and did not determine a threshold sum assured at which genetic

test results are not disclosed to insurers.

10.4 Comparison

Our baseline adverse selection costs are very small (Section 9.2). Since there is no

data available to parametrise the behavioural parameters in terms of purchasing

insurance, the parametrisation of the majority of these parameters was conjectural.

On the other hand, the parametrisation of the epidemiological (or biological) pa-

rameters may, even based on the epidemiological studies of HCM, lie within some

reasonable range. Varying the model parameters may increase or decrease the ad-

verse selection costs. This comparison seeks out factors that may increase the costs.

This comparison is needed due to the disparity between Macdonald & Yu (2011)

and Howard (2014) in terms of the reported adverse selection costs (Section 1.1).

The largest part of the costs in Howard (2014) were explained by cardiomyopathies

in which they were not modelled in Macdonald & Yu (2011). Direct comparison of

both models is not possible; however, it would be useful to compare the percentage

premium increases caused by HCM in Howard (2014) with those in our study.
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(a) Point (a) in Section 10.3.1 suggests that increased premiums of about 2.5%

caused by HCM in Howard (2014) is roughly equivalent to our model.

(b) Section 10.2.1 presents the assumptions for the epidemiological (or biological)

parameters in Howard (2014). Our baseline assumptions do not significantly

differ from these except that the annual mortality rate which we assume is

about the half of qx = 0.01 Howard (2014) assumed, see Sections 1.3, 3.9.8, and

10.2.1. Fortunately, it turned out the adverse selection costs by this difference

are not substantial (Section 9.3.4). Although this section does not seek out

factors that diminish adverse selection costs, bear in mind that modelling the

prevalence of ‘silent’ mutations (Section 9.3.1) reduced the adverse selection

costs considerably, by a factor of about three in our study.

(c) Section 10.2.2 presents the assumptions for the pricing parameters (or be-

havioural parameters) associated with the individuals with positive genetic

test results in Howard (2014). In our study (see Chapter 9), we assumed 5%

and 1% for ‘annual hazard rate of normal purchase’ in a large insurance market

and a small market, respectively. In both cases, under severe adverse selection,

we increase the normal purchase rate per annum to 25%, as Macdonald & Yu

(2011) noted that “this assumption is deliberately high; it implies that about

91% of at-risk people would buy insurance in 10 years in both large and small

markets”. This might be a good comprasion with Howard (2014)’s assumption

of the purchase rate of the adverse selectors shown in Section 10.2.2; moreover,

Howard (2014) also assumed that adverse selectors would purchase insurance

at $1,000,000 sum assured, larger by a factor ten than the $100,000 normal

sum assured. Label sc.12 in Table 9.5 for a large market and label sc.19 in

Table 9.7 for a smaller market show the results in our model (with mutation

prevalence of 0.2%) in which adverse selectors purchase insurance at £10 sum

assured, larger by a factor of ten than £1 normal sum assured.

(d) Howard (2014), see Section 10.2.3, modelled lapses that we did not model

so far. However, having a smaller insurance purchase rate in our model, see
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Section 9.5.1, would achieve a similar effect to the combination of a higher

insurance purchase rate with a notable lapse rate. Thus, the results in label

sc.9 in Table 9.5 gives a fairer comparison with Howard (2014) rather than the

results in the baseline scenario labelled by sc.0 in Table 9.1. However, we will

model lapses (Section 10.5) in respect of the reported lapse rates in Howard

(2014) (Section 10.2.3), for a closer comparison.

(e) Howard (2014), see Section 10.2.4, assumed the interest rate to be 4% per

annum in all years. We replace the 0.05 baseline force of interest per annum by

0.04 in the baseline scenario, sc.0, see Table 9.1 in our model. The results are

shown in Table 10.1. The adverse selection costs do not significantly change.

(f) In Sections 10.3.1 and 10.3.2, we reported the sensitivity analysis for the benefit

claim costs and the overall mortality experience, respectively, undertaken in

Howard (2014). In Section 10.3.3, we presented an alternative scenario in

Howard (2014) in which insurers are assumed to be allowed to have genetic

test results for sums assured higher than $100,000.

None of the results, either in the sensitivity analysis or the alternative scenario

in Howard (2014) was reported separately for HCM. However, the sensitiv-

ity tests did not change adverse selection costs by much, but the alternative

$100,000 ‘ceiling’ scenario did.

10.4.1 Highlights

In this section, we highlight some important points in this comparison. Our results

include a range of scenarios (Chapter 9) compared to Howard (2014)’s one scenario

(baseline), subject to some rather minor sensitivity analysis.

(a) Howard (2014) does not consider at all the status and current stage of evolution

of the HCM literature as we did in this study.

(b) Howard (2014) considers only extreme sums assured such as adverse selectors

purchase insurance at 10 times of the normal sum assured. In our study, 2

and 4 times of the normal sum assured for adverse selectors were considered.
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State i0
Untested

Uninsured

State i1
Untested

Insured

State i2
Tested

Uninsured

State i3
Tested

Insured

State i4
Untested-Insured

Lapse

State i5
Tested-Insured

Lapse

State i6
Uninsured

Non-Fatal HCM

State i7
Untested-Insured

Non-Fatal HCM

State i8
Tested-Insured

Non-Fatal HCM

State i9
Insured-Non-Fatal

HCM Lapse

State i10
Other

Dead

State i11
Fatal

HCM

µi01x µi02x,z µi23x

µi14x µi35xµi06x µi26x

µi46x µi56x

µi79x µi89x

µi17x µi38x

µij10x µij11x

Figure 10.1: A mathematical model, including lapse, of adverse selection in HCM
of a person in the ith of several sub-populations defined by HCM genotype in a life
insurance market. In µi02

x,z, z refers to duration in state i0 since (if) a proband exists
in the family.

10.5 Modelling Lapses in Hypertrophic Cardiomy-

opathy (HCM) for Life Insurance

10.5.1 The Lapse Model

In this section, we model lapses. Lapsing means that a policyholder ceases the

insurance policy by not continuing to pay premiums due for the rest of the policy

term, and abandons in turn the benefits of the policy.

