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15 ABSTRACT

16 Quaternary calc-alkaline andesitic to dacitic lavas effusively erupted on top of about 30 km 

17 thick accreted continental crust at Methana peninsula in the western Aegean arc. We present 

18 new data of major and trace element concentrations as well as of Sr-Nd-Pb isotope ratios along 

19 with mineral compositions of Methana lavas and their mafic enclaves. The enclaves imply a 

20 parental basaltic magma and fractional crystallisation processes with relatively little crustal 

21 assimilation in the deep part of the Methana magma system. The composition of amphibole in 

22 some mafic enclaves and lavas indicates deeper crystallisation at ~25 km depth close to the 

23 Moho compared to the evolved lavas that formed at <15 km depth. The presence of 

24 amphibole and low Ca contents in olivine suggest high water contents of ~4 wt.-% in the 

25 primitive magmas at Methana. The compositions of andesitic and dacitic lavas reflect fractional 

26 crystallisation, assimilation of sedimentary material, and magma mixing in the upper 15 km of 

27 the crust. The Methana magmas have fO2 of FMQ +1 to +2 at temperatures of 1200 to 750°C 

28 and the fO2 does not vary systematically from mafic to felsic compositions suggesting that the 

29 mantle wedge was oxidized by sediment subduction. Amphibole is an important fractionating 

30 phase in the more evolved Methana magmas and causes significant changes in incompatible 

31 element ratios. Although xenocrysts and mineral compositions indicate magma mixing, the 

32 major and trace element variation implies only limited mixing between dacitic and basaltic 

33 melts. 

34

35 KEY WORDS

36 Magma evolution, assimilation, fractional crystallisation, magma mixing
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37 INTRODUCTION

38 Calc-alkaline magmas are abundant on Earth and compose large portions of the continental 

39 crust (e.g. Rudnick & Gao, 2003) and typically occur at subduction zones where oceanic 

40 lithosphere is subducted below lithosphere with thick continental crust (Gill, 1981). Magmas at 

41 subduction zones are commonly mixtures of different sources that may include the subducting 

42 slab, mantle wedge, and the crust through which the melts ascend (e.g. Davidson, 1987, 

43 McCulloch & Gamble, 1991, Wörner et al., 1992). Sedimentary material subducted into the 

44 mantle affects the composition of the mantle, melt compositions, crustal growth and volcanism 

45 (e.g. Plank & Langmuir, 1993, White & Patchett, 1984) but sediments are also accreted at 

46 subduction zones and potentially contaminate the ascending magmas (e.g. Davidson, 1987, 

47 McCulloch et al., 1994). Calc-alkaline andesites may form either as primary melts of hydrous 

48 upper mantle (Kelemen, 1995, Kushiro, 1974), or as products of assimilation, mixing, and 

49 fractional crystallisation of a basaltic melt within the crust (e.g. Grove et al., 2012). The 

50 assimilation processes in the continental crust are believed to occur largely in the lower crust 

51 where mafic melts cool, mix and react with crustal wall rocks (Annen et al., 2006, Hildreth & 

52 Moorbath, 1988). On the other hand, extensive fractional crystallisation in the middle crust 

53 associated with assimilation of crustal material produces dacitic to rhyolitic magmas (e.g. Price 

54 et al., 2005 ). Mixing between felsic and mafic melts may lead to intermediate magmas (Reubi 

55 & Blundy, 2009) and the different magma batches erupting at continental subduction volcanoes 

56 are usually not related by simple fractional crystallisation processes, i.e. they do not represent 

57 a liquid line of descent (Eichelberger et al., 2006). The andesitic to rhyolitic magmas at 

58 continental subduction zones frequently erupt explosively because of their high viscosities and 

59 volatile contents (Eichelberger, 1995). The main parameters determining whether magmas 

60 erupt effusively or explosively appear to be magma viscosity, volatile content and evolution, 
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61 magma ascent rate but also regional geology (Cassidy et al., 2018). Thus, the processes 

62 resulting in the formation and eruption of calc-alkaline magmas are manifold and complex and 

63 it is essential to distinguish between primary mantle-related primitive andesites and those 

64 formed from shallow level processes in the Earth’s continental crust. 

65 Here, we study the processes affecting the evolution of calc-alkaline magmas during 

66 ascent through the crust using andesite and dacite lavas and their mafic enclaves from Methana 

67 peninsula in the western Aegean arc. The mineral assemblage of the lavas investigated here is 

68 dominated by plagioclase and amphibole that provide evidence for combined assimilation and 

69 fractional crystallisation processes at shallow crustal levels. Mineral thermobarometry reveals 

70 that pressures of crystallisation are generally less than 0.4 GPa at temperatures of ~750 to 

71 1200°C. The continuous range of amphibole pressures and temperatures implies that the magma 

72 crystallised largely in the upper crust. The occurrence of mafic enclaves indicates crystal 

73 fractionation in the lower crust with little assimilation whereas the more felsic lavas formed by 

74 crystallisation, mixing and assimilation of sediments in the upper crust. The presence of the 

75 enclaves implies that the mafic magmas ascended into the shallow felsic magma reservoirs with 

76 limited and less efficient mixing.

77 GEOLOGICAL BACKGROUND

78 Methana peninsula in the Saronic Gulf lies at the western end of the Aegean Arc (Fig. 1) that 

79 formed by the subduction of the Ionian Plate underneath the Aegean microplate with a 

80 subduction rate of 3.5 cm/year (McClusky et al., 2000). Subduction has been active since 50 

81 million years with southward-directed arc migration as a result of slab-rollback (Jolivet et al., 

82 2013). The volcanic centres along the 500 km-long Aegean arc have been active since the 

83 Pliocene (Francalanci et al., 2005). Seismic data indicate a slab depth of 90 to 100 km beneath 

84 Methana and anomalously high Vp/Vs ratios at 80 km depth which may indicate hydrated or 
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85 partially molten material (Halpaap et al., 2018). Seismic anisotropy suggests trench-parallel 

86 mantle flow in the western part of the Aegean arc (Evangelidis, 2017). The subducting 

87 lithosphere of the Ionian Plate is likely Triassic (~220-230 Ma) in age (Speranza et al., 2012) 

88 and consists of 5 to 8 km thick mafic crust covered by ~6 km thick sediments, half of which are 

89 pre-Messinian in age (de Voogd et al., 1992, Kokinou et al., 2005). The sediment thickness on 

90 the subducting slab is up to 8 km in the western Hellenic Trench. Approximately about 20 to 

91 60% of this sediment is accreted whereas the remaining portion is subducted (Clift & 

92 Vannucchi, 2004, Kopf et al., 2003) although only basaltic crust is observed in seismic profiles 

93 at depths >40 km (Pearce et al., 2012). The continental crust beneath the Saronic Gulf is 25 to 

94 30 km thick which is comparable to that in the central part of the Aegean arc (Cossette et al., 

95 2016, Sachpazi et al., 2007). The upper crust consists of Mesozoic to Neogene clastic and 

96 carbonate sediments as well as ophiolites (Dietrich et al., 1988, Robertson, 2004). Aegean arc 

97 lavas range from tholeiitic and calc-alkaline basalts to rhyolites with enriched incompatible 

98 element contents, high Sr and Pb and relatively low Nd isotope ratios reflecting mixing of 

99 mantle and crustal components (Francalanci et al., 2005). The lavas of Santorini show a notable 

100 change in source composition and magma evolution with the older lavas being calc-alkaline 

101 whereas the younger rocks show a more tholeiitic composition (Andújar et al., 2015, Bailey et 

102 al., 2009, Nicholls, 1971). 

103 Methana Peninsula is largely covered by Quaternary subduction-related calc-alkaline 

104 andesitic to dacitic lava domes and flows containing mafic enclaves whereas volcaniclastic 

105 rocks are rare (Dietrich et al., 1988, Pe, 1974). Pe-Piper and Piper (2013) subdivided the 

106 volcanic rocks of Methana into eight units (Fig. 1) based on the geological map of Dietrich and 

107 Gaitanakis (1995). The Quaternary magmatic domes and flows diverge from the central area of 

108 the peninsula and are largely elongated in an E-W or NE-SW direction (Pe-Piper & Piper, 

109 2013). Most of the volcanism on Methana is younger than 1.5 Ma but some volcanic outcrops 
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110 at the coast have been dated at ~3.5 Ma (Fytikas et al., 1984, Matsuda et al., 1999, Pe-Piper & 

111 Piper, 2013). The last volcanic eruption occurred around 220 years BC at Mavi Petra in the 

112 north-western part of Methana (Fig. 1). The lava compositions range from basaltic andesites to 

113 dacites but all lavas also contain numerous mafic enclaves which are mostly basaltic to basaltic 

114 andesitic in composition (Dietrich et al., 1988, Elburg et al., 2014, Elburg et al., 2018, Pe, 1974, 

115 Woelki et al., 2018). Olivines with forsterite (Fo=100*Mg/(Mg+Fe2+)) contents >90 are 

116 frequent both in the mafic and in the more silicic rocks implying that primary melts with Mg# 

117 (Mg# = 100*Mg/(Mg + Fe2+)) ~72 must exist in the mantle wedge beneath Methana (Woelki 

118 et al., 2018). These olivine xenocrysts have relatively high 18OVSMOW (VSMOW = Vienna 

119 Standard Mean Ocean Water) compositions of ~6.5‰ implying that the mantle wedge 

120 contained significant sediment from the subducting slab (Woelki et al., 2018). Geochemical 

121 data of the felsic lavas indicate a strong effect of crustal assimilation compared to the mafic 

122 rocks and the tectonic regime at Methana probably had a strong influence on the magma ascent 

123 (Elburg et al., 2018, Pe-Piper & Piper, 2013). Thus, Elburg et al. (2018) suggested that much 

124 of the chemical and isotopic variation in the lavas is due to mixing and mingling processes 

125 between basaltic andesite and felsic melts based on whole rock major element, trace element 

126 and isotope data and zircon Hf isotope data. The stagnation and mixing of the mafic and felsic 

127 melts in the lower and upper crust is believed to depend on variable tectonic phases where lava 

128 domes with enclaves form during compressional phases, and felsic pyroclastics and mafic lavas 

129 reflect extensional phases (Elburg et al., 2018). 

130 METHODS

131 Sampling of most major volcanic units in Methana (Fig. 1) was conducted in 2015 on the basis 

132 of the existing geological maps (Dietrich & Gaitanakis, 1995, Pe-Piper & Piper, 2013). Samples 

133 were selected ensuring a minimum degree of alteration and weathering. Samples were labelled 
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134 using an International Geological Sample Number (IGSN; Table 1). Sample processing started 

135 with cutting unaltered pieces for geochemical analysis and thin section preparation. The whole 

136 rock pieces were washed in an ultrasonic bath with deionized water and dried for 12 hours at 

137 60°C. The clean geochemistry pieces were crushed using a hydraulic press and reduced to 

138 powder in an agate ball mill. The powder was dried for 12 hours at 104 °C prior to fusion for 

139 major element analysis. 

140 Whole-rock analyses

141 Major elements of 86 whole rocks and enclaves were analysed using a Spectro XEPOS He X-

142 ray fluorescence spectrometer at the GeoZentrum Nordbayern, Friedrich-Alexander Universität 

143 Erlangen-Nürnberg, Germany. Further details of the analytical techniques are provided in 

144 Freund et al. (2013). Accuracy and precision of the measurements were determined by multiple 

145 measurements of the international rock standards BE-N and BR. The accuracy is generally 

146 better than ~3% (2σ) except for P2O5 which is better than 7.5%. The precision is better than 0.1 

147 and 0.2%, respectively (further information available in supplemental Table 1). Trace element 

148 analyses of 46 Methana lava and enclave samples were determined at the GeoZentrum 

149 Nordbayern on a Thermo Fisher Scientific XSeries 2 Quadrupole Inductively Coupled Plasma 

150 Mass Spectrometer (ICP-MS) connected to an Aridus 2 membrane desolvating sample 

151 introduction system. Repeated measurements of the international rock standards BHVO-2 give 

152 a precision and accuracy better than 1.1% (2σ) and 1.1% (2σ), respectively (further details are 

153 in supplementary Table 1). 

