160 research outputs found

    Geochemical mapping of a paleo-subduction zone beneath the Troodos Ophiolite

    Get PDF
    Supra-subduction zone ophiolites such as the Cretaceous Troodos Ophiolite of Cyprus are fragments of oceanic crust formed by seafloor spreading close to subduction zones. Their exact tectonic setting of origin has been intensively debated. Although many supra-subduction zone ophiolites are thought to represent fore-arc crust, created during subduction initiation, others may have formed at a subducting ridge, or in a back-arc, ridge-trench-trench/transform triple junction or ‘plate edge’ setting. We carried out major and trace element analyses of 515 fresh volcanic glasses from 7 detailed sections through the Troodos lava sequence in order to determine the regional and temporal variation in the composition of Troodos magmatism, and hence reconstruct the distance and orientation of the Troodos spreading axis relative to the former subduction zone. Troodos glasses range from boninite through tholeiitic basalt and andesite to dacite. All glasses are enriched in fluid-mobile trace elements, and variably depleted in the high-field strength elements compared to Mid-Ocean Ridge Basalt (MORB). None of these glasses therefore have compositions identical to Izu-Bonin-Mariana fore-arc lavas that have been proposed to be the prime example of lavas formed during subduction initiation. Boninites are apparently restricted to the southern margin of the Troodos Ophiolite, and glasses from the southeast margin of the ophiolite are the most depleted and contain the strongest input of subduction zone fluid and melt signature. These geographic variations in glass composition indicate that the Troodos Ophiolite formed by NW-SE directed spreading (at 91 Ma) approximately 100–120 km above an eastward-dipping subducting plate. The orientation of the Troodos spreading axis relative to the former trench could be explained if the Troodos Ophiolite formed in a fore-arc position by subduction initiation at a transform fault. However, the lack of glasses with fore-arc basalt composition, and similarities between the trace element compositions of Troodos glasses and those from the Fonualei basin and northern Lau Basin in the southwest Pacific suggest that the Troodos Ophiolite formed in a ridge-trench-trench or ridge-trench-transform triple junction setting, at a back-arc spreading centre that propagated into arc and fore-arc crust.Peer reviewe

    Chemical Evolution of Calc-alkaline Magmas during the Ascent through Continental Crust: Constraints from Methana, Aegean Arc

    Get PDF
    M1 - egaa036Quaternary calc-alkaline andesitic to dacitic lavas effusively erupted on top of about 30 km thick accreted continental crust at Methana peninsula in the western Aegean arc. We present new data of major and trace element concentrations as well as of Sr-Nd-Pb isotope ratios along with mineral compositions of Methana lavas and their mafic enclaves. The enclaves imply a parental basaltic magma and fractional crystallization processes with relatively little crustal assimilation in the deep part of the Methana magma system. The composition of amphibole in some mafic enclaves and lavas indicates deeper crystallization at similar to 25km depth close to the Moho compared with the evolved lavas that formed atPeer reviewe

    A Comparison of the Magmatic Evolution of Pacific Intraplate Volcanoes: Constraints on Melting in Mantle Plumes

    Get PDF
    The interaction of deep mantle plumes with lithospheric plates is one fundamental concept of plate tectonics. Based on observations mainly made on the Hawaiian volcanoes the compositional evolution of hotspot volcanoes is believed to reflect the variation of partial melting and source composition as the plate moves across the different melting zones of the mantle plume. The model predicts the formation of several magmatic stages that differ in composition. In order to test this model, we compare published compositional and age data from the intraplate volcanoes of the Hawaii, Society, Marquesas and Samoa hotspots on the older part of the Pacific Plate. The compiled data indicate that most volcanoes display variations within and between several magmatic series, and in most cases the more evolved lavas are associated with the voluminous shield stage. The Hawaiian volcanoes show up to four different series ranging from tholeiites to nephelinites/melilitites, whereas the other hotspots mainly erupt two magmatic series consisting of transitional basalts and basanites. Submarine preshield stages at the Society and Marquesas hotspots resemble those observed at Hawaii. The large variation of primitive magmas in the Hawaiian plume as opposed to the other Pacific intraplate systems may reflect the higher temperatures, higher buoyancy flux, and extreme chemical heterogeneity at Hawaii. The shield stage activity at all four hotspots lasts for 1 million years indicating similar widths of the melting zone, although the temperatures of the distinct mantle plumes vary considerably. The relatively depleted shield stage magmatism typically overlaps by ~200 kyrs with the formation of the more enriched postshield magmas indicating that the two melting and magma ascent systems exist contemporaneously