In Figure 10.1, we present a mathematical model, including lapse state(s), of

adverse selection in HCM in a life insurance market, called the lapse model.

The lapse model is similar to the adverse selection model (Chapter 7) in that

it keeps all the sub-populations in the adverse selection model together with their

subdivisions into the HCM and non-HCM population and families, see Figures 7.2

191



Chapter 10: Comparison with Howard (2014)

and 7.3, respectively. On the other hand, the state space is increased in each sub-

population by adding the new model states, namely lapse state(s) (note that the

state space is same for each sub-population).

The methodology of the lapse model in terms of parametrising the model by the

transition intensities; computing the occupancy probabilities from these intensities;

and calculating actuarial losses in the model was largely described in Chapters 3, 5,

7, and 8 so we do not go into detail here, except the following new features of the

lapse model.

(a) Note that the transitions out of the dashed box in Figure 10.1 represent the

fact that an individual can move into a death state from any model state at

any time.

(b) Note also that lapses can be modelled in several ways. For example, an insurer

might agree to pay back some sum assured or a cash value to the policyholder

as a return of the policyholder’s contribution since the inception of the policy

(Dickson et al. 2013). Also, a policyholder might re-purchase insurance after

some time has elapsed (Subramanian et al. 1999). These are not considered

in the lapse model.

(c) Here, instead, we model lapses, as we modelled changing purchase behaviour

of the individuals in HCM families, after family history appears (there is a

proband in the family) or a genetic test result known to the individuals (Chap-

ter 7). Doing so is consistent with the aim of our study.

Therefore, we adopt the information classes defined in the adverse selection

model, see Section 7.5.1. See also Tables 7.3 and 7.4 in which we present the

information classes for each family member in an HCM family based on the

events in the family. The definition of the information classes in the lapse

model is the same as for the adverse selection model.

For example, suppose a person is in an HCM family, with no family history

(such as no proband in the family), neither tested nor yet having purchased

insurance (or in the untested-uninsured state). Then the information class of
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this person is ζn. After that the person purchases insurance with no family

history having appeared nor having being tested, so this person is still in the

information class ζn. Then the carrier parent of the person becomes a proband

in the family. Then this person is now in information class ζ50. And the lapse

behaviour might change based on this. See Section 10.5.2 for the assumed

behavioural parameters for lapse under different information classes. Note

that a person in state i7, untested-insured non-fatal HCM is assumed to be

in information class ζ100 since HCM clinically exists now and lapse behaviour

might change based on that.

In Figure 10.2, we represent the life history of the individuals in risk sub-

population i = 0. These individuals are always members of non-HCM families,

as their rates of insurance purchase, and lapse always normal. The unshown

transition intensities can be found in Figure 7.6.

The life history of an individual in an HCM family based on the lapse decisions

of this individual is shown in Figures 10.3, 10.4, 10.5, and 10.6. The lapse

transition intensities in these figures correspond to the information classes

and the unshown transition intensities can be found, respectively, in Figures

7.7, 7.8, 7.9, and 7.10.

10.5.2 The Parametrisation

We follow the reported lapse rates in Howard (2014), consistent with the aim of this

chapter. As we stated in Section 10.2.3, Howard (2014) categorises the lapse rates

in two categories:

(a) The lapse rate of ‘sub-standard’ lives, representing the mutation carrier indi-

viduals exposed to higher mortality (after the phenotype has developed) might

have a lower than normal lapse rate, depending on the information they have.

In the lapse model, this lapse rate applies to insured individuals in information

classes ζ50 and ζ100.

(b) The lapse rate of ‘standard’ lives, representing the non-mutation carrier indi-
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Table 10.2: Hazard rates of lapse per annum at ages 20–60, relying on the reported
lapse rates in Howard (2014), depending on the information class of insured person
in the lapse model. ζn: No knowledge of any HCM risk in the family/a non-carrier
parent with his/her spouse becoming proband. ζ50: Believe themselves to be at 50%
risk of carrying an HCM mutation. ζ100: As a result of genetic testing, knows they
carry an identical mutation. ζ0: As a result of genetic testing, knows they do not
carry an identical mutation. Note that an untested person suffered non-fatal HCM
after purchasing insurance is assumed to be in information class ζ100 since HCM
clinically exists now and lapse behaviour might change based on that.

Adverse Information Class
Selection ζn ζ50 ζ100 ζ0

None 3% 3% 3% 3%
Baseline 3% 0.5% 0.5% 3%
Sensitivity 3% 0% 0% 3%

viduals only exposed to the population mortality rates, is always normal. In

the lapse model, this lapse rate applies to insured individuals in information

classes ζn and ζ0.

Based on points (a) and (b) above (which are expressed in our terminology, not

Howard (2014)’s), Howard (2014) assumes (as a baseline) lapse rates of 0.5% and

3% per annum in all years for the ‘sub-standard’ and ‘standard’ lives, respectively.

Howard (2014) also runs a sensitivity analysis assuming a lapse rate of 0% for the

‘sub-standard’ lives, see point (iv) in Section 10.3.1. We will also consider the

implication of this sensitivity analysis because it is conservative for our purposes. In

Table 10.2, we present the lapse (hazard) rates depending on the information classes

in the lapse model.

10.5.3 The Results and Comparison

We present the baseline assumptions for the lapse model in Table 10.3 in which we

combine the baseline lapse (hazard) rates in Table 10.2 with the baseline assumptions

in the adverse selection model reported in Table 8.1.

The results in respect of increased mean premium rates, see Chapter 9, are shown

in Table 10.4. Modelling lapse seems to be a significant factor amplifying adverse

selection costs, in particular the mean premium increases are more than 1% when
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State i0
Untested

Uninsured

State i1
Untested

Insured

State i2
Tested

Uninsured

State i3
Tested

Insured

State i4
Untested-Insured

Lapse

State i5
Tested-Insured

Lapse

State i6
Uninsured

Non-Fatal HCM

State i7
Untested-Insured

Non-Fatal HCM

State i8
Tested-Insured

Non-Fatal HCM

State i9
Insured-Non-Fatal

HCM Lapse

State i10
Other

Dead

State i11
Fatal

HCM

µi01x

µi14x

µij10x

i = 0, Not at Risk of HCM

Fixed Rates:
• µi14

x = normal lapse rate (not change) per annum at ages 20–60.