154 The Sr, Nd and Pb isotope analyses were performed at the GeoZentrum Nordbayern. 

155 Strontium and Nd isotopes were analysed using a Thermo-Fischer Triton thermal ionization 

156 mass spectrometer (TIMS) in static mode following the chemical and analytical procedures 

157 described previously (Haase et al., 2017). Lead isotope procedures and analytical techniques 
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158 using a Thermo-Fisher Neptune multicollector plasma ionisation mass spectrometer in static 

159 mode are described in detail by Woelki et al. (2018). Strontium isotope measurements were 

160 corrected for mass fractionation assuming 88Sr/86Sr = 0.1194 where mass 85 was monitored to 

161 correct the contribution of 87Rb to 87Sr. Neodymium isotope data were corrected for mass 

162 fractionation using 146Nd/144Nd = 0.7219. Samarium interferences on masses 144, 148, 150 are 

163 corrected by measuring 147Sm, but the correction was insignificant for all samples. During the 

164 measurements, the SRM987 standard yielded 87Sr/86Sr = 0.710259, and the Erlangen Nd 

165 standard gave 143Nd/144Nd = 0.511540 (corresponding to a value of 0.511850 for the La Jolla 

166 Nd isotope standard; see supplemental Table 1). Lead isotope measurements were corrected by 

167 205Tl/203Tl = 2.3871 for instrumental mass bias and external normalization was conducted by 

168 SRM 981 Pb standard (Todt et al., 1996). Repeated measurements of rock standards give an 

169 accuracy and reproducibility better than 100 ppm. 

170 Mineral analyses

171 Mineral major element concentrations were measured using a JEOL JXA 8200 Superprobe 

172 electron microprobe at the GeoZentrum Nordbayern, Erlangen, following methods and using 

173 standards used in Beier et al. (2018). Plagioclase and amphibole were measured with a 3 µm 

174 electron beam diameter at 15 kV acceleration voltage and a beam current of 15 nA. Oxides 

175 were measured at 20 kV acceleration voltage and with a 1 μm beam diameter with a current of 

176 20 nA. All measured mineral data are presented in supplementary Table 1.

177 Trace elements on minerals were measured in five thin sections by laser ablation ICP-

178 MS at the GeoZentrum Nordbayern using a UP193FX laser which is coupled with an Agilent 

179 7500c quadrupole ICP-MS (Schulz et al., 2006). External calibration was conducted by NIST 

180 SRM 612 glass with given values by (Pearce et al., 1997). Repeated analyses of the basaltic 

181 rock standard BCR2g (n = 4) give an accuracy of <10 % for all elements (except Pb <16 % and 
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182 Cu <25 %) and a reproducibility of <6 % for all elements (except for Gd, Tm and Yb < 8 % 

183 and Sm, Dy and Er <9%).

184 RESULTS

185 Petrography and mineral compositions

186 The Methana lavas are generally highly porphyritic with up to 60% phenocrysts of plagioclase 

187 and amphibole and to a lesser extent olivine, clinopyroxene, orthopyroxene, biotite, magnetite, 

188 ilmenite, and apatite (Table 2). The lavas typically have <10% vesicles and commonly contain 

189 mafic enclaves that differ from their host rocks in petrography and composition. The enclaves 

190 are generally fine-grained with a lower proportion of phenocrysts compared to the commonly 

191 coarser host lavas. The enclaves consist of plagioclase, amphibole, clinopyroxene, Fe-Ti 

192 oxides, and sometimes olivine (Table 2). 

193 Plagioclase is the most abundant mineral in lavas and in most enclaves. Based on their 

194 texture and anorthite (An = 100*(Ca/Ca+K+Na)) contents we defined four different generations 

195 of plagioclase crystals in the Methana lavas: (1) normally zoned plagioclases with cores of 

196 An85-77 and rims of An44-33 (Fig. 2a); (2) reversely zoned crystals with cores of An53-48 and step-

197 like increasing rims to An80-68 (Fig. 2b); (3) reversely zoned plagioclase crystals with cores of 

198 An54-41 and continuously increasing An contents towards the rim reaching An70 (Fig. 2c); and 

199 (4) sieve-textured plagioclase crystals with oscillatory zoning and maximum An contents of 88 

200 and rims with An77-46 (Fig. 2d). The enclaves contain two different types of plagioclase 

201 phenocrysts; (1) sieve-textured crystals that have cores with An contents of 77-44, and (2) 

202 plagioclase with rounded and embayed crystals that either display An51-44 from core to rim or 

203 that display elevated An contents of 93-68. The plagioclase crystals in the mafic enclaves with 

204 6 to 7 wt.-% MgO have high An (70-93) and FeO (>0.4 wt.-%) contents (Fig. 5d) whereas 
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205 plagioclase in the lavas shows a large range of plagioclase compositions (An33–89). The variation 

206 of the An contents in plagioclase in all samples is between 40 and 90 (Fig. 3a) but 59% of the 

207 analysed plagioclase compositions (n=776) are between 40 and 50% An (Fig. 3b). 

208 Amphibole (typically hornblende) is abundant in the Methana enclaves and lavas with 

209 Mg# ranging between 77 and 47 (Fig. 3c). The Methana lavas contain three different types of 

210 amphiboles which can be distinguished based on their shape and composition: (1) Euhedral and 

211 normally zoned amphiboles (Fig. 4a) have high Al2O3 contents in the cores (10.6 to 12.6 wt.-

212 %) while the rims range from 9.8 to 12.3 wt.-%. Magnesium numbers (Mg#) range from 58 to 

213 73 in the rims and from 65 to 72 in the cores. (2) Oscillatory zoned amphiboles (Fig. 4b) display 

214 Al2O3 contents of up to 14.4 wt.-%. (3) Subhedral to anhedral amphibole have lower Al2O3 

215 contents of 7.4 to 9.2 wt.-% in the cores and Al2O3 contents from 6.6 to 9.9 wt.-% in the rims. 

216 The Mg# of these amphiboles range from 50 to 66 in the rims and 59 to 70 in the cores, i.e. the 

217 cores are generally more Mg-rich. The mafic enclaves ME1549 and ME1515 with 6 to 7 wt.-

218 % MgO contain amphiboles that have the highest Al2O3 contents, exceeding 10 wt.-% (Fig. 5c). 

219 The variation of Al2O3 contents in the Methana amphiboles shows a bimodal distribution with 

220 maxima at 11 to 14 wt.-% and 7 to 10 wt.-% and many of the amphiboles with the high Al2O3 

221 contents also have high Mg# >70 (Fig. 5c). The amphiboles in the volcanic rocks of Methana 

222 frequently show dark rims consisting of oxides, pyroxene and plagioclase. The (La/Sm)N of the 

223 amphiboles range from 0.4. to 1.4 (Fig. 6a) and the most light Rare Earth Element (REE) 

224 enriched amphibole crystals show a larger negative Eu-anomaly compared to amphiboles with 

225 lower (La/Sm)N. Similarly, the amphibole Nb/La ratios show a negative trend with increasing 

226 (La/Sm)N (Fig. 6).

227 Olivine occurs as small subhedral (<1 mm) grains in both lavas and enclaves. In the 

228 enclaves and in andesites we find olivine with cores of Fo92-90 (Fig. 5a) and narrow rims with 

229 Fo78-80 but also homogeneous olivine with Fo86. Clinopyroxene is abundant in the andesites and 
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230 enclaves but rare in dacites and occur typically as relatively small grains with <1mm diameter. 

231 The Mg# range from 90 to 70 but are more restricted between 88 and 75 in most samples (Fig. 

232 3d). The clinopyroxenes with high Mg# of 88 have high Cr2O3 contents up to 1 wt.-% but 

233 decrease with decreasing Mg# (Fig. 5b). 

234 Biotite is abundant in many samples and occurs as elongated euhedral to anhedral 

235 crystals with sizes up to 5 mm; greenish clinopyroxene occurs in many samples and is typically 

236 euhedral with sizes up to 1 mm, whereas orthopyroxene is rare and grains are generally smaller. 

237 Oxides are commonly anhedral, larger and more common in the lavas compared to the enclaves. 

238 Magnetite and ilmenite generally occur in direct juxtaposition and have been used for 

239 thermobarometric calculations (see below). Magnetites have FeO contents of 71.1 to 87.6 wt.-

240 %, while ilmenite displays TiO2 contents between 22.6 to 47.1 wt.-% and FeO contents from 

241 46.4 to 67.4 wt.-%. From the lavas containing both magnetite and ilmenite we calculated 

242 oxygen fugacities (fO2) (Lepage, 2003, Spencer & Lindsley, 1981) and find a range from -13.5 

243 to -6.7 for temperatures of 750 to 1200°C, corresponding to FMQ +1 to +2 (Fig. 7). 

244 Chemical and isotopic composition of the whole rocks

245 The lavas from Methana range from calc-alkaline basaltic andesites and andesites to dacitic 

246 compositions whereas the enclaves are dominantly basaltic to basaltic andesitic in composition 

247 (Fig. 8a). All lavas and enclaves are classified as medium-K lavas with one exception (sample 

248 GZNME1518) and resemble previous data from Methana as well as lavas from Santorini and 

249 Nisyros in the eastern part of the Aegean arc (Fig. 1). The Methana enclaves and lavas lie along 

250 similar major element trends and display decreasing FeOT and TiO2 and increasing K2O 

251 contents with increasing SiO2. The enclaves generally have higher MgO contents of 7 to 3 wt.-

252 % whereas the lavas typically have MgO concentrations of <4 wt.-% and SiO2 of >57 wt.-% 

253 (Fig. 8e). The most mafic lavas of Methana are basaltic andesites from the Akri Pounda/Malisa 
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254 Volcano (sample locations 7 – 8 and 72 – 73, respectively in Fig. 1b) on the SW coast with ~55 

255 wt.-% SiO2 and 6 wt.-% MgO. The enclaves have variable Al2O3 contents whereas the lavas lie 

256 on a relatively tight decreasing trend with increasing SiO2 (Fig. 8d). The Methana lavas and 

257 their enclaves both have increasing P2O5 from SiO2 contents of 51 to 58 wt.-% but decreasing 

258 P2O5 contents at high SiO2 (Fig. 8f). They follow similar major element trends compared to 

259 lavas from Nisyros whereas there is a notable distinction to the Santorini magmas that display 

260 increasing FeOT and TiO2 before decreasing at >58 wt.-% SiO2. The major differences between 

261 the Methana and Nisyros rock suites are increased TiO2 values of up to 1.2 wt.-% between 58 

262 and 62 wt.-% SiO2 and lower FeOT values of 4.5 to 5.5 wt.-% between 54 and 58 wt.-% SiO2 

263 at Nisyros. Moreover, Nisyros has higher P2O5 contents which increase to ~0.25 wt.-% whereas 

264 the Methana lavas only show a maximum of ~0.15 wt.-% P2O5 (Fig. 8f). 

265 The trace elements Sr and Zr show slightly increasing concentrations with increasing 

266 SiO2 in the mafic Methana rocks (Fig. 9) but Sr decreases in lavas with >57 wt.-% SiO2 whereas 

267 the Zr concentrations remain constant. Santorini lavas have lower Sr contents and those from 

268 Nisyros have higher Sr contents compared to the Methana samples. The mafic rocks from all 

269 three Aegean arc volcanic islands have similar Zr contents but the trend of the evolved samples 

270 from Santorini show a stronger increase relative to the two other volcanoes (Fig. 9b).

271 Chondrite-normalized (La/Sm)N ratios increase with increasing SiO2 similar to the 

272 Nisyros lavas whereas a flatter trend is observed in the Santorini lavas (Fig. 10a). The Nb/Zr 

273 ratios in all lava suites in the Aegean arc are constant with variable SiO2 (Fig. 10b). Methana 

274 lavas have higher Nb/Zr than lavas from Santorini that are similar to mid-ocean ridge basalts 

275 (MORB). The Ba/Th increase slightly in the evolved rocks but all samples of Methana, 

276 Santorini and Nisyros show a similar range in compositions between 20 and 140 (Fig. 10c). 

277 The Nd isotope ratios typically decrease with increasing SiO2 contents in all lavas of the Aegean 

278 arc but enclaves with 50 wt.-% SiO2 have relatively high Nd isotope ratios with the other 
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279 enclaves showing a decreasing trend with increasing SiO2 (Fig. 10d). The lavas are more 

280 variable in their Nd isotope composition than enclaves and many of the samples with >56 wt.-

281 % SiO2 have 143Nd/144Nd <0.5125. The Eu anomaly remains relatively constant with increasing 

282 SiO2 in lavas from Methana and Nisyros but becomes larger in the evolved lavas from Santorini 

283 (Fig. 10e). The Th/Nd ratios increase with increasing SiO2 in the samples from Methana and 

284 Santorini from values slightly higher than MORB in the basalts to much higher Th/Nd in the 

285 evolved lavas. The Th/Nd of the most primitive lavas from Nisyros overlap MORB but the 

286 dacitic lavas also have much higher Th/Nd.

287 The 87Sr/86Sr ratios range from 0.70541 to 0.70840 and are significantly higher than 

288 most samples from Santorini and Nisyros in the central and eastern Aegean arc (Fig. 11a). 