    Tellurium in Late Permian-Early Triassic Sediments as a Proxy for Siberian Flood Basalt Volcanism

    Get PDF
    We measured the concentrations of trace elements in Late Permian to Early Triassic sediments from Spitsbergen. High mercury concentrations in sediments from the level of the Permo-Triassic Mass Extinction (PTME) at this location were previously attributed to the emplacement of the Siberian Traps Large Igneous Province and used to link the timing of volcanism with the record of environmental change and extinction in these sediments. We investigated the use of the moderately to highly volatile, siderophile elements Ni, Zn, Cd, Sb, Te, Re, and Tl as proxies for the intensity of Siberian volcanism. These trace elements, like Hg, have high concentrations in volcanic gas compared to crustal rocks. Tellurium is highly enriched at the PTME, and Te/Th ratios increase by a factor of ∼20 across the PTME, similar to the variation in Hg/total organic carbon (TOC) in the same samples. Te/Th and Hg/TOC values imply that Siberian volcanism initiated at the onset of the PTME, coincident with the start of the δ13Corganic excursion and abrupt warming. Based on Te and Hg, most Siberian volcanism occurred between the two phases of the PTME boundary (a period of less than 100 ky), but also continued into the Early Triassic. The duration of Siberian volcanism inferred from Te/Th and Hg/TOC is shorter than that indicated by recent high-precision U-Pb ages of Siberian intrusive and extrusive rocks. Te concentrations and Te/Th ratios in sediments represent a useful new proxy for volcanism, which can be used to link the marine sedimentary record with large volcanic events on land

    Geologic and Structural Evolution of the NE Lau Basin, Tonga: Morphotectonic Analysis and Classification of Structures Using Shallow Seismicity

    Get PDF
    The transition from subduction to transform motion along horizontal terminations of trenches is associated with tearing of the subducting slab and strike-slip tectonics in the overriding plate. One prominent example is the northern Tonga subduction zone, where abundant strike-slip faulting in the NE Lau back-arc basin is associated with transform motion along the northern plate boundary and asymmetric slab rollback. Here, we address the fundamental question: how does this subduction-transform motion influence the structural and magmatic evolution of the back-arc region? To answer this, we undertake the first comprehensive study of the geology and geodynamics of this region through analyses of morphotectonics (remote-predictive geologic mapping) and fault kinematics interpreted from ship-based multibeam bathymetry and Centroid-Moment Tensor data. Our results highlight two unique features of the NE Lau Basin: (1) the occurrence of widely distributed off-axis volcanism, in contrast to typical ridge-centered back-arc volcanism, and (2) fault kinematics dominated by shallow-crustal strike slip-faulting (rather than normal faulting) extending over ~120 km from the transform boundary. The orientations of these strike-slip faults are consistent with reactivation of earlier-formed normal faults in a sinistral megashear zone. Notably, two distinct sets of Riedel megashears are identified, indicating a recent counter-clockwise rotation of part of the stress field in the back-arc region closest to the arc. Importantly, these structures directly control the development of complex volcanic-compositional provinces, which are characterized by variably-oriented spreading centers, off-axis volcanic ridges, extensive lava flows, and point-source rear-arc volcanoes that sample a heterogenous mantle wedge, with sharp gradients and contrasts in composition and magmatic affinity. This study adds to our understanding of the geologic and structural evolution of modern backarc systems, including the association between subduction-transform motions and the siting and style of seafloor volcanism