Figure 10.2: A mathematical model of a life history of an individual who is a
member of the i = 0 risk sub-population. See Figure 7.6 for all transitions.

family history is not known to insurers. This model parameter is worth adding to

the list of factors amplifying adverse selection costs in Section 9.7.1.
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Chapter 10: Comparison with Howard (2014)

State i0
Untested

Uninsured

State i1
Untested

Insured

State i2
Tested

Uninsured

State i3
Tested

Insured

State i4
Untested-Insured

Lapse

State i5
Tested-Insured

Lapse

State i6
Uninsured

Non-Fatal HCM

State i7
Untested-Insured

Non-Fatal HCM

State i8
Tested-Insured

Non-Fatal HCM

State i9
Insured-Non-Fatal

HCM Lapse

State i10
Other

Dead

State i11
Fatal

HCM

µi01x µi02x,z µi23x

µi14x µi35x

µij10x

i : 1, A Known Early-Onset HCM Mutation Absent
or

i : 3, A Known Late-Onset HCM Mutation Absent

If no proband exists in family:
ζm = ζn;
• µi14

x = normal lapse rate (not change) per annum at ages 20–60.
If carrier parent becomes proband with a known mutation:

(a) m is a spouse of carrier parent, ζm = ζn;
• µi14

x = normal lapse rate (not change) per annum at ages 20–60.
(b) m is a non-carrier child of carrier parent, ζm = ζ50; or, ζm = ζ0.

• µi14
x = normal lapse rate (might change) per annum at ages 20–60.

• µi35
x = normal lapse rate (not change) per annum at ages 20–60.

If a carrier child becomes proband with a known mutation:
(a) m is a spouse of carrier parent not tested nor become a subsequent proband;

or, m is a non-carrier sibling of the carrier child, ζm = ζ50; or, ζm = ζ0.
• µi14

x = normal lapse rate (might change) per annum at ages 20–60.
• µi35

x = normal lapse rate (not change) per annum at ages 20–60.
(b) m is a spouse of carrier parent tested or become a subsequent proband, ζm = ζ0;

or ζm = ζn;
• µi14

x = µi35
x = normal lapse rate (not change) per annum at ages 20–60.

Figure 10.3: A mathematical model of a life history of an individual m, a non-
carrier member in which one parent carries a known HCM mutation, in the i = 1 or
i = 3 risk sub-populations in the lapse model of HCM for life insurance. See Figure
7.7 for all transitions. In µi02

x,z, z refers to duration in state i0 since (if) a proband
exists in the family. ζm refers to an information class for individual m. See Section
7.5.1 and Tables 7.2, 7.3, 7.4, and 10.2 for information classes.
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State i0
Untested

Uninsured

State i1
Untested

Insured

State i2
Tested

Uninsured

State i3
Tested

Insured

State i4
Untested-Insured

Lapse

State i5
Tested-Insured

Lapse

State i6
Uninsured

Non-Fatal HCM

State i7
Untested-Insured

Non-Fatal HCM

State i8
Tested-Insured

Non-Fatal HCM

State i9
Insured-Non-Fatal

HCM Lapse

State i10
Other

Dead

State i11
Fatal

HCM

µi01x

µi14x

µij10x

i : 5, An Unknown Early-Onset HCM Mutation Absent
or

i : 7, An Unknown Late-Onset HCM Mutation Absent

If no proband exists in family:
ζm = ζn;
• µi14

x = normal lapse rate (not change) per annum at ages 20–60.
If carrier parent becomes proband with a known mutation:

(a) m is a spouse of carrier parent, ζm = ζn;
• µi14

x = normal lapse rate (not change) per annum at ages 20–60.
(b) m is a non-carrier child of carrier parent, ζm = ζ50;

• µi14
x = normal lapse rate (might change) per annum at ages 20–60.

If a carrier child becomes proband with a known mutation:
(a) m is a spouse of carrier parent not become a subsequent proband; or, m is a

non-carrier sibling of the carrier child, ζm = ζ50;
• µi14

x = normal lapse rate (might change) per annum at ages 20–60.
(b) m is a spouse of carrier parent become a subsequent proband, ζm = ζn;

• µi14
x = normal lapse rate (not change) per annum at ages 20–60.

Figure 10.4: A mathematical model of a life history of an individual m, a non-carrier
member in which one parent carries an unknown HCM mutation, in the i = 5 or
i = 7 risk sub-populations in the lapse model of HCM for life insurance. See Figure
7.8 for all transitions. ζm refers to an information class for individual m. See Section
7.5.1 and Tables 7.2, 7.3, 7.4, and 10.2 for information classes.
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State i0
Untested

Uninsured

State i1
Untested

Insured

State i2
Tested

Uninsured

State i3
Tested

Insured

State i4
Untested-Insured

Lapse

State i5
Tested-Insured

Lapse

State i6
Uninsured

Non-Fatal HCM

State i7
Untested-Insured

Non-Fatal HCM

State i8
Tested-Insured

Non-Fatal HCM

State i9
Insured-Non-Fatal

HCM Lapse

State i10
Other

Dead

State i11
Fatal

HCM

µi01x µi02x,z µi23x

µi14x µi35xµi06x µi26x

µi46x µi56x

µi79x µi89x

µi17x µi38x

µij10x µij11x

i : 2, A Known Early-Onset HCM Mutation Present
or

i : 4, A Known Late-Onset HCM Mutation Present

If no proband exists in family:
ζm = ζn;
• µi14

x = normal purchase rate (not change) per annum at ages 20–60.
If a proband exists (who not matter) with a known mutation in family:
ζm = ζ50; or, ζm = ζ100;
• µi14

x = µi79
x = µi35

x = µi89
x = normal lapse rate (might change) per annum

at ages 20–60.