289 Neodymium isotope ratios range from 0.51224 to 0.51266 and generally decrease with 

290 increasing 87Sr/86Sr (Fig. 11a). Several samples show relatively constant 143Nd/144Nd of 

291 ~0.5125 but variable Sr isotope ratios between 0.7060 and 0.7075 (Fig. 11a). The lavas with 

292 the highest Sr and lowest Nd isotope compositions overlap with the sediments recovered from 

293 drilled cores in the Hellenic Trench (Klaver et al., 2015) but granites from the Aegean lie in the 

294 elongation of the trend of the Methana lavas (Fig. 11a). In terms of the Pb isotope ratios all 

295 Methana lavas are considerably higher in 207Pb/204Pb and 208Pb/204Pb for a given 206Pb/204Pb 

296 than MORB (Fig. 11c) and the lava compositions overlap with those of the sediments subducted 

297 along the Aegean arc. The Pb isotope ratios of the Methana lavas are higher than those of the 

298 volcanic rocks of Nisyros and most of Santorini. The Methana volcanic rocks have lower Nd 

299 isotopes than Santorini and Nisyros lavas but comparable ranges of (La/Sm)N and Th/Nd (Fig. 

300 12). Both (La/Sm)N and Th/Nd show slightly decreasing 143Nd/144Nd with increasing element 

301 ratios. 
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302 DISCUSSION

303 Fractional crystallisation processes in the Methana magmas

304 Magmas ascending from the mantle through the continental crust stagnate at different levels 

305 where they may fractionate, mix, and assimilate, typically beginning in the lower crust (e.g. 

306 Annen et al., 2006, Hildreth & Moorbath, 1988). The most mafic rocks from Methana are the 

307 enclaves with <52 wt.-% SiO2 (Fig. 8) that have higher K2O and lower FeOT than basalts from 

308 Santorini (Bailey et al., 2009, Nicholls, 1971). The mafic enclaves in the Methana lavas are 

309 relatively fine-grained and thus represent magma compositions rather than magma chamber 

310 cumulates. Woelki et al. (2018) suggested that the Fo-rich olivines in the Methana enclaves and 

311 lavas (up to Fo92) require primary magmas with Mg# ~72 and the high Mg# of the 

312 clinopyroxenes of up to 90 (Fig. 5b) also require a Mg-rich primary magma beneath Methana. 

313 The most mafic enclaves have an Mg# of ~65 implying considerable chemical evolution from 

314 the primary mantle magma. Similar mafic enclaves are typical for the calc-alkaline magmas 

315 of the Aegean arc and other island arcs (e.g. Didier, 1973, Zellmer & Turner, 2007). 

316 Combining the lavas and the enclaves, clear compositional trends of major and trace 

317 elements occur versus SiO2 (Figs. 8 and 9). The genetic relationship between the enclaves 

318 and the Methana lavas is supported by the continuous and overlapping trends of some 

319 incompatible element ratios like Nb/Zr and Ba/Th that are not extensively affected by the 

320 fractionating phases (Fig. 10). 

321 Extensive fractional crystallisation is also evident from the large compositional variation (e.g. 

322 An92 to An33) and normal zoning of plagioclase and amphibole phenocrysts (Figs. 2 and 4) that 

323 require crystallisation of the minerals either by simple cooling (e.g. de Silva et al., 2008) 

324 or decompression along with degassing (e.g. Applegarth et al., 2013) of the magma. Many 

325 plagioclase samples display plateaus at An70-80 and An35-50 and formed in magmas with 
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326 basaltic to andesitic and dacitic to rhyolitic compositions, respectively (Nandedkar et al., 

327 2014). The plagioclase compositions likely reflect mixing between such magmas during 

328 the ascent thereby adding plagioclase with primitive cores to dacitic magmas. However, 

329 these plateaus are separated by 100 to 200 m thick transitional zones (Fig. 2) indicating 

330 growth from melts with evolving compositions and the distribution of compositions is not 

331 bimodal but ~60% of the plagioclase analyses are in the range of 40 to 50% An (Fig. 3b). 

332 Additionally, the Methana plagioclase crystals do not show the bimodal Fe contents 

333 observed, for example, by Kent et al. (2010) in andesitic lavas from Mount Hood, Oregon. 

334 Most of the Methana plagioclase crystals have relatively low FeO contents <0.3 wt.-% at 

335 highly variable An contents between 30 and 90% (Fig. 5d). The FeO contents >0.3 wt.-% 

336 in plagioclase appear generally restricted to the An-rich crystals in more mafic magmas 

337 with >3 wt.-% MgO suggesting that there was little hybridization of the dacitic and 

338 basaltic magmas. Thus, although some magma mixing is indicated by the compositional 

339 plateaus, most of the variation in plagioclase is probably related to fractional 

340 crystallisation, particularly in the evolved andesitic to dacitic melts. The temperatures 

341 calculated for the magmas range from 1200 to 750°C (Fig. 7), implying a considerable cooling 

342 from the mafic to the dacitic melts (Fig. 8, 9). This range of temperatures is similar to that found 

343 in crystallisation experiments of calc-alkaline magmas (Blatter et al., 2013, Nandedkar et al., 

344 2014). 

345 It has been shown previously that trends in calc-alkaline lavas may not represent liquid 

346 lines of descent and that magma mixing and mineral accumulation affects the bulk composition 

347 of most rocks (e.g. Eichelberger et al., 2006). Several elements like MgO and Al2O3 have highly 

348 variable concentrations especially in the Methana lavas with SiO2 <57 wt.-% that probably 

349 indicate accumulation of mafic minerals and plagioclase. However, some elements like, for 

350 example, P and Sr show increasing concentrations between SiO2 contents of 52 and 57 wt.-% 
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351 and decreasing concentrations at higher SiO2 contents (Fig. 8f and 9c). The change in the trend 

352 of P2O5 (Fig. 8f) reflects the onset of apatite fractionation in the felsic magmas but disagrees 

353 with a model that the trends reflect binary mixing of mafic and felsic magmas (Elburg et al., 

354 2018). The compositional scatter along the trends allows perhaps 10% mixing of a mafic with 

355 a felsic end-member (Fig. 8f) but the felsic magmas with SiO2 >60 wt.-% may reflect more 

356 extensive mixing with more mafic melts. Additionally, we do not exclude mixing across a 

357 smaller range of SiO2, i.e. mixing between intermediate (<57 wt.-% SiO2) and mafic (>52 wt.-

358 % SiO2), or intermediate and felsic (>57 wt.-% SiO2) melts. We conclude that the major element 

359 trends for the Methana enclaves and lavas largely reflect fractional crystallisation processes of 

360 olivine, Cr-spinel, clinopyroxene, amphibole, plagioclase, and FeTi-oxides, but limited magma 

361 mixing and mineral accumulation caused considerable compositional variation along the trends.

362 The earliest fractionating phases at temperatures of ~1200°C are probably olivine, Cr-

363 spinel, and clinopyroxene as indicated by decreasing Ni and Sc contents with increasing SiO2 

364 (Fig. 9) and in agreement with crystallisation experiments of primitive arc magmas (Pichavant 

365 & Macdonald, 2007, Sisson & Grove, 1993). Plagioclase crystallisation is suppressed by the 

366 high water contents and may occur below 1100°C (Pichavant & Macdonald, 2007). The 

367 decreasing Al2O3 and Sr concentrations at SiO2 >57 wt.-% in the Methana lavas indicate 

368 plagioclase fractionation in the andesitic melts (Figs. 8d and 9c). Amphibole has the same effect 

369 as clinopyroxene on Sc but is not stable at temperatures >1000°C. Clinopyroxene cores are 

370 observed in some amphiboles in the Methana rocks and indicate that amphibole may form from 

371 clinopyroxene and olivine during cooling in the crust which has also been found in other 

372 volcanoes (Klaver et al., 2017, Smith, 2014) and in experiments (Foden & Green, 1992). Most 

373 olivine grains are also anhedral and show signs of resorption and rims of orthopyroxene. These 

374 minerals are probably xenocrystic remnants of primitive early magmas similar to those 

375 observed in many subduction-related lavas (Kamenetsky et al., 2001, Streck et al., 2007). 
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376 Amphibole is abundant in the Methana lavas and amphibole fractionation has been 

377 suggested to be crucial for many subduction-related magmas (e.g. Davidson et al., 2007, 

378 Larocque & Canil, 2010). Amphibole as fractionating phase can explain the increasing SiO2 

379 and (La/Sm)N ratios in the Methana lavas (Fig. 10a) because amphibole has lower SiO2 and 

380 (La/Sm)N than the mafic magmas. The amphiboles in the Methana lavas show a variation 

381 between 0.4 and 1.5 in (La/Sm)N (Fig. 6) which most likely reflects variations in the magma 

382 compositions, i.e. crystallisation from variably light REE enriched melts. This variation is 

383 comparable to that observed in the cumulate amphiboles of Nisyros and the amphiboles from 

384 the high-Mg# andesites of the Adamello pluton (Klaver et al., 2017, Tiepolo et al., 2011). The 

385 most light REE enriched amphiboles have the lowest Eu/Eu* and Nb/La and thus, the 

386 enrichment in (La/Sm)N in the amphiboles probably indicates increasing crystal fractionation 

387 and Eu removal by plagioclase from the magma. The steep decrease of Nb/La with increasing 

388 (La/Sm)N in the amphibole may reflect the relative depletion of Nb relative to La in the magmas 

389 because of the higher DNb in amphibole (Tiepolo et al., 2000). We conclude that the 

390 crystallisation and fractionation of amphibole leads to an enrichment of light REE and Nb 

391 relative to middle and heavy REE, i.e. amphibole fractionation has significant effects on 

392 incompatible element ratios in the evolved magmas (Davidson et al., 2007, Dessimoz et al., 

393 2012). Because amphibole crystallises relatively late from the Methana magmas we 

394 propose that the relatively low (La/Sm)N and Th/Nd but high 143Nd/144Nd of the mafic 

395 enclaves compared to the more evolved rocks (Fig. 10) indicate that the basalts closely 

396 resemble partial melts from the mantle wedge in terms of their incompatible element and 

397 Sr-Nd-Pb isotope ratios. 

398 In contrast to the abundant occurrence of amphibole and biotite in the Methana rocks 

399 and in the early lava series from Santorini, the younger Santorini lavas generally lack hydrous 

400 minerals (Nicholls, 1971). The absence of large amounts of amphibole (and biotite) in the 
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401 younger Santorini fractionation assemblage can explain the shallower trend of (La/Sm)N (Fig. 

402 10a). This may either indicate crystallisation under hotter conditions (Klaver et al., 2016), at 

403 lower pressure (Elburg et al., 2014), or less volatiles in the Santorini than in the Methana 

404 magmas. The young Santorini magmas show an initial FeO enrichment with increasing SiO2 

405 which is different from the calc-alkaline trend of continuously decreasing FeOT observed in the 

406 Methana magmas (Fig. 8c) but also from the early calc-alkaline lavas of Santorini (Nicholls, 

407 1971). Experiments on Santorini basalt show that amphibole becomes stable at water contents 

408 >3.5 wt.-% (Andújar et al., 2015) indicating that the young Santorini magmas are drier than the 

409 older magma series. This also suggests that the mafic Methana magmas have high water 

410 contents >3.5 wt.-% because amphibole crystallises early in these magmas. The lower CaO 

411 contents of olivine with Fo90 also supports more water in the Methana basalts compared to 

412 Santorini because there appears to be relation between the DCa in olivine and H2O content of 

413 the parent melt (Gavrilenko et al., 2016). The Methana olivines resemble the Ca-poor olivines 

414 from Klyuchevskoy and Shiveluch volcanoes in Kamchatka with H2O contents of 4 to 6 wt.-% 

415 (Fig. 5a). Additionally, our amphibole temperature estimates (765 to 1015°C (± 22°C) after 

416 Ridolfi et al. (2010)) show the same temperature range as calculations by Mortazavi and Sparks 

417 (2004) but result in slightly lower maximum temperatures than Santorini. In agreement with 

418 previous work (Andújar et al., 2015) we suggest that the abundance of biotite and amphibole 

419 in Methana lavas in comparison to those from Santorini reflects higher H2O contents of ~4 wt.-

420 % in the primitive Methana magmas than in the Santorini melts. 