    Mantle plume and rift-related volcanism during the evolution of the Rio Grande Rise

    Get PDF
    The Rio Grande Rise in the western South Atlantic Ocean has been interpreted as either an oceanic plateau related to the Tristan-Gough mantle plume, or a fragment of detached continental crust. Here we present new major and trace element data for volcanic rocks from the western and eastern Rio Grande Rise and the adjacent Jean Charcot Seamount Chain. The eastern Rio Grande Rise and older parts of the western Rio Grande Rise are comprised of tholeiitic basalt with moderately enriched trace element compositions and likely formed above the Tristan-Gough mantle plume close to the southern Mid-Atlantic Ridge. Younger alkalic lavas from the western Rio Grande Rise and the Jean Charcot Seamount Chain were formed by lower degrees of melting beneath thicker lithosphere in an intraplate setting possibly during rifting of the plateau. There is no clear geochemical evidence that remnants of continental crust are present beneath the Rio Grande Rise

    <scp>ReSurveyEurope</scp>: A database of resurveyed vegetation plots in Europe

    Get PDF
    AbstractAimsWe introduce ReSurveyEurope — a new data source of resurveyed vegetation plots in Europe, compiled by a collaborative network of vegetation scientists. We describe the scope of this initiative, provide an overview of currently available data, governance, data contribution rules, and accessibility. In addition, we outline further steps, including potential research questions.ResultsReSurveyEurope includes resurveyed vegetation plots from all habitats. Version 1.0 of ReSurveyEurope contains 283,135 observations (i.e., individual surveys of each plot) from 79,190 plots sampled in 449 independent resurvey projects. Of these, 62,139 (78%) are permanent plots, that is, marked in situ, or located with GPS, which allow for high spatial accuracy in resurvey. The remaining 17,051 (22%) plots are from studies in which plots from the initial survey could not be exactly relocated. Four data sets, which together account for 28,470 (36%) plots, provide only presence/absence information on plant species, while the remaining 50,720 (64%) plots contain abundance information (e.g., percentage cover or cover–abundance classes such as variants of the Braun‐Blanquet scale). The oldest plots were sampled in 1911 in the Swiss Alps, while most plots were sampled between 1950 and 2020.ConclusionsReSurveyEurope is a new resource to address a wide range of research questions on fine‐scale changes in European vegetation. The initiative is devoted to an inclusive and transparent governance and data usage approach, based on slightly adapted rules of the well‐established European Vegetation Archive (EVA). ReSurveyEurope data are ready for use, and proposals for analyses of the data set can be submitted at any time to the coordinators. Still, further data contributions are highly welcome.</jats:sec

    Retrospective evaluation of whole exome and genome mutation calls in 746 cancer samples

    No full text
    Funder: NCI U24CA211006Abstract: The Cancer Genome Atlas (TCGA) and International Cancer Genome Consortium (ICGC) curated consensus somatic mutation calls using whole exome sequencing (WES) and whole genome sequencing (WGS), respectively. Here, as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium, which aggregated whole genome sequencing data from 2,658 cancers across 38 tumour types, we compare WES and WGS side-by-side from 746 TCGA samples, finding that ~80% of mutations overlap in covered exonic regions. We estimate that low variant allele fraction (VAF < 15%) and clonal heterogeneity contribute up to 68% of private WGS mutations and 71% of private WES mutations. We observe that ~30% of private WGS mutations trace to mutations identified by a single variant caller in WES consensus efforts. WGS captures both ~50% more variation in exonic regions and un-observed mutations in loci with variable GC-content. Together, our analysis highlights technological divergences between two reproducible somatic variant detection efforts
    corecore