Figure 10.5: A mathematical model of a life history of an individual m, a carrier
member in which one parent carries a known HCM mutation, in the i = 2 or i = 4
risk sub-populations in the lapse model of HCM for life insurance. See Figure 7.9
for all transitions. In µi02

x,z, z refers to duration in state i0 since (if) a proband exists
in the family. ζm refers to an information class for individual m. See Section 7.5.1
and Tables 7.2, 7.3, 7.4, and 10.2 for information classes.
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State i0
Untested

Uninsured

State i1
Untested

Insured

State i2
Tested

Uninsured

State i3
Tested

Insured

State i4
Untested-Insured

Lapse

State i5
Tested-Insured

Lapse

State i6
Uninsured

Non-Fatal HCM

State i7
Untested-Insured

Non-Fatal HCM

State i8
Tested-Insured

Non-Fatal HCM

State i9
Insured-Non-Fatal

HCM Lapse

State i10
Other

Dead

State i11
Fatal

HCM

µi01x

µi14x µi06x

µi46x

µi79x

µi17x

µij10x µij11x

i : 6, An Unknown Early-Onset HCM Mutation Present
or

i : 8, An Unknown Late-Onset HCM Mutation Present

If no proband exists in family:
ζm = ζn;
• µi14

x = normal lapse rate (not change) per annum at ages 20–60.
If a proband exists (who not matter) with a known mutation in family:
ζm = ζ50; or ζm = ζ100 (because of state i7, untested-insured non-fatal HCM)
• µi14

x = µi79
x = normal lapse rate (might change) per annum at ages 20–60.

Figure 10.6: A mathematical model of a life history of an individual m, a carrier
member in which one parent carries an unknown HCM mutation, in the i = 6 or
i = 8 risk sub-populations in the lapse model of HCM for life insurance. See Figure
7.10 for all transitions. ζm refers to an information class for individual m. See
Section 7.5.1 and Tables 7.2, 7.3, 7.4, and 10.2 for information classes.
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Chapter 11

Discussion and Conclusions

11.1 The Epidemiology of HCM

We found that the prevalence of ‘silent’ mutations has a significant impact on ad-

verse selection costs (Section 9.3.1). Therefore, if genetic testing is spread through

the general population, it might reveal ‘silent’ mutations. For example, in HCM,

the known mutation prevalence of 0.6% reported in Bick et al. (2012), which, ex-

trapolated, may approach 1% is much higher than 0.2% the widely cited for the

prevalence of clinical HCM. As a result, the penetrance is correspondingly reduced,

see the quotation from Bick et al. (2012) in point (e) in Section 9.7.2. We might

conclude the motivation to purchase insurance is less well-determined.

(a) This motivation could bring more individuals into the insurance pool who want

to over-insure themselves (see point (c) in Section 9.3.1). But, in reality, the

total number of the individuals affected by any HCM-related event will not

change. Consequently, the cost of adverse selection is significantly reduced.

(b) This motivation, in the absence of additional information of a non-genetic

nature, could also diminish any incentive to over-insure, in particular it might

be a disincentive to stake a large quantity of money on insurance premiums in

a gamble, the outcome of which looks less attractive.

Also, HCM differs from most the ‘classical’ genetic disorders in the actuarial lit-

erature (such as Huntington disease and inherited cancers—good references for these
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Chapter 11: Discussion and Conclusions

disorders and their implications to critical illness and life insurance are Gutiérrez &

Macdonald (2004) and Macdonald et al. (2003b)) in that the onset of the associated

phenotype starts at early ages in life in a large proportion of cases, and is diagnosed

by imaging machines (Section 2.2.2). If the disorder is diagnosed, it would be under-

written as a pre-existing condition. If insurance applicants want to use their genetic

test results as a financial opportunity, they should have this genetic information

in isolation without knowing of any other indication, which must be disclosed to

an insurer, showing that HCM might be clinically-present. This might be another

factor, which should be borne in mind, in diminishing the adverse selection costs

arising when insurers are not allowed to use genetic test results.

The evolution of the epidemiology of HCM is still in progress. Apart from some

studies of prevalence, all of it is based on selected populations. Actuarial studies

should be aware of such biases. It is still too early to say where the epidemiology

of HCM currently is. For example, non-fatal HCM events have been included as

endpoints and may mistakenly be counted as ‘actual’ deaths, see Sections 2.4.2 and

2.4.4. Fortunately, our study showed that the effect of this appears not to be large,

see Section 9.3.4. However, this bias might exist for other cardiomyopathies. Es-

pecially, Howard (2014) reported that the annual mortality rate of Arrhythmogenic

Right Ventricular Cardiomyopathy (ARVC) (Section 1.2.3) (the most expensive dis-

order in his study) was 2.3%. If this bias was to exist for ARVC, its effect on the

adverse selection costs, unlike HCM, might be significant. This is a subject for

future research.

11.2 Range of Premium Increases

In Chapter 9 and Section 10.5.3, we presented the results with regard to the mean

premium increases (to recoup adverse selection costs) under many adverse selection

scenarios. These results showed adverse selection costs might lie in a large spectrum

highly depending on the assumptions. For example,

(a) In one scenario labelled by sc.1 in Table 9.3, mean premium increases were

0.0029% in which assumptions were a large market, with family history al-
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lowed, mutation prevalence of 0.9%, less extensive cascade genetic testing

(λ = 1.8), ‘mild’ adverse selection, and ‘adverse selectors’ taking out the av-

erage sum insured. Note that assuming that individuals in information class

ζ50 purchase less than those in information class ζ100 gives adverse selection

costs even lower than this level (see label sc.15 in Table 9.6). Also, note that,

we even observed ‘negative’ adverse selection costs (Table 9.10) when we take

into consideration selection bias (point (e) in Section 9.7.2).

(b) In another scenario labelled by sc.20 in Table 9.8, in which assumptions repre-

senting much more extreme scenario were a smaller market, with family history

not allowed, mutation prevalence of 0.2%, annual hazard rate of fatal HCM-

related events at all ages of 0.0055, extensive cascade genetic testing (λ = 7.0),

‘severe’ adverse selection and ‘adverse selectors’ taking ten times the average

sum insured, our mean premium increases were 8.3414%. This would appear

to be far in excess of those suggested by Howard (2014). If family history is

allowed, the mean premium increases decrease to 2.8159%.