421 Constraints on the oxidation state of ascending magmas

422 In the Methana enclaves and lavas, FeOT and TiO2 decrease between 52 and 65 wt.-% SiO2 

423 while the Santorini lavas and some from Nisyros show an increase in FeOT from 50 to 56 wt.-

424 % SiO2 and then a decrease which is also observed in TiO2 at SiO2 <56 wt.-% (Fig. 8). Elburg 

425 et al. (2014) noted an earlier fractionation of oxides like Ti-magnetite and ilmenite in the 

Page 18 of 70

http://www.petrology.oupjournals.org/

Manuscript submitted to Journal of Petrology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

19

426 Methana melts compared to Santorini leading to stronger depletion of FeOT and TiO2 versus 

427 SiO2 (Fig. 8). Moreover, the V concentrations of the Santorini samples are generally higher 

428 than those in the Methana magmas at corresponding SiO2. The calculated oxygen fugacities 

429 (fO2) (Lepage, 2003, Spencer & Lindsley, 1981) in the lavas containing both magnetite and 

430 ilmenite range from -13.5 to -6.7 for the range of 750 to 1200°C, corresponding to FMQ +1 to 

431 +2 (Fig. 7). The fO2 calculated from the Methana oxides is higher than that of lavas from 

432 Santorini but comparable to rocks from Nisyros (Fig. 7) indicating more oxidizing conditions 

433 in the Methana magmas compared to the Santorini melts. This is also supported by differing 

434 trends of the Eu anomaly (Eu/Eu*) in the lavas which display a stronger decrease at Santorini 

435 compared to Methana and Nisyros (Fig. 10e). Plagioclase substitutes Sr, and Eu2+ for Ca but 

436 the incorporation of Eu into plagioclase depends on fO2 (Drake, 1975). The decreasing Sr 

437 contents with increasing SiO2 (Fig. 9c) imply that plagioclase fractionates in all three volcanic 

438 systems but is more abundant in the Santorini magmas. Some amphiboles of the Methana mafic 

439 enclave GZNME1589 lack an Eu-anomaly suggesting crystallisation of amphibole prior to 

440 plagioclase whereas the REE patterns of more evolved amphibole show a distinct Eu-anomaly 

441 (Fig. 6). However, the Eu/Eu* of Methana and Nisyros lavas remain nearly constant whereas 

442 there is a significant decrease with increasing SiO2 in the Santorini lavas. This difference 

443 probably reflects the lower fO2 in the Santorini magmas which lead to higher Eu2+/Eu3+. 

444 However, the Eu/Eu* ratios in plagioclase from Methana lavas range from 27 to 0.8 which is 

445 comparable to the range observed in Nisyros cumulates (Klaver et al., 2017). This may imply 

446 that some plagioclase crystals formed in reducing magmas rather than in highly oxidized melts 

447 with little Eu2+. The amphibole crystals from Methana lavas and enclaves and Nisyros 

448 cumulates also show a variation of the Eu/Eu* from 1.0 to 0.4 (Fig. 6a) reflecting the 

449 fractionation of plagioclase and magma evolution. 
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450 The differences of magma evolution between the western Aegean volcanoes and the 

451 younger Santorini lavas was noted by Nicholls (1971) who suggested that the young Santorini 

452 magmas contain less H2O and are less oxidized than the melts of the western volcanoes, in 

453 agreement with our data. Experimental data on Santorini mafic magmas show that amphibole 

454 crystallisation requires water contents >3.5 wt.-% at fO2 of FMQ+1 and temperatures of <975°C 

455 whereas the young Santorini magmas have lower water contents and fO2 (Andújar et al., 2015). 

456 The high Mg# of some amphibole crystals particularly in the mafic enclaves of Methana 

457 indicate crystallisation from mafic melts and therefore H2O contents >3.5 wt.-%. The variable 

458 fO2 in magmas may either reflect variations in the mantle source (e.g. sediment subduction), or 

459 variable processes (e.g. assimilation, fractional crystallisation, degassing) during the ascent of 

460 the magmas (Cottrell & Kelley, 2011, Grocke et al., 2016, Lee et al., 2005, Rowe et al., 2009). 

461 Importantly, the mafic magmas from Methana with high temperatures of 1200°C display 

462 >FMQ+1 similar to the evolved lavas (Fig. 7) implying that the high fO2 reflect the mantle 

463 source rather than processes during magma ascent. Such oxidized mantle may form due to the 

464 subduction of oxidized C and S in sedimentary components into the mantle wedge (Evans, 

465 2012, Rielli et al., 2017). The high fO2 of the Methana basalts probably results from a higher 

466 sediment contribution compared to the eastern Aegean arc that causes, for example, lower 

467 143Nd/144Nd than in Santorini basalts (Fig. 11) and was suggested by previous work (e.g. Elburg 

468 et al., 2014, Francalanci et al., 2005, Woelki et al., 2018). We conclude that the variable 

469 subduction of sediments beneath the Aegean causes formation of relatively oxidized and water-

470 rich primary magmas with the fO2 and water content reflecting the variable composition and 

471 amount of recycled sediment.

472  Constraints on crustal stagnation levels of the Methana magmas

473 Basaltic melts did not erupt on Methana (Fig. 1) but apparently intruded into stagnant andesitic 

474 to dacitic magmas in crustal magma reservoirs and thus occur only as enclaves in the silicic 
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475 host rocks (Dietrich et al., 1988, Elburg et al., 2018). The Al content in amphibole in magmatic 

476 rocks has been widely used to calculate temperatures and pressures of crystallisation and the 

477 H2O content of the melt (e.g. Costa et al., 2013, Ridolfi & Renzulli, 2012) but the 

478 compositional variation in amphibole may also reflect mixing of magmas with different 

479 composition (e.g. Bachmann & Dungan, 2002, Erdmann et al., 2014, Rutherford & Devine, 

480 2003). Moreover, experimental work on amphibole from basaltic and andesitic melts of 

481 Santorini found large differences between pressures in experiments and those calculated from 

482 the amphibole compositions (Andújar et al., 2015). The Methana amphibole compositions 

483 suggest a range of crystallisation temperatures from 765 to 1015°C (± 22°C) based on the 

484 method of Ridolfi et al. (2010) which is in the range of 750 to 1203°C (± 35°C) calculated using 

485 the ilmenite-magnetite thermometer of Spencer and Lindsley (1981) but limited by the upper 

486 stability of amphibole at temperatures of less than ~1050°C (Blatter et al., 2013, Foden & 

487 Green, 1992). The high temperature and Mg# of some amphibole crystals suggest formation 

488 from mafic magma which is in general agreement with the occurrence of most amphiboles with 

489 Mg# >70 in mafic to intermediate rocks (>3 wt.-% MgO). We find that most amphiboles in the 

490 Methana lavas with MgO <3 wt.-% contain <10 wt.-% Al2O3 whereas amphiboles in the 

491 primitive enclaves with MgO >6 wt.-% have high Al2O3 of 11 to 14 wt.-% (Fig. 6c). Thus, there 

492 appears to be a relationship between amphibole and magma composition which could be due 

493 to amphibole crystallisation from different magmas or at different depths, or both as well as 

494 different temperature or H2O content of the melt. A similar variation was observed in 

495 amphiboles of cumulates from Nisyros by Klaver et al. (2017) who suggested that the high 

496 Al2O3 contents largely result from crystallisation at high pressures of 0.5 to 0.8 GPa. 

497 Experiments on melts from Santorini with comparable compositions to those of Methana by 

498 Andujar et al. (2016) and Cadoux et al. (2014) show that amphibole with 7 to 12 wt.-% Al2O3 

499 form at pressures of 0.2 to 0.4 GPa (Fig. 5c) and H2O contents >4.5 wt.-%. Additionally, 
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500 equation 1c of Ridolfi and Renzulli (2012) yields amphibole crystallisation pressures with a 

501 bimodal distribution with average values of 0.16 and 0.38  0.12 GPa (errors after Erdmann et 

502 al., 2014). The pressure estimates are affected by large errors of the amphibole barometry 

503 sometimes even resulting in negative pressures (Erdmann et al., 2014, Putirka, 2016). The 

504 crystallisation in the shallow crust at less than 15 km depth (<0.4 GPa) beneath Methana is 

505 comparable to the situation at Santorini where mafic magmas appear to stagnate at depths of 15 

506 to 12 km (Andújar et al., 2016), whereas the felsic magmas generally reside in reservoirs 

507 between 10 and 2 km depth (Druitt et al., 2016). On the other hand, the most mafic enclave 

508 GZNME 1549 with 7.2 wt.-% MgO contains amphibole with Al2O3 to 15 wt.-% (Fig. 5c) that 

509 resemble amphiboles from experiments on calc-alkaline melts at 0.7 to 0.9 GPa (Blatter et al., 

510 2013) corresponding to crystallisation depths higher than 25 km which is comparable to 

511 the observations on mafic cumulates at Nisyros that formed at high pressures of 0.5 to 0.8 GPa, 

512 i.e. at 25 to 30 km depth (Klaver et al., 2017). Most pressures indicated by the Methana 

513 amphiboles correspond to the intermediate to shallow crust that largely consists of 

514 metasedimentary rocks whereas the deep crystallisation occurred closer to the Moho lying at 

515 ~30 km underneath Methana (Tirel et al., 2004). In conclusion, amphibole compositions 

516 indicate that fractional crystallisation in the magma system beneath Methana occurred at 

517 different levels in the crust with mafic magmas from the deeper part of the system ascending 

518 into the felsic magmas in the shallower crust. Such intrusion processes caused the formation of 

519 mafic enclaves and the reheating potentially triggered the ascent and eruption of the felsic 

520 magmas (e.g. Murphy et al., 2000). Because the volumes of erupted magmas on Methana are 

521 small (<<1 km3), we believe that the mafic magmas intrude as dikes into small felsic magma 

522 reservoirs at different shallow crustal levels as suggested by Eichelberger et al. (2006). 
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523 Evidence for magma mixing 

524 The abundance of rounded enclaves and the presence of olivine xenocrysts in the felsic 

525 Methana lavas probably reflects the intrusion of mafic magmas intruded into silicic magma 

526 systems beneath Methana. Whereas the enclaves typically show sharp boundaries to the 

527 surrounding host lava, i.e. no evidence of mixing, the textures and compositions of minerals 

528 imply either mixing between mafic and felsic melts, or that the different magmas picked up 

529 variable cumulate minerals during the ascent. For example, dacite GZNME1561 contains three 

530 populations of plagioclase (An85, 65 and 45) and amphibole (Mg# 64-70, 54-60, and 46-52; 

531 Fig. 3) that may indicate mixing of variable melts. Complex mixing relationships between melts 

532 and minerals are typical for lavas in continental subduction zones (Costa et al., 2013, 

533 Eichelberger et al., 2006, Streck & Leeman, 2018). The compositional trends of the Methana 

534 lavas have previously been interpreted to reflect binary mixing between basaltic andesite and a 

535 felsic melt possibly with >70 wt.-% SiO2 (Elburg et al., 2018). Such binary mixing leads to 

536 linear trends rather than the curved or kinked trends of Ni, Sr, and P2O5 versus SiO2 in the 

537 Methana lavas (Figs. 8f and 9a). Thus, binary mixing between two extreme end-member 

538 compositions appears unlikely. However, the occurrence of clinopyroxene with high Mg#, of 

539 sieve-textured plagioclase (Fig. 2d), and the large range of plagioclase compositions between 

540 An45 and An90 in the andesitic and dacitic lavas (Figs. 2 and 3a) reflect interaction between 

541 basaltic magmas or their cumulates, and evolved melts. The recharge by mafic melt may cause 

542 increasing temperatures in the felsic magmas and partial dissolution of plagioclase phenocrysts 

543 (Andrews et al., 2008) and the abrupt increase in An contents towards the rim (Fig. 2b). Such 

544 melt mixing leads to chemical and/or thermal disequilibrium resulting in the observed sieve 

545 textures of Ca-rich plagioclase (Tsuchiyama, 1985), partly embayed rims of felsic plagioclase, 

546 and dissolution of amphiboles (Fig. 2). Additionally, the presence of low and high Al-

547 amphiboles with high Mg# in the andesitic and dacitic lavas (e.g. dacite GZNME1561, Fig. 3b) 
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548 indicates mixing of magmas with different compositions that either stagnated at different 

549 depths in the crust beneath Methana, or generally had different temperatures or H2O 

550 contents. We suggest that the major and trace element trends argue against binary mixing 

551 between mafic and felsic magmas as main process forming the trends, but that limited mixing 

552 (<10%) of mafic magmas during intrusion into felsic magma may occur (Fig. 8f). The 

553 abundance of mafic enclaves in the felsic lavas indicates that there was little interaction possibly 

554 because of high viscosities of the magmas and rapid quenching of mafic magmas. The mixing 

555 signatures commonly seen in mineral petrography and geochemistry might be caused by 

556 mixing of compositionally similar melts with different temperatures or H2O contents as 

557 well as different water contents (Erdmann et al., 2014).