This indicates the range of possibilities. Recall from Section 10.4 that premium

increases of 2.5% or over in our model might be comparable to those in Howard

(2014) even though exact comparison is not possible.

Note that we use a large number of assumptions to parametrise our model dur-

ing the thesis. They are sometimes chosen in the absence of reliable studies. In

such cases, we generally choose them ‘conservatively’, which would tend to lead an

increase in adverse selection costs suffered by insurers.

11.3 Significant Factors

We already pointed out amplifying and diminishing factors in adverse selection costs

in Section 9.7. Here we summarise them.

The following factors amplified adverse selection costs (Section 9.7.1):

• family history being unavailable in underwriting (Section 9.2);
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• cascade genetic testing extending significantly beyond the nuclear family, ap-

proximated by an increased average family size (Section 9.4.2);

• a much smaller life insurance market (which may stand as a proxy for signifi-

cant lapse rates in a larger market) (Section 9.5.1). See also our results with

the lapse rates reported in Howard (2014) in Section 10.5.3; and

• ‘adverse selectors’ taking out extremely large sums insured (Section 9.5.2).

Otherwise, the following factors would tend to limit or reduce adverse selection

costs (Section 9.7.2):

• family history being available in underwriting (Section 9.2); moreover, the

importance of the use of family history has been realized by insurers. For

example, “One of the main reasons the Association of British Insurers, from

1996 onwards, reached an agreement with the UK Government not to use ge-

netic test results, was that it feared that a government-imposed ban on genetic

tests might extend to the use of family history (personal communication with

Professor Angus Macdonald)”,

• the prevalence of ‘silent’ HCM mutations (Section 9.3.1);

• the individuals in information class ζ50 purchasing at a lower rate than those

in information class ζ100 under adverse selection (Section 9.6) (note that we

did not model different sums assured for the individuals in information classes

ζ50 and ζ100 under adverse selection);

• including the onset of clinical HCM as an event in the model, instead of as-

suming F (20) = 1 for early-onset mutations (Section 9.3.1);

• unknown mutations being predominantly late-onset (Section 9.3.3.1);

• epidemiology based on unselected populations becoming available;

• elimination of selection and ascertainment biases from epidemiological studies;

and
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• improved treatments for HCM.

We do not model the last five of these explicitly, but they should be borne in mind.

However, in Table 9.10, we present examples of the effect of selection bias (point

(e) in Section 9.7.2) on adverse selection costs. Particularly, two factors become

prominent in this discussion.

(a) Larger sums insured. It is obvious that adverse selection costs can be in-

creased without limit, if ‘adverse selectors’ take out large enough sums insured.

It is fair to ask where the motivation of adverse selectors comes from to view

life insurance as a financial opportunity rather than an insurance need. It

seems that their motivation would have to be quite different from the moti-

vation to “. . . secure all insurance needs before undertaking genetic testing”

(Lane et al. 2015). If we think about two annual hazard rates of HCM-related

mortality used through the thesis: 0.01 and 0.0055 (Section 3.9.8), about 2/3

and 4/5, respectively, of individuals would survive for forty years. Thomas

(2012) refers to “the fallacy of the one-shot gamble” in noting the lack of ev-

idence for adverse selection of genetic origin in the UK, despite ten years (by

now almost twenty years) of the opportunity existing. Such a gamble might be

monetized if a large number of mutation carriers were organized and financed

by some outside agency, to buy life insurance in large amounts. Though, any

such scheme in reality might be a target of regulation, as having no place in

a well-functioning life insurance market. Legal or not, the scheme’s attraction

would be proportionate to its promoters’ belief in the most extreme assump-

tions.

(b) Mutation prevalence. We modelled the prevalence of ‘silent’ mutations, in

other words, the large difference between mutation prevalence and the preva-

lence of clinical HCM (Section 9.3.1). The existing epidemiology is subject to

even more selection and ascertainment biases (see point (e) in Section 9.7.2)

that are unobservable and unknown, but are all in one direction. We could

have taken into account some of these biases, by reducing onset rates although
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by how much would be arbitrary. However, since adverse selection costs using

any reasonable parameters look like small enough, we have not done so.

11.4 Conclusions

We modelled cascade genetic testing in HCM and this enabled us to explore possi-

ble adverse selection costs in respect of the percentage mean premium increases to

recoup the costs.

(a) We found that the range of the mean premium increases to be very large.

The very highest are comparable to, or may even be much in excess of, those

suggested in Howard (2014). We also noted that, in Section 10.4.1, Howard

(2014) presents basically the results of one scenario (baseline) with a minor

sensitivity analysis. Compared to Howard (2014):

(i) We obtained a broad range of results because we considered ‘all the status

and current stage of evolution of the HCM literature’.

(ii) We also considered different sums assured for adverse selectors rather

than only extreme sums assured (such as 10 times of the normal sum

assured).

(b) We found that very high sums assured (such as 10 times of normal) cause

significant increases in adverse selection costs (Section 9.5.2). We think this

assumption is debatable. The question of whether it would be possible to

monetize a ‘one-shot gamble’ (Thomas (2012), see point (a) in Section 11.3)

would be an interesting topic for research.

(c) We found that some epidemiological features of HCM would reduce the possi-

ble adverse selection costs.

(i) The major one is the prevalence of ‘silent’ mutations. Prevalence of HCM-

related mutations is much higher than that of clinical HCM, suggesting

lower penetrance in unselected populations (Section 9.3.1).
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(ii) The other is the general practice among authors of HCM survival stud-

ies of using endpoints that include a substantial proportion of non-fatal

events (Sections 2.4.2 and 2.4.4). Distinguishing them from fatal ones is

probably less important for the epidemiologists, but is important for life

insurance applications.

The impact of this bias on the adverse selection costs caused by HCM

turned out to be not so high (Section 9.3.4). However, if this bias exists

for other cardiomyopathies, such as ARVC (the most expensive disorder

in Howard (2014)) (Sections 1.2.3 and 11.1), the significance of this bias

for the possible adverse selection costs might be even more than in respect

of HCM. This a subject for future research.