558 The most primitive enclave (Sample: GZNME1549) with 7.2 wt.-% MgO contains 

559 relatively homogeneous olivine with Fo87, plagioclase with An-contents up to 90, and 

560 amphiboles with Mg# up to 74 and Al2O3 contents up to 15.8 wt.-% (Figs. 3 and 5). Other 

561 MgO-rich enclaves contain olivine with Fo91 implying that these mafic magmas carried the 

562 mafic minerals into the felsic magmas. The large variation of olivine with Fo contents between 

563 78 and 92 and plagioclase An between 44 and 90 within the mafic enclaves (Figs. 3 and 5) 

564 implies that they also formed by mixing processes prior to intruding into the felsic magma 

565 reservoirs. The ascent of the mafic magmas into the shallow felsic reservoirs may have been 

566 triggered by an extensional tectonic phase which in turn caused eruption of the felsic melts 

567 (Elburg et al., 2018). 

568 We conclude that complex processes of fractional crystallisation and mixing occurred 

569 at several levels in the Methana magma system and that small batches of melt interacted with 

570 each other. Such processes appear to be typical for magma systems at active continental margins 

571 (Costa et al., 2013, Erdmann et al., 2014, Kent et al., 2010).
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572 The effect of assimilation of crustal rocks on the Methana magma compositions 

573 The mantle wedge beneath the Aegean arc is affected by sediment subduction but the magmas 

574 ascending into the crust additionally assimilate sedimentary material (Bailey et al., 2009, 

575 Elburg et al., 2014, Woelki et al., 2018). For example, Elburg et al. (2014) proposed that the 

576 Sr and Nd isotope trends in the Methana lavas are the result of two mixing stages, where the 

577 first stage involves sediment subduction into the mantle, and the second stage involves 

578 assimilation of crustal rocks. The Methana enclaves and lavas show increasing Th/Nd but 

579 generally decreasing 143Nd/144Nd with increasing SiO2, and Aegean I- and S-type granites form 

580 an extension of the trends of the Methana lavas (Fig. 10d and f). These granites largely represent 

581 partial melts of metasediments (Altherr & Siebel, 2002, Juteau et al., 1986, Pe-Piper, 2000, 

582 Stouraiti et al., 2010) and thus probably resemble the crustal component in the Methana 

583 magmas. Simple binary mixing between a granitic end-member and a primitive Methana basalt 

584 suggests that the evolved Methana magmas may contain between 10 and 50% crustal melt (Fig. 

585 10d). The crust beneath Methana has a thickness of ~30 km which is thicker than beneath the 

586 Aegean arc volcanoes further to the east where extension has reduced the crustal thickness to 

587 ~25 km (Tirel et al., 2004). Seismic anisotropy studies suggest that the upper 10 km of the crust 

588 consist of metasediments whereas the lower 20 km of the crust consist of dense mafic rocks 

589 (Cossette et al., 2016). The western Aegean crust of the Argolis Peninsula is part of the 

590 Subpelagonian Zone of the Hellenides and consists of a Palaeozoic basement with an upper 

591 crust of accreted Cretaceous to Eocene limestones and terrigenous flysch sediments (Faupl et 

592 al., 1999, Robertson et al., 1991). Similar Mesozoic metasediments are abundant on many 

593 Aegean islands and partial melting of these largely contributes to the Aegean granites (Altherr 

594 & Siebel, 2002, Pe-Piper, 2000, Stouraiti et al., 2010) but also affects the Methana magmas 

595 (Figs. 10 and 11). The Methana lavas display two trends of 87Sr/86Sr versus 143Nd/144Nd where 

596 one trend shows increasing Sr and decreasing Nd isotope ratios and the other increasing 
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597 87Sr/86Sr at constant 143Nd/144Nd (Fig. 11a). Although the lavas with the most radiogenic Sr 

598 isotope ratios overlap with the compositions of the Neogene sediments drilled in the Hellenic 

599 Trench (Fig. 11) we suggest that these Methana magmas with low 143Nd/144Nd assimilate 

600 Mesozoic metasediments because they generally have higher 208Pb/204Pb for a given 206Pb/204Pb 

601 compared to the young sediments but comparable to Aegean granite (Fig. 11c). Only the 

602 Methana samples with relatively high 143Nd/144Nd of 0.5125 but variable Sr isotope ratios (Fig. 

603 11a) may have assimilated younger sediments. The significant assimilation of sedimentary 

604 material implies that these processes occur within the upper 10 km of the crust rather than in 

605 the lower crust that is probably composed of mafic igneous and metamorphic rocks (Cossette 

606 et al., 2016). We conclude that most of the primitive Methana magmas mixed with partial melts 

607 of metasediments with low Nd and high 208Pb/204Pb isotope compositions but some Methana 

608 melts were also affected by younger sediments with relatively high 143Nd/144Nd. The relatively 

609 high 143Nd/144Nd and high Al contents in the amphiboles of the mafic enclaves suggest that 

610 mafic magmas probably stagnated at ~14 km depth and assimilated less crustal material than 

611 the silicic melts represented by the lavas. The lower An contents of plagioclase and Mg# of 

612 amphibole in the dacitic lavas compared to the mafic enclaves (Fig. 3) probably reflect the 

613 more extensive fractional crystallisation associated with assimilation in the evolved melts. 

614 We used the EC-RAFC model of Bohrson and Spera (2003) to estimate the assimilation 

615 and fractional crystallisation processes (Figs. 11 and 12) assuming magma temperatures of 

616 1250 to 850°C (Fig. 7). The temperature in the crust beneath Methana is relatively high and 

617 estimates from hydrothermal fluids yield temperatures of 150°C in the shallow crust (Dotsika 

618 et al., 2009) so that we assume a temperature of 400°C at 10 km depth. For the starting 

619 composition of the Methana mafic magma we take Sr and Nd isotope ratios of 0.7055 and 

620 0.51265 (Table 3) that represent magma forming from a mixture between depleted MORB 

621 mantle (DMM) and sediment melt (Woelki et al., 2018). The crustal end-member is defined by 
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622 the composition of Aegean granites with 87Sr/86Sr and 143Nd/144Nd of 0.7115 and 0.5121 

623 because these granites are partial melts of the Aegean crust. Figure 11 shows the curves of the 

624 EC-RAFC model and in general there is a reasonable fit to the trend of most samples from 

625 Methana. The variation of the Pb isotopes indicates that there is considerable variation in the 

626 endmembers. The model suggests 72% fractional crystallisation and 40% assimilation for the 

627 most extreme Methana lavas at a temperature of 945°C (Figs. 11 and 12) which is supported by 

628 the temperature estimates from the oxide thermometry. Our calculations indicate a predominant 

629 trend of sediment contribution at Methana and the evolved lavas show an increased sediment 

630 contribution compared to the more primitive lavas represented in the form of enclaves. The 

631 curved variation of the Th/Nd ratio with decreasing Nd isotope ratios observed in the Methana 

632 lavas (Fig. 12b) is not fully reproduced but this may reflect the heterogeneity of the 

633 metasediments in the upper crust that is also displayed in the variation of Nd isotopes versus 

634 SiO2 (Fig. 10f). The variation of the Th/Nd ratio reflects the fact that during fractional 

635 crystallisation Th is more incompatible than Nd and thus becomes relatively enriched, whereas 

636 at a later stage assimilation of a melt from metasediments with a Th/Nd of ~0.2 leads to 

637 decreasing Th/Nd (Fig. 12b). Thus, the chemical and isotopic variation observed in the 

638 relatively evolved magmas of Methana reflects extensive fractional crystallisation and 

639 assimilation of metasediments in the upper crust. There is little evidence for long residence of 

640 the mafic melts with assimilation in the lower crust beneath Methana.

641 CONCLUSIONS

642 The geochemistry and petrology of lavas and their enclaves of Methana peninsula show the 

643 impact of sediment subduction and assimilation on magma composition in an island arc setting. 

644 The basaltic primary melts indicate metasomatism by sediment melts from the subducting slab 

645 but the ascending magmas also react with the metasedimentary rocks of the accreted crust in 
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646 the Aegean. The variation of amphibole compositions and comparison with experimental 

647 results indicate stagnation of the melts at a range of depths from the deep to shallow crust and 

648 cooling from more than 1200°C to about 800°C yielding andesitic and dacitic compositions. 

649 The basaltic magmas stagnate close to the Moho (~25 km) where they evolve by fractional 

650 crystallisation and minor assimilation. Significant contamination by metasediments associated 

651 by further crystallisation mainly occurs in the upper crust (<15 km depth) beneath Methana 

652 results in evolved magmas of predominantly andesitic to dacitic in composition. Both mafic 

653 and felsic Methana magmas have fO2 of FMQ +1 to +2 that is much higher than that observed 

654 in Santorini melts and probably reflects the much stronger input of sediments into the mantle 

655 wedge whereas there is no systematic change during assimilation and fractional crystallisation 

656 processes. The eruption of the felsic magmas may be caused by the intrusion of more mafic 

657 magmas that now exist as enclaves in the felsic rocks. The occurrence of exclusively effusive 

658 eruptions at Methana as opposed to the large explosive eruptions observed in the eastern 

659 Aegean islands possibly results from efficient degassing and a low ascent rate through a 

660 relatively thicker crustal lid in the western Aegean. 
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979 FIGURE CAPTIONS

980 Figure 1. (a) Overview map of the Aegean arc showing the volcanic centres with Methana in 

981 the west. Benioff zone depths are from Bailey et al. (2009). (b) Geologic map of Methana 

982 Peninsula modified after Pe-Piper and Piper (2013) showing the lava units and sampling 

983 locations.

984 Figure 2. Selected plagioclase crystals from Methana lavas and profiles of An-contents 

985 calculated based on electron microprobe data. (a) Normal zoning with decreasing An-contents 

986 from core to rim; (b) Inverse-zonation with increasing An-contents from core to rim; (c) Little 

987 zoned plagioclase showing slightly increasing An-contents towards the corroded rim, and (d) 

988 sieve-textured plagioclase. 

989 Figure 3. Variations of (a) An contents in plagioclase, (b) abundance of An-contents in the 

990 analysed plagioclase crystals based on a total of 776 analyses, (c) Mg# in amphibole, and 

991 (d) Mg# of clinopyroxene from different lava and enclave samples. Note that most samples 

992 show large and continuous variations of the mineral compositions and that there is no bimodal 

993 distribution of An compositions.

994 Figure 4. Selected amphibole crystals from Methana lavas along with profiles of Al2O3 

995 contents. (a) Euhedral and normally zoned amphibole with high Al2O3 contents in the core; (b) 

996 oscillatory zoned amphibole; (c) anhedral amphibole with lower Al2O3 contents.

997 Figure 5. (a) Contents of CaO in olivine crystals from Methana compared to those of MORB, 

998 and Santorini (Andújar et al., 2015, Huijsmans, 1985, Nicholls, 1971), as well as lavas from 

999 Shiveluch and Klyuchevskoy volcanoes in Kamchatka (Gavrilenko et al., 2016). (b) Variations 

1000 of Cr2O3 contents with Mg# in clinopyroxenes from Methana compared to experimentally 

1001 derived clinopyroxenes from calc-alkaline basalts to andesites (Sisson & Grove, 1993). (c) 

1002 The Al2O3 contents versus Mg# of amphiboles from the Methana lavas and enclaves compared 
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1003 to amphibole from Nisyros cumulate xenoliths (Klaver et al., 2017), and to experimentally 

1004 derived amphiboles from calc-alkaline melts at 0.9 and 0.7 GPa (Blatter et al., 2013) and 0.4 

1005 and 0.2 GPa (Andújar et al., 2015, Cadoux et al., 2014). The MgO contents in the legend are 

1006 those of the host rocks. (d) Variation of the FeO versus An contents in plagioclase crystals 

1007 from the Methana lavas and enclaves compared to those from Nisyros cumulate xenoliths 

1008 (Klaver et al., 2017). 

1009 Figure 6. (a) The Eu anomaly (Eu/Eu* = EuN/((SmN+GdN)/2) versus the chondrite-normalized 

1010 (La/Sm)N ratios of amphiboles from Methana enclaves and lavas in comparison to amphibole 

1011 from Nisyros cumulate xenoliths (Klaver et al., 2017), from the calc-alkaline Adamello 

1012 intrusion in the Alps (Tiepolo et al., 2011), and lavas from Savo volcano in the Solomon island 

1013 arc (Smith, 2014). (b) The Nb/La ratios of amphibole versus the chondrite-normalized La/Sm 

1014 ratios of amphiboles from Methana enclaves and lavas in comparison to other amphibole 

1015 compositions.