The impact of this bias on adverse selectors might be that they see pur-

chasing high sums assured insurance as a less attractive financial oppor-

tunity (or they doubt the attractiveness of the ‘one-shot gamble’).

(iii) We have not reduced costs further by allowing for probable, but un-

quantified, biases in the epidemiological literature. These have evidently

reduced over time but are unlikely to have disappeared.

HCM is regarded as the most prevalent of several dominantly-inherited cardiomy-

opathies and ion-channelopathies. Cascade genetic testing is the form of testing used

in clinical practice. Our model should be capable of estimating insurance losses, in

respect of each of these conditions, under adverse selection. This is a subject for

future research.
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Appendix A

Multiple-State

Multiple-Population Models in

Life Insurance

A.1 A Multiple-State Multiple-Population Model

in Life Insurance

We extend the multiple-state model in Section 6.5 into a multiple-state multiple-

population model analogous to our adverse selection model in Chapter 7. Therefore:

(a) Let a multiple-state multiple-population model consist of model states, which

may include insured state(s), labelled by ij in which:

(i) Label i denotes a sub-population, and

(ii) Labels j, k, etc. denote sub-states in any sub-population i where tran-

sitions may be possible between states ij and ik, j 6=k. Note that each

sub-population i contains a copy of the same state space.

(b) Assume transitions between different sub-populations are impossible.

(c) Suppose individual r starts at state i0 at calendar time zero with probability

pi0, so
∑

i pi0 = 1 (Section 3.3.1).
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In what follows, we refer to the notations in Chapter 6.

• N ijk
r (t): The number of transitions of individual r from state ij to state ik up

to and including calendar time t.

• Aijkr (t): The lump sum payment (assumed to be previsible and possibly zero)

payable to individual r under the transition ij→ik at calendar time t.

• I ijr (t): An indicator function as follows:

I ijr (t) =


1, individual r is in state ij at calendar time t−;

0, otherwise.

(A.1)

• aijr (t): The rate per annum of premium payment (assumed to be previsible

and possibly zero) made if individual r is in state ij at calendar time t−.

• M ijk
r (t): The counting process martingale of individual r in state ij as follows:

M ijk
r (t) = N ijk

r (t)−
∫ t

0

I ijr (w)µijkr,wdw. (A.2)

where µijkr,t is the transition intensity between states ij and ik, j 6=k, applying

to individual r at calendar time t.

A.1.1 Premium Rates

See equation (6.19) computing the rate of premium at calendar time t in the multiple-

state model in Section 6.5.

(a) As long as insurer knows the sub-population to which and individual belongs,

equation (6.19) is valid.

(b) However, in our model (Chapter 7), we assume, that the insurer does not

know to which sub-population each individual belongs. Therefore, we charge

weighted average premium rates over all sub-populations as follows:

(i) Assume that insurers’ information is that all individuals are in state i0

at birth but that i is unknown.
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(ii) Thus, we need further condition to ensure that premiums are unaffected

by movements between states of health before an insured event occurs.

(iii) The premium rate at calendar time t will not depend on being in state

ij, aijr (t) = ar(t).

(iv) After birth, where we denote a set pairs of ij by Cr and the probability

P [I i0r (0) = 1] by pi0, we can define martingales in our model as follows:

E

[
E

[∫ t

0

∑
ij∈Cr

∑
k:j 6=k

e−δsAijkr (s)dM ijk
r (s)

∣∣∣∣I i0r (0) = 1

]]
= 0. (A.3)

(v) Since equation (A.3) is decomposed into equations (A.4) and (A.5) as

follows: (A.3)=(A.4)−(A.5) in which:

E

[
E

[∑
ij∈Cr

∑
k:j 6=k

Aijkr (s)dN ijk
r (s)

∣∣∣∣I i0r (0) = 1

]]

=
∑
ij∈Cr

∑
k:j 6=k

pi0A
ijk
r (s)sp

i0j
r,0µ

ijk
r,s ds, (A.4)

and:

E

[
E

[∑
ij∈Cr

∑
k:j 6=k

Aijkr (s)I ijr (s)µjks ds

∣∣∣∣I i0r (0) = 1

]]

=
∑
ij∈Cr

∑
k:j 6=k

pi0A
ijk
r (s)sp

i0j
r,0µ

ijk
r,s ds, (A.5)

we can derive the premium rate function in any state in our model, inde-

pendent on being state ij, at calendar time t as weighted average overall

all sub-populations at calendar time t, associated with mortality rates

and sum assured as follows:

ar(t) =

∑
ij∈Cr

∑
k:j 6=k pi0A

ijk
r (t)tp

i0j
r,0µ

ijk
r,t∑

ij∈Cr

∑
k:j 6=k pi0tp

i0j
r,0

, (A.6)

and where Aijkr (t) = 1, see equation (7.1). Bear in mind that Cr is defined

as an underwriting class at which insurance is purchased in Section 7.4.3.

However, the actuarial mathematics represented in this appendix shows
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Cr is also valid for any set of states whatsoever.

A.1.2 Policy Values

Section 6.6 describes policy values in two-state (Section 6.4) and multiple-state

models (Section 6.5). For the multiple-state multiple-population model, denote V ij
t

to be the policy value at calendar time t in state ij (given that being in state ij at

calendar time t):

V ij
t = E[Lijr (t)|Ft] = E

[
eδt
∫ ∞
t

∑
l

e−δwdLilr (w)

∣∣∣∣I ijr (t) = 1

]
. (A.7)

(See Section 6.6, Ft refers to the complete life history up to and including calendar

time t.) These policy values can be calculated by solving Thiele’s differential equa-

tion if the life history of a single individual is Markov. See also Thiele’s differential

equations and their numerical solutions in multiple-state models which are easily

applied to the multiple-state multiple-population above.

A.1.3 A Measure of Adverse Selection Losses

We measure of adverse selection costs (Section 6.7) in such model (Section A.1):

(a) Suppose that the insurer set premiums ãr(t), based on the information avail-

able about individual r.