1016 Figure 7. The fO2 and temperatures of lavas calculated from ilmenite-magnetite pairs (Lepage, 

1017 2003, Spencer & Lindsley, 1981) in different samples from Methana lavas and enclaves 

1018 compared to data from Santorini and Nisyros (Barton & Huijsmans, 1986, Cottrell et al., 1999, 

1019 Fabbro et al., 2013, Seymour & Lalonde, 1991). 

1020 Figure 8. Major element contents plotted versus SiO2 concentrations for lavas and enclaves 

1021 from Methana in comparison to volcanic rocks from Santorini and Nisyros (Bailey et al., 2009, 

1022 Braschi et al., 2012, Buettner et al., 2005, Elburg et al., 2018, Francalanci et al., 1995, Innocenti 

1023 et al., 1981, Kirchenbaur et al., 2011, Klaver et al., 2017, Nicholls, 1971). The classification in 

1024 (a) is after Le Maitre et al. (1989) and shows that Methana magmas resemble those from 

1025 Santorini and Nisyros. The TiO2 and FeOT contents of Santorini lavas show different trends to 

1026 those of Methana and Nisyros. 8f shows a mixing line between basaltic andesite and dacite 

1027 magma with the crosses showing 10% increments.
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1028 Figure 9. Variations of (a) Ni versus SiO2, (b) Sc versus SiO2, (c) Sr versus SiO2 and (d) Zr 

1029 versus SiO2 for the lavas and enclaves of Methana in comparison to those from Santorini and 

1030 Nisyros. Data sources as in Figure 8.

1031 Figure 10. Variations of (a) chondrite-normalized (La/Sm)N versus SiO2, (b) Nb/Zr versus SiO2, 

1032 (c) Ba/Th versus SiO2, (d) 143Nd/144Nd versus SiO2, (e) Eu/Eu* versus SiO2, and (f) Th/Nd 

1033 versus SiO2, comparing the Methana lavas and enclaves to volcanic rocks from Santorini and 

1034 Nisyros. Data sources as in Figure 8 and Martinique data are from Labanieh et al. (2012). Also 

1035 shown is the range of compositions of depleted mid-ocean ridge basalts (N-MORB (Hofmann, 

1036 1988)). 

1037 Figure 11. Variation of (a) 143Nd/144Nd versus 87Sr/86Sr, (b) 143Nd/144Nd versus 206Pb/204Pb and 

1038 (c) 208Pb/204Pb versus 206Pb/204Pb for the Methana lavas and enclaves and rocks from Santorini 

1039 and Nisyros as well as sediments from the Hellenic Trench and Aegean granites. Model curves 

1040 show (1) mixing between the mantle wedge and subducted sediment, and (2) assimilation-

1041 fractional crystallisation curves are based on the model of Bohrson and Spera (2003). Data 

1042 sources as in Figure 8 and Methana enclaves are from Woelki et al. (2018). Also shown are 

1043 compositions of sediments from the eastern Mediterranean (Klaver et al., 2015) and Aegean 

1044 granitoids (Altherr & Siebel, 2002, Juteau et al., 1986, Stouraiti et al., 2010). 

1045 Figure 12. (a) Variation of 143Nd/144Nd versus (La/Sm)N and (b) 143Nd/144Nd versus Th/Nd for 

1046 the Methana lavas and enclaves in comparison to lavas from Santorini and Nisyros as well as 

1047 to Neogene sediments and Aegean granites. The model curves in (b) indicate the mantle-

1048 sediment mixing and the EC-RAFC model for the Methana magmas with the first number 

1049 indicating the mass fractionated and the second the mass assimilated. Note that the variation of 

1050 the enclaves and many of the lavas indicate little assimilation (<2%) but up to 34% fractional 

1051 crystallisation whereas the most extreme lava compositions require significant assimilation. 

1052 Data sources as in Figures 8 and 11.
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1053 SUPPLEMENTAL MATERIAL

1054 Supplemental Table 1: Whole rock major element, trace element and radiogenic isotope data 

1055 of the lavas and mineral major element data of the Methana lavas. Thermobarometric 

1056 calculations were determined using methods described in the main text. Samples marked in 

1057 bold were predominantly published by Woelki et al. (2018).
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Figure 1. (a) Overview map of the Aegean arc showing the volcanic centres with Methana in the west. 
Benioff zone depths are from Bailey et al. (2009). (b) Geologic map of Methana Peninsula modified after Pe-

Piper and Piper (2013) showing the lava units and sampling locations. 
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Figure 2. Selected plagioclase crystals from Methana lavas and profiles of An-contents calculated based on 
electron microprobe data. (a) Normal zoning with decreasing An-contents from core to rim; (b) Inverse-

zonation with increasing An-contents from core to rim; (c) Little zoned plagioclase showing slightly 
increasing An-contents towards the corroded rim, and (d) sieve-textured plagioclase. 
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Figure 3. Variations of (a) An contents in plagioclase, (b) abundance of An-contents in the analysed 
plagioclase crystals based on a total of 776 analyses, (c) Mg# in amphibole, and (d) Mg# of clinopyroxene 
from different lava and enclave samples. Note that most samples show large and continuous variations of 

the mineral compositions and that there is no bimodal distribution of An compositions. 

209x296mm (300 x 300 DPI) 
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Figure 4. Selected amphibole crystals from Methana lavas along with profiles of Al2O3 contents. (a) Euhedral 
and normally zoned amphibole with high Al2O3 contents in the core; (b) oscillatory zoned amphibole; (c) 

anhedral amphibole with lower Al2O3 contents. 
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Figure 5. (a) Contents of CaO in olivine crystals from Methana compared to those of MORB, and Santorini 
(Andújar et al., 2015b, Huijsmans, 1985, Nicholls, 1971), as well as lavas from Shiveluch and Klyuchevskoy 

volcanoes in Kamchatka (Gavrilenko et al., 2016). (b) Variations of Cr2O3 contents with Mg# in 
clinopyroxenes from Methana compared to experimentally derived clinopyroxenes from calc-alkaline basalts 
to andesites (Sisson & Grove, 1993). (c) The Al2O3 contents versus Mg# of amphiboles from the Methana 
lavas and enclaves compared to amphibole from Nisyros cumulate xenoliths (Klaver et al., 2017), and to 

experimentally derived amphiboles from calc-alkaline melts at 0.9 and 0.7 GPa (Blatter et al., 2013) and 0.4 
and 0.2 GPa (Andújar et al., 2015, Cadoux et al., 2014). The MgO contents in the legend are those of the 
host rocks. (d) Variation of the FeO versus An contents in plagioclase crystals from the Methana lavas and 

enclaves compared to those from Nisyros cumulate xenoliths (Klaver et al., 2017). 

162x137mm (300 x 300 DPI) 
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Figure 6. (a) The Eu anomaly (Eu/Eu* = EuN/((SmN+GdN)/2) versus the chondrite-normalized La/Sm ratios 
of amphiboles from Methana enclaves and lavas in comparison to amphibole from Nisyros cumulate 

xenoliths (Klaver et al., 2017), from the calc-alkaline Adamello intrusion in the Alps (Tiepolo et al., 2011), 
and lavas from Savo volcano in the Solomon island arc (Smith, 2014). (b) The Nb/La ratios of amphibole 

versus the chondrite-normalized La/Sm ratios of amphiboles from Methana enclaves and lavas in 
comparison to other amphibole compositions. 

Page 47 of 70

http://www.petrology.oupjournals.org/

Manuscript submitted to Journal of Petrology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

 

Figure 7. The fO2 and temperatures of lavas calculated from ilmenite-magnetite pairs (Lepage, 2003, 
Spencer & Lindsley, 1981) in different samples from Methana lavas and enclaves compared to data from 
Santorini and Nisyros (Barton & Huijsmans, 1986, Cottrell et al., 1999, Fabbro et al., 2013, Seymour & 

Lalonde, 1991). 
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Figure 8. The concentrations of major elements plotted versus SiO2 concentrations for lavas and enclaves 
from Methana in comparison to volcanic rocks from Santorini and Nisyros (Bailey et al., 2009, Braschi et al., 
2012, Buettner et al., 2005, Elburg et al., 2018, Francalanci et al., 1995, Innocenti et al., 1981, Kirchenbaur 
et al., 2011, Klaver et al., 2017, Nicholls, 1971). The classification in (a) is after Le Maitre et al. (1989) and 

shows that Methana magmas resemble those from Santorini and Nisyros. The TiO2 and FeOT contents of 
Santorini lavas show different trends to those of Methana and Nisyros. 8f shows a mixing line between 

basaltic andesite and dacite magma with the crosses showing 10% increments. 
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Figure 9. Variations of (a) Ni versus SiO2, (b) Sc versus SiO2, (c) Sr versus SiO2 and (d) Zr versus SiO2 for 
the lavas and enclaves of Methana in comparison to those from Santorini and Nisyros. Data sources as in 

Figure 8. 
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Figure 10. Variations of (a) chondrite-normalized (La/Sm)N versus SiO2, (b) Nb/Zr versus SiO2, (c) Ba/Th 
versus SiO2, (d) 143Nd/144Nd versus SiO2, (e) Eu/Eu* versus SiO2, and (f) Th/Nd versus SiO2, comparing 
the Methana lavas and enclaves to volcanic rocks from Santorini and Nisyros. Data sources as in Figure 8 
and Martinique data are from Labanieh et al. (2012). Also shown is the range of compositions of depleted 

mid-ocean ridge basalts (N-MORB (Hofmann, 1988)). 
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Figure 11. Variation of (a) 143Nd/144Nd versus 87Sr/86Sr, (b) 143Nd/144Nd versus 206Pb/204Pb and (c) 
208Pb/204Pb versus 206Pb/204Pb for the Methana lavas and enclaves and rocks from Santorini and Nisyros as 
well as sediments from the Hellenic Trench and Aegean granites. Model curves show (1) mixing between the 
mantle wedge and subducted sediment, and (2) assimilation-fractional crystallisation curves are based on 

the model of Bohrson and Spera (2003). Data sources as in Figure 8 and Methana enclaves are from Woelki 
et al. (2018). Also shown are compositions of sediments from the eastern Mediterranean (Klaver et al., 

2015) and Aegean granitoids (Altherr & Siebel, 2002, Juteau et al., 1986, Stouraiti et al., 2010). 
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Figure 12. (a) Variation of 143Nd/144Nd versus (La/Sm)N and (b) 143Nd/144Nd versus Th/Nd for the Methana 
lavas and enclaves in comparison to lavas from Santorini and Nisyros as well as to Neogene sediments and 
Aegean granites. The model curves in (b) indicate the mantle-sediment mixing and the EC-RAFC model for 

the Methana magmas with the first number indicating the mass fractionated and the second the mass 
assimilated. Note that the variation of the enclaves and many of the lavas indicate little assimilation (<2%) 

but up to 34% fractional crystallisation whereas the most extreme lava compositions require significant 
assimilation.  Data sources as in Figures 8 and 11. 
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Table 1. Major, trace and isotope data of IGSN sample # of Methana whole rock samples. 
Data with * were measured by XRF. All major element contents are given in wt.-%, trace 
elements in ppm. Standard measurements for comparison are given in supplementary Table 1.