(b) Then the insurer charges a premium rate ãr(t) when ar(t) is the ‘correct’ pre-

mium rate associated with the true nature of individual r in which assume that

ãr(t) < ar(t). In other words, we assume the insurers have less information

than individuals under adverse selection.

(c) As a result, our measure of the adverse selection costs in such model is:

E

[∫∞
0

∑
ij∈Cr

∑
k:j 6=k e

−δt (Aijkr (t)N ijk
r (t)− ãr(t)I ijr (t)dt

) ∣∣∣∣I i0r (0) = 1

]
E

[∫∞
0

∑
ij∈Cr

∑
k:j 6=k e

−δtãr(t)I
ij
r (t)dt

∣∣∣∣I i0r (0) = 1

] .

(A.8)
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(2000), ‘Magnitude of left ventricular hypertrophy and risk of sudden death in

hypertrophic cardiomyopathy’, New England Journal of Medicine 342(24), 1778–

1785.

Subramanian, K., Lemaire, J., Hershey, J. C., Pauly, M. V., Armstrong, K. & Asch,

D. A. (1999), ‘Estimating adverse selection costs from genetic testing for breast

and ovarian cancer: The case of life insurance’, The Journal of Risk and Insurance

66(4), 531–550.

220



BIBLIOGRAPHY

Sudbery, P. (2002), Human Molecular Genetics, second edn, Pearson Education

Limited.

Suthers, G. K., Armstrong, J., McCormack, J. & Trott, D. (2006), ‘Letting the

family know: Balancing ethics and effectiveness when notifying relatives about

genetic testing for a familial disorder’, Journal of Medical Genetics 43(8), 665–

670.

Terauchi, Y., Kubo, T., Baba, Y., Hirota, T., Tanioka, K., Yamasaki, N., Furuno,

T. & Kitaoka, H. (2015), ‘Gender differences in the clinical features of hyper-

trophic cardiomyopathy caused by cardiac myosin-binding protein c gene muta-

tions’, Journal of Cardiology 65(5), 423–428.

Thomas, R. G. (2012), ‘Genetics and insurance in the United Kingdom 1995–2010:

The rise and fall of “scientific” discrimination’, New Genetics and Society 2012, 1–

20.

Van Driest, S. L., Vasile, V. C., Ommen, S. R., Will, M. L., Tajik, A. J., Gersh, B. J.

& Ackerman, M. J. (2004), ‘Myosin binding protein c mutations and compound

heterozygosity in hypertrophic cardiomyopathy’, Journal of the American College

of Cardiology 44(9), 1903–10.

Wagner, A., Tops, C., Wijnen, J. T., Zwinderman, K., van der Meer, C., Kets,

M., Niermeijer, M. F., Klijn, J. G. M., Tibben, A., Vasen, H. F. A. & Meijers-

Heijboer, H. (2002), ‘Genetic testing in hereditary non-polyposis colorectal cancer

families with a MSH2, MLH1, or MSH6 mutation’, Journal of Medical Genetics

39(11), 833–837.

Watkins, H., McKenna, W. J., Thierfelder, L., Suk, H. J., Anan, R., O’Donoghue,

A., Spirito, P., Matsumori, A., Moravec, C. S., Seidman, J. & Seidman, C. E.

(1995), ‘Mutations in the genes for cardiac troponin t and α-tropomyosin in hy-

pertrophic cardiomyopathy’, New England Journal of Medicine 332(16), 1058–

1065.

Whitaker, R. H. (2006), ‘Anatomy of the heart’, Medicine 34(5), 163–165.

221



BIBLIOGRAPHY

Wordsworth, S., Leal, J., Blair, E., Legood, R., Thomson, K., Seller, A., Taylor, J.

& Watkins, H. (2010), ‘DNA testing for hypertrophic cardiomyopathy: A cost-

effectiveness model’, European Heart Journal 31(8), 926–935.

222


	Introduction 
	Genetics, Insurance and Cardiomyopathies 
	Healthy Heart and Cardiomoypathies 
	Major Features of a Healthy Heart 
	Major Features of Cardiomyopathies 
	Classification of Cardiomyopathies 

	Major Features of howard2014 
	Multiple-State Models 
	Motivation 
	Plan of the Thesis 

	Hypertrophic Cardiomyopathy (HCM) 
	Introduction 
	The Clinical Features of HCM 
	Onset 
	Diagnosis 
	Symptoms 

	The Genetics of HCM 
	Gene Mutations Associated with HCM 
	Known Gene Mutations Associated with HCM 
	Unknown Gene Mutations Associated with HCM 
	Other Disorders Associated with HCM 

	The Features of Genetic Testing in HCM 

	HCM-related Endpoints 
	Risk, Features, and Management 
	A Comment on Sudden Cardiac Death 
	Relationship with Common Gene Mutations 
	The Historical Pattern of HCM-Related Annual Mortality Rates 

	Prevalence of HCM 
	Prevalence of Clinical HCM 
	Prevalence of HCM-Related Mutations 

	From the Epidemiology of HCM to a Mathematical Model of HCM 

	A Mathematical Model of the Epidemiology of Hypertrophic Cardiomyopathy (HCM) 
	Introduction 
	The Epidemiological Model of HCM 
	The Formulation of the Model 
	The Probabilities at Birth 
	Transition Intensities and Occupancy Probabilities after Birth 
	Transition Intensities and Clinical HCM 

	The Kolmogorov Forward Equations 
	Numerical Solution of the Kolmogorov Forward Equations 
	The Parameters of the Model 
	Parametrising the Model I: Prevalence 
	Prevalence of HCM Mutations: General Population 
	Prevalence of HCM Mutations: HCM Population 

	Parametrising the Model II: Onset 
	Penetrance of Early-Onset HCM Mutations 
	Penetrance of Late-Onset HCM Mutations 

	Parametrising the Model III: HCM-Related Endpoints 
	Data Sources 
	HCM-Related Hazard Rates 
	The Estimation of HCM-Related Hazard Rates 
	Confidence Intervals of HCM-Related Hazard Rates 
	The Central Exposure to Risk (Exc) of HCM-Related Events 
	Obtaining HCM-Related Hazard Rates for Ages 20 to 60 
	Estimated HCM-Related Hazard Rates 
	The Survival Function of the HCM-Related Hazard Rates 