IEGZN- ME15 
01

ME15 
02

ME15 
03

ME15 
04

ME15 
05

M15E 
06

ME15 
09

ME15 
12

ME15 
14

Locality 1 1 2 2 2 3 5 7 7

Lat. [N] 37.580 37.580 37.580 37.580 37.580 37.579 37.579 37.582 37.582

Long. [E] 23.357 23.357 23.357 23.357 23.357 23.355 23.352 23.348 23.348

Elevation 
[m]

22.00 22.00 23.10 23.10 23.10 22.24 23.57 29.18 29.18

SiO2  55.19 55.71 54.40 54.44 54.81 54.88 54.72 53.72 59.04

TiO2  0.71 0.71 0.73 0.74 0.71 0.72 0.71 0.82 0.65

Al2O3 17.64 17.48 17.60 17.61 17.51 17.64 17.48 17.82 16.84

Fe2O3 7.21 6.96 7.39 7.41 7.12 7.30 7.34 8.18 6.17

MnO 0.14 0.14 0.14 0.15 0.14 0.14 0.14 0.21 0.13

MgO 5.71 5.71 6.01 5.99 5.70 5.85 6.01 4.95 3.90

CaO 9.08 8.96 9.38 9.55 9.57 9.26 9.38 8.21 7.10

Na2O 2.93 2.96 2.95 2.82 2.95 2.79 2.85 3.81 3.18

K2O   1.10 1.10 1.00 0.99 1.06 1.08 1.05 1.49 1.88

P2O5 0.12 0.11 0.11 0.12 0.12 0.11 0.11 0.13 0.15

LOI 0.00 0.00 0.11 0.02 0.15 0.08 0.04 0.51 0.78

Total 99.83 99.84 99.83 99.82 99.84 99.84 99.83 99.83 99.82

Li 16.0

Sc 26.1

V 144

V* 166 172 195 199 186 195 192 158 132

Cr 57.8

Cr* 138 128 145 150 132 138 145 71.7 84.3

Co 17.2

Ni 21.8

Ni* 36.5 35.4 39.5 39.6 34.4 40.0 43.9 21.4 21.3

Cu 16.3

Zn 82.6

Zn* 61.9 61.5 61.3 69.4 60.2 60.1 61.8 91.4 59.9

Ga 29.2

Ga* 13.8 17.5 17.9 15.7 15.0 14.8 15.7 15.5 17.3

Rb 48.4

Rb* 32.8 33.2 29.7 31.0 32.1 32.6 32.0 52.1 60.4

Sr 270

Sr* 259 253 256 258 261 258 256 283 305

Y 33.7

Y* 18.9 19.2 21.6 22.6 19.3 21.4 22.9 34.3 23.4

Zr 20.1

Zr* 105 100 103 101 105 99.8 99.7 76.6 124.6
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IEGZN- ME15 
01

ME15 
02

ME15 
03

ME15 
04

ME15 
05

M15E 
06

ME15 
09

ME15 
12

ME15 
14

Nb 11.6

Nb* 6.60 5.90 6.50 6.70 5.30 5.30 6.70 9.90 10.40

Mo 0.98

Sn 1.92

Cs 1.55

Ba 409

Ba* 245 234 250 229 253 229 237 410 401

La 16.5

Ce 37.8

Pr 4.98

Nd 21.4

Sm 5.40

Eu 1.37

Gd 5.39

Tb 0.89

Dy 5.73

Ho 1.17

Er 3.40

Tm 0.51

Yb 3.36

Lu 0.49

Hf 1.07

Ta 0.66

W 0.59

Tl 0.33

Pb 8.11

Th 4.60

Th* 3.60 5.60 7.90 4.30 3.60 4.30 5.20 3.60 8.90

U 1.36
143Nd/
144Nd
87Sr/
86Sr
206Pb/
204Pb
207Pb/
204Pb
208Pb/
204Pb
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IEGZN- ME15 
16

ME15 
19

ME15 
20

ME15 
22

ME15 
23

ME15 
24

ME15 
26

ME15 
27

ME15 
28

Locality 8 9 9 10 10 11 13 13 14
Lat. [N] 37.581 37.619 37.619 37.619 37.619 37.637 37.637 37.637 37.637
Long. [E] 23.348 23.333 23.333 23.333 23.333 23.372 23.366 23.366 23.363
Elevation 
[m]

35.14 402.58 402.58 383.82 383.82 26.98 62.74 62.74 48.01

SiO2  55.25 61.45 61.43 62.79 65.57 60.07 60.86 61.03 60.75
TiO2  0.87 0.51 0.51 0.40 0.65 0.60 0.70 0.71 0.63
Al2O3 17.73 17.32 17.52 17.09 13.65 17.53 16.91 17.31 17.63
Fe2O3 7.00 4.85 4.78 5.06 4.75 5.81 5.84 5.94 6.13
MnO 0.14 0.11 0.11 0.12 0.12 0.13 0.12 0.12 0.13
MgO 5.12 2.81 2.81 1.92 3.05 3.15 3.31 3.24 2.84
CaO 8.92 6.12 6.18 5.28 4.30 6.68 7.11 6.41 6.51
Na2O 3.09 3.71 3.76 3.84 3.48 3.38 3.35 2.82 3.44
K2O   1.54 2.16 2.14 2.47 2.40 1.82 1.54 1.56 1.63
P2O5 0.17 0.14 0.14 0.20 0.11 0.16 0.11 0.11 0.16
LOI 0.00 0.65 0.45 0.67 1.75 0.51 0.00 0.58 0.00
Total 99.82 99.83 99.83 99.83 99.83 99.83 99.85 99.83 99.85
Li 33.0 22.5 15.2
Sc 6.06 20.6 15.9
V 55.6 122 138
V* 173 95.9 97.6 67.4 86.4 121 137 122 120
Cr 9.62 51.1 10.0
Cr* 112 33.0 24.5 16.1 29.8 32.2 65.1 61.9 18.3
Co 8.36 13.8 15.0
Ni 5.74 10.34 7.37
Ni* 26.8 12.2 12.8 11.7 6.70 8.80 15.0 13.9 7.10
Cu 11.2 9.75 13.0
Zn 61.7 57.9 64.1
Zn* 57.9 50.3 49.3 66.9 49.8 61.6 61.5 63.4 66.5
Ga 30.9 37.15 42.9
Ga* 15.4 14.2 16.9 19.8 20.9 17.3 16.9 18.5 14.6
Rb 82.1 44.9 49.5
Rb* 45.6 84.8 84.0 85.4 95.3 60.6 47.3 45.4 46.4
Sr 303 279 311
Sr* 320 337 346 319 220 311 255 278 286
Y 15.8 22.2 19.8
Y* 22.9 16.8 15.0 14.9 17.2 21.4 24.5 24.5 21.7
Zr 151 112 120
Zr* 127 125 132 144 151 136 157 157 131
Nb 7.54 9.10 6.93
Nb* 10.0 8.40 7.30 8.10 8.90 9.00 9.60 9.00 7.20
Mo 1.64 0.83 0.84
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For Peer Review

IEGZN- ME15 
16

ME15 
19

ME15 
20

ME15 
22

ME15 
23

ME15 
24

ME15 
26

ME15 
27

ME15 
28

Sn 1.34 0.97 1.17
Cs 4.69 0.92 1.06
Ba 457 386 430
Ba* 340 454 445 478 524 420 329 353 399
La 22.9 23.2 21.0
Ce 39.6 45.4 42.2
Pr 4.15 5.34 4.81
Nd 14.7 20.8 18.8
Sm 2.76 4.27 3.79
Eu 0.77 1.08 1.04
Gd 2.42 4.11 3.59
Tb 0.39 0.65 0.56
Dy 2.47 4.10 3.51
Ho 0.51 0.83 0.72
Er 1.55 2.45 2.17
Tm 0.25 0.35 0.32
Yb 1.73 2.34 2.22
Lu 0.28 0.35 0.34

Hf 3.73 3.32 3.13
Ta 0.62 0.63 0.45
W 1.14 0.60 0.56
Tl 0.50 0.12 0.21
Pb 16.4 7.62 7.72
Th 9.56 6.23 6.18
Th* 5.30 10.9 11.0 10.9 13.1 11.8 7.00 7.70 6.40
U 2.45 1.21 1.38
143Nd/
144Nd

0.51259

87Sr/
86Sr

0.70576

206Pb/
204Pb

18.84

207Pb/
204Pb

15.69

208Pb/
204Pb

39.04
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IEGZN- ME15 
29

ME15 
30.2

ME15 
32

ME15 
33

ME15 
34

ME15 
35

ME15 
36

ME15 
37

ME15 
38

Locality 15 15 17 18 19 20 21 22 23
Lat. [N] 37.635 37.635 37.631 37.631 37.626 37.624 37.623 37.617 37.614
Long. [E] 23.347 23.347 23.350 23.352 23.363 23.364 23.362 23.359 23.365
Elevation 
[m]

60.34 60.34 182.52 203.18 307.18 350.53 367.78 475.99 535.79

SiO2  63.88 54.53 85.76 62.88 59.69 60.15 59.74 61.12 59.76
TiO2  0.53 0.66 0.30 0.50 0.64 0.65 0.69 0.57 0.62
Al2O3 16.60 16.06 6.09 16.90 17.61 17.80 17.69 17.23 17.80
Fe2O3 5.18 10.25 1.59 4.75 6.21 6.28 6.12 5.29 6.13
MnO 0.12 0.26 0.03 0.11 0.13 0.13 0.13 0.12 0.13
MgO 2.25 5.45 0.99 2.53 2.88 2.88 3.16 2.88 2.95
CaO 5.65 8.41 0.32 6.13 6.69 6.70 7.01 6.73 6.67
Na2O 3.49 3.09 0.73 3.60 3.71 3.48 3.20 3.31 3.42
K2O   2.03 1.03 2.08 2.02 1.69 1.61 1.65 1.83 1.65
P2O5 0.12 0.08 0.01 0.09 0.16 0.16 0.14 0.12 0.16
LOI 0.00 0.00 2.03 0.33 0.44 0.00 0.32 0.65 0.55
Total 99.85 99.81 99.92 99.84 99.84 99.84 99.85 99.85 99.84
Li 25.2 26.1 17.0 12.6 22.0 17.7
Sc 13.2 39.2 15.7 15.4 15.9 13.8
V 86.6 175 134 134 128 107
V* 78.5 183 54.3 79.4 127 129 75.3 118 119
Cr 16.7 160 12.2 11.3 27.2 21.0
Cr* 23.4 174 47.2 37.0 15.2 14.8 48.5 36.9 21.6
Co 10.0 20.7 14.6 15.0 14.5 13.1
Ni 5.87 32.1 7.95 7.98 13.7 15.4
Ni* 4.40 37.8 22.8 16.9 9.20 10.3 14.3 14.8 10.8
Cu 9.57 28.9 7.81 13.7 24.0 8.63
Zn 56.9 105 62.5 65.9 50.4 61.6
Zn* 61.2 107 26.0 49.8 68.3 73.0 72.2 55.3 68.0
Ga 43.4 23.6 40.2 42.0 38.9 26.4
Ga* 15.4 17.6 8.10 17.0 16.8 18.6 16.7 15.9 16.8
Rb 68.2 26.0 47.4 47.6 63.4 44.6
Rb* 66.3 27.2 69.9 70.5 47.7 44.9 51.7 61.1 46.8
Sr 271 236 300 312 282 277
Sr* 256 239 34.8 273 294 295 272 272 288
Y 19.0 54.2 18.9 19.6 17.5 19.8
Y* 22.6 54.7 8.50 16.1 23.2 20.6 22.1 19.2 20.9
Zr 30.0 36.4 132 119 48.6 115
Zr* 148 118 57.4 117 137 128 135 121 131
Nb 9.13 8.42 6.61 6.84 7.20 6.69
Nb* 8.70 8.80 5.60 8.70 6.50 6.60 10.20 7.40 6.20
Mo 0.98 1.10 1.07 1.12 0.73 2.66
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IEGZN- ME15 
29

ME15 
30.2

ME15 
32

ME15 
33

ME15 
34

ME15 
35

ME15 
36

ME15 
37

ME15 
38

Sn 1.30 3.24 1.09 1.09 0.99 1.28
Cs 1.90 0.86 1.77 1.11 1.60 1.97
Ba 458 223 405 429 396 369
Ba* 375 244 141 418 390 390 344 376 391
La 27.0 22.6 19.6 20.4 22.7 18.5
Ce 53.8 59.1 40.0 41.2 41.3 36.3
Pr 5.75 8.14 4.56 4.78 4.54 4.17
Nd 21.3 35.8 17.8 18.8 16.8 16.2
Sm 4.10 8.78 3.63 3.83 3.27 3.50
Eu 1.04 1.75 1.01 1.06 0.91 0.94
Gd 3.70 8.53 3.46 3.59 3.14 3.27
Tb 0.59 1.40 0.54 0.56 0.50 0.52
Dy 3.51 8.97 3.40 3.50 3.08 3.32
Ho 0.70 1.82 0.69 0.72 0.64 0.67
Er 2.03 5.22 2.11 2.17 1.90 1.98
Tm 0.30 0.78 0.31 0.32 0.29 0.30
Yb 1.96 5.12 2.16 2.23 1.92 2.02
Lu 0.29 0.74 0.33 0.33 0.30 0.30
Hf 1.19 1.73 3.00 3.11 1.64 3.03
Ta 0.66 0.49 0.43 0.44 0.55 0.45
W 0.66 0.69 0.64 0.55 0.65 0.65
Tl 0.26 0.11 0.23 0.19 0.21 0.15
Pb 20.3 5.67 7.93 6.86 9.06 7.10
Th 8.82 4.84 5.88 5.79 8.17 5.73
Th* 10.3 4.00 5.60 11.0 6.20 7.00 8.80 9.40 4.80
U 1.04 1.00 1.33 1.30 1.84 1.24
143Nd/
144Nd

0.51237

87Sr/
86Sr

0.70745

206Pb/
204Pb

18.9

207Pb/
204Pb

15.7

208Pb/
204Pb

39.0
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IEGZN- ME15 
39

ME15 
40

ME15 
41

ME15 
42

ME15 
43

ME15 
44

ME15 
45

ME15 
46

ME15 
47

Locality 24 25 39 40 41 42 42 43 43

Lat. [N] 37.615 37.599 37.605 37.595 37.588 37.588 37.588 37.602 37.602

Long. [E] 23.365 23.379 23.404 23.402 23.400 23.402 23.402 23.407 23.407

Elevation 
[m]