	Parametrising the Model IV: Mortality from All Other Causes 
	Occupancy Probabilities 

	Genetic Testing in Hypertrophic Cardiomyopathy (HCM) 
	Introduction 
	Cascade Genetic Testing 
	Uptake Rates of Genetic Testing 
	Uptake Rates of Genetic Testing in Medical Studies 
	Uptake Rates of Genetic Testing in This Study 

	From Genetic Testing in HCM to a Mathematical Model of the Uptake of Genetic Testing in HCM 

	A Simulation Model of the Uptake of Genetic Testing in Hypertrophic Cardiomyopathy (HCM) 
	HCM and Non-HCM Families 
	The Testing Model 
	The Necessity of Simulation in the Testing Model 
	The Parameters of the Testing Model 
	Time Steps in the Numerical Computations 

	Creation of Families 
	Nuclear Families 
	Critical Times 
	Prevalence Rates at Calendar Time t=0 
	Population Size and Composition at Calendar Time t=0 

	Family Formation: HCM Families 
	Family Formation: Non-HCM Families 
	Population Size and Composition at Calendar Time t=30: HCM Families 
	Birth of Children 
	Gender of Children 
	Sub-populations 

	Population Size and Composition at Calendar Time t=30: Non-HCM Families 
	Birth and Gender of Children 
	Sub-populations 

	Non-HCM Families at Calendar Times t=20-90 
	HCM Families at Calendar Times t=20-90 
	Simulating Life Histories of HCM Families 
	Genetic Testing Behaviour in HCM Families 
	Simulation Results 

	Discussion 

	Life Insurance Mathematics 
	Introduction 
	Basics of Life Insurance Mathematics 
	Cash Flows and Insurance Losses 
	Insurance Losses in a Two-State Model 
	Benefit Outgo in the Alive-Dead Model 
	Premium Income in the Alive-Dead Model 
	Insurance Loss in the Alive-Dead Model 
	The Actuarial Equivalence Principle 

	Insurance Losses in Multiple-State Models 
	Policy Values 
	A Measure of Insurance Losses under Adverse Selection 
	Multiple-State Multiple-Population Models 

	An Adverse Selection Model of Hypertrophic Cardiomyopathy (HCM) for Life Insurance I: Model Specification 
	Introduction 
	The Adverse Selection Model 
	Modelling Insurance Losses in the Adverse Selection Model 
	Insurance Losses in HCM and Non-HCM Families 
	How Do Adverse Selection Costs Arise? 

	Information and Decisions—Insurers 
	Underwriting Classes 
	Age-Dependent Premium Rates 
	Calculating Premium Rates 
	Premium Rates with Different Underwriting Classes 
	Calculated Premium Rates 

	Information and Decisions—Individuals 
	`Information Classes' and Purchase Rates 
	Non-HCM Families: Risk Sub-population i=0 
	HCM Families: The Risk Sub-populations 
	Age of Individual m 
	Generation of Individual m 
	Gender of Individual m 
	Sub-population of Individual m 
	Information Classes and Decisions of Individual m 


	Simulated Life Histories in HCM Families 
	Individual Insurance Cashflows and Losses 
	Insurance Purchase by Individual m
	Underwriting Class of Individual m 
	Premium Rates of Individual m
	Premium Income from Individual m
	Benefit Outgo in Respect of Individual m
	The Insurance Loss in Respect of Individual m

	Discussion 

	An Adverse Selection Model of Hypertrophic Cardiomyopathy (HCM) for Life Insurance II: Monte Carlo Simulation in HCM Families 
	Introduction 
	Monte Carlo Simulation 
	Total Insurance Losses 
	Non-HCM Families 
	HCM Families 

	Aggregated Insurance Losses 
	Baseline Assumptions 
	Aggregated Losses: No Adverse Selection 
	Prevalences of Gene Mutations Over Time 
	Premium Factor and Adjusted Premium Rates 
	Different Time Steps 

	Aggregated Losses under Adverse Selection 
	A Measure of Adverse Selection Costs 

	An Adverse Selection Model of Hypertrophic Cardiomyopathy (HCM) for Life Insurance III: Results 
	Introduction 
	Baseline Scenario, sc.0 
	A Note on the Decimal Places of the Results 

	Epidemiology 
	Higher Mutation Prevalences: sc.1 
	The Penetrance of Late-Onset HCM: sc.2 
	The Proportions of HCM-Related Mutations 
	Late-Onset Mutations 
	Known Mutations: sc.3 

	Higher HCM-Related Mortality: sc.4 

	More Genetic Testing 
	Higher Test Rate in Nuclear Families: sc.5 
	The Extension of Testing Beyond Nuclear Families: sc.6-sc.8 

	Pricing 
	A Smaller Life Insurance Market: sc.9 
	Higher Sums Assured: sc.10-sc.12 

	Information Classes: sc.13-sc.16 
	Discussion 
	Factors Amplifying Adverse Selection Costs 
	Factors Diminishing Adverse Selection Costs 
	Alternative Scenarios: sc.17-sc.20 
	Sensitivity Analysis of Fatal HCM: sc.21-sc.28 


	Comparison with howard2014 
	Introduction 
	howard2014: Baseline Assumptions 
	Prevalence, Penetrance and Mortality 
	Genetic Testing and Insurance Purchase 
	Lapse Rate 
	Interest Rate 
	Other 

	howard2014: Models and Results 
	The Cost Sub-model 
	The Experience Sub-model 
	An Alternative Scenario 

	Comparison 
	Highlights 

	Modelling Lapses in Hypertrophic Cardiomyopathy (HCM) for Life Insurance 
	The Lapse Model 
	The Parametrisation 
	The Results and Comparison 


	Discussion and Conclusions 
	The Epidemiology of HCM 
	Range of Premium Increases 
	Significant Factors 
	Conclusions 

	Multiple-State Multiple-Population Models in Life Insurance 
	A Multiple-State Multiple-Population Model in Life Insurance 
	Premium Rates 
	Policy Values 
	A Measure of Adverse Selection Losses 


	Bibliography