536.92 487.60 158.40 81.78 73.06 6.59 6.59 8.32 8.32

SiO2  57.68 62.56 64.16 64.95 64.75 59.09 59.01 64.29 54.41

TiO2  0.69 0.56 0.50 0.45 0.47 0.69 0.65 0.44 0.63

Al2O3 17.40 16.81 16.19 16.21 16.04 17.98 17.84 15.73 19.07

Fe2O3 6.95 5.17 4.62 4.17 4.30 6.44 5.92 4.32 7.49

MnO 0.15 0.13 0.12 0.10 0.10 0.14 0.13 0.11 0.16

MgO 3.62 2.58 2.46 1.88 2.07 3.14 3.02 2.43 3.94

CaO 7.84 5.95 5.77 5.21 5.28 7.11 6.67 5.45 9.05

Na2O 3.22 3.40 3.73 3.51 3.42 3.45 3.73 3.53 2.80

K2O   1.62 2.16 2.15 2.29 2.24 1.63 1.71 2.28 1.22

P2O5 0.12 0.14 0.11 0.12 0.13 0.17 0.16 0.14 0.13

LOI 0.54 0.38 0.04 0.95 1.03 0.00 1.00 1.12 0.94

Total 99.84 99.83 99.84 99.84 99.84 99.83 99.84 99.83 99.85

Li 19.0 25.3 13.7 15.4

Sc 18.2 12.5 14.6 16.0

V 139 96.1 114 147

V* 150 106 103 70.8 77.7 129 119 97.2 157

Cr 27.7 16.8 10.4 8.26

Cr* 39.5 34.1 25.5 38.2 28.4 15.0 13.9 36.4 16.6

Co 18.3 14.3 12.8 16.5

Ni 18.0 8.98 5.22 7.90

Ni* 16.8 12.2 11.2 14.0 14.4 3.40 6.30 12.1 13.6

Cu 28.1 19.9 8.82 9.47

Zn 57.9 66.8 63.1 68.4

Zn* 59.3 70.5 52.8 48.0 52.6 67.6 63.8 50.8 74.1

Ga 25.1 29.3 27.1 23.3

Ga* 16.7 15.9 13.7 14.1 16.4 19.7 16.9 16.2 16.8

Rb 50.7 73.3 48.6 33.6

Rb* 53.3 75.7 71.5 80.7 80.0 50.6 54.2 75.3 35.0

Sr 269 261 307 290

Sr* 282 274 263 263 254 317 308 245 298

Y 22.9 18.8 21.3 20.4

Y* 22.9 19.4 15.8 17.1 16.5 22.8 21.3 16.6 21.1

Zr 77.2 72.7 121 93.0

Zr* 108 134 121 133 134 142 134 119 98.8

Nb 6.99 8.03 8.20 5.52

Nb* 6.90 7.00 7.80 9.10 9.20 9.80 8.00 8.10 6.50
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For Peer Review

IEGZN- ME15 
39

ME15 
40

ME15 
41

ME15 
42

ME15 
43

ME15 
44

ME15 
45

ME15 
46

ME15 
47

Mo 1.04 1.25 1.12 1.09

Sn 0.96 0.88 1.04 1.07

Cs 2.66 3.04 2.22 1.83

Ba 328 466 392 236

Ba* 334 490 483 472 469 407 420 499 253

La 19.0 23.8 24.0 15.0

Ce 34.8 42.0 46.7 28.9

Pr 3.95 4.50 5.21 3.44

Nd 15.3 16.3 19.7 13.8

Sm 3.41 3.25 4.02 3.19

Eu 0.91 0.84 1.05 0.92

Gd 3.57 2.99 3.63 3.16

Tb 0.56 0.47 0.57 0.52

Dy 3.62 2.97 3.61 3.36

Ho 0.75 0.61 0.73 0.69

Er 2.14 1.78 2.12 2.03

Tm 0.31 0.27 0.32 0.31

Yb 2.10 1.83 2.16 2.08

Lu 0.31 0.28 0.33 0.31

Hf 2.26 2.17 3.18 2.51

Ta 0.53 0.64 0.55 0.38

W 0.79 0.99 0.75 0.51

Tl 0.19 0.38 0.25 0.19

Pb 7.66 10.2 7.93 5.74

Th 7.13 10.2 8.16 4.70

Th* 7.10 12.0 11.9 12.9 13.2 8.30 7.90 13.3 4.70

U 1.79 2.33 1.73 1.07
143Nd/
144Nd
87Sr/
86Sr
206Pb/
204Pb
207Pb/
204Pb
208Pb/
204Pb
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IEGZN- ME15 
51

ME15 
52

ME15 
53

ME15 
54

ME15 
55

ME15 
56

ME15 
59

ME15 
60

ME15 
61

Locality 44 44 45 46 47 48 51 52 53

Lat. [N] 37.596 37.596 37.599 37.599 37.599 37.611 37.630 37.630 37.606

Long. [E] 23.405 23.405 23.398 23.396 23.397 23.411 23.368 23.367 23.378

Elevation 
[m]

4.54 4.54 94.28 132.74 135.41 43.00 274.40 278.80 531.03

SiO2  58.05 61.87 65.32 61.83 65.57 57.56 59.69 59.99 64.03

TiO2  0.72 0.52 0.42 0.54 0.40 0.66 0.62 0.62 0.50

Al2O3 15.92 16.23 15.87 16.99 15.99 16.16 17.69 17.76 16.32

Fe2O3 5.70 4.91 3.85 4.95 3.80 5.60 6.27 6.09 4.60

MnO 0.12 0.12 0.10 0.12 0.10 0.12 0.13 0.13 0.11

MgO 2.74 3.77 1.79 2.67 1.76 3.19 2.83 2.80 1.93

CaO 10.06 6.22 4.75 6.22 4.82 8.70 6.67 6.58 5.24

Na2O 3.90 3.26 4.18 3.43 3.64 2.98 3.43 3.57 3.45

K2O   1.87 1.75 2.25 1.87 2.27 1.85 1.70 1.67 2.29

P2O5 0.18 0.13 0.10 0.11 0.10 0.14 0.15 0.16 0.11

LOI 0.55 1.06 1.24 1.11 1.40 2.91 0.67 0.47 1.26

Total 99.80 99.83 99.86 99.84 99.86 99.84 99.85 99.85 99.85

Li 16.3

Sc 14.7

V 129

V* 109 103 73.4 108 70.8 121 117 106 68.6

Cr 12.5

Cr* 119 143 23.2 43.1 23.0 38.6 21.5 24.9 19.9

Co 14.1

Ni 8.45

Ni* 53.1 88.2 4.70 16.3 5.40 11.9 17.7 12.4 10.0

Cu 16.6

Zn 62.7

Zn* 70.9 55.0 49.4 58.3 49.6 55.6 67.3 67.9 60.5

Ga 40.6

Ga* 16.8 16.0 15.4 13.6 12.8 16.2 17.3 16.0 16.0

Rb 48.0

Rb* 64.3 58.4 76.3 61.8 77.7 53.6 48.0 46.9 71.7

Sr 310

Sr* 462 255 249 264 255 291 297 293 235

Y 19.0

Y* 21.3 17.4 16.4 18.3 16.0 21.2 22.7 23.5 23.0

Zr 122

Zr* 194 118 128 126 124 141 130 129 148

Nb 6.77

Nb* 12.2 7.50 8.00 7.10 8.80 6.90 7.10 6.60 7.90
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For Peer Review

IEGZN- ME15 
51

ME15 
52

ME15 
53

ME15 
54

ME15 
55

ME15 
56

ME15 
59

ME15 
60

ME15 
61

Mo 1.22

Sn 1.18

Cs 1.76

Ba 412

Ba* 419 388 491 395 443 379 366 387 434

La 19.8

Ce 40.4

Pr 4.56

Nd 17.8

Sm 3.64

Eu 1.01

Gd 3.46

Tb 0.53

Dy 3.40

Ho 0.70

Er 2.11

Tm 0.31

Yb 2.16

Lu 0.33

Hf 3.13

Ta 0.44

W 0.63

Tl 0.24

Pb 8.02

Th 5.93

Th* 9.80 7.80 10.2 6.90 11.6 6.00 6.50 7.10 8.40

U 1.31
143Nd/
144Nd
87Sr/
86Sr
206Pb/
204Pb
207Pb/
204Pb
208Pb/
204Pb
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IEGZN- ME15 
62

ME15 
64

ME15 
65

ME15 
67

ME15 
68

ME15 
70

ME15 
71

ME15 
72

ME15 
73

Locality 53 54 54 54 55 56 57 58 58

Lat. [N] 37.606 37.606 37.606 37.606 37.609 37.610 37.612 37.595 37.595

Long. [E] 23.378 23.382 23.382 23.382 23.387 23.388 23.390 23.338 23.338

Elevation 
[m]

531.03 541.58 541.58 541.58 456.06 432.31 299.18 29.60 29.60

SiO2  62.90 64.39 56.38 55.15 63.61 62.96 60.83 60.21 57.53

TiO2  0.54 0.46 0.70 0.72 0.52 0.53 0.61 0.59 0.68

Al2O3 16.64 16.36 18.36 18.86 16.62 16.43 17.22 17.70 18.36

Fe2O3 4.96 4.35 7.32 7.64 4.82 4.95 5.87 5.91 6.97

MnO 0.11 0.11 0.15 0.15 0.11 0.11 0.12 0.13 0.14

MgO 2.32 1.94 3.21 3.42 2.15 2.21 2.88 2.91 3.64

CaO 5.67 5.20 7.47 7.74 5.52 5.57 6.23 6.72 7.43

Na2O 3.31 3.52 3.59 3.25 3.39 3.48 3.77 3.37 3.24

K2O   2.19 2.33 1.77 1.68 2.26 2.15 1.92 1.75 1.40

P2O5 0.11 0.10 0.14 0.14 0.13 0.11 0.15 0.15 0.15

LOI 1.08 1.09 0.76 1.09 0.73 1.36 0.23 0.41 0.32

Total 99.84 99.84 99.84 99.83 99.85 99.85 99.84 99.84 99.85

Li 23.0 25.8 16.9

Sc 13.2 9.70 13.4

V 79.3 78.9 135

V* 84.5 81.5 152 156 77.2 81.5 113 110 130

Cr 23.3 15.4 4.4

Cr* 26.9 17.4 6.70 17.4 20.2 26.7 22.1 59.3 27.9

Co 10.2 8.87 14.6

Ni 6.91 6.35 2.90

Ni* 4.30 7.40 4.20 2.10 7.20 5.90 8.90 30.3 14.7

Cu 8.84 8.60 5.05

Zn 57.8 52.4 104

Zn* 60.6 56.8 111 110 59.0 61.3 61.9 65.6 71.4

Ga 42.3 43.4 28.5

Ga* 15.5 14.8 17.9 17.1 15.2 14.4 15.4 14.1 16.4

Rb 72.9 79.7 52.3

Rb* 70.3 78.1 55.2 56.5 69.8 72.0 61.7 52.5 40.6

Sr 260 262 284

Sr* 244 252 293 304 245 243 279 296 313

Y 21.1 16.1 24.6

Y* 22.7 16.9 23.1 21.9 22.1 22.5 21.7 20.4 21.4

Zr 93.5 83.4 124

Zr* 148 132 127 121 146 140 134 136 127

Nb 8.85 7.91 6.85

Nb* 9.00 8.60 6.90 8.50 8.60 9.10 8.10 7.40 7.00
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IEGZN- ME15 
62

ME15 
64

ME15 
65

ME15 
67

ME15 
68

ME15 
70

ME15 
71

ME15 
72

ME15 
73

Mo 1.42 1.55 1.16

Sn 1.75 1.49 1.02

Cs 2.96 3.71 2.52

Ba 445 492 360

Ba* 447 455 355 350 430 391 398 381 319

La 26.1 25.0 20.3

Ce 52.2 46.4 38.8

Pr 5.60 4.76 4.58

Nd 21.0 16.9 17.9

Sm 4.10 3.13 3.95

Eu 1.00 0.85 1.06

Gd 3.81 2.83 3.87

Tb 0.60 0.45 0.62

Dy 3.78 2.81 4.04

Ho 0.77 0.58 0.83

Er 2.30 1.77 2.45

Tm 0.34 0.28 0.37

Yb 2.36 1.90 2.47

Lu 0.35 0.30 0.38

Hf 2.84 2.50 3.29

Ta 0.64 0.63 0.44

W 1.11 1.22 0.66

Tl 0.38 0.43 0.35

Pb 13.3 15.2 22.7

Th 9.02 10.6 6.11

Th* 7.30 9.60 5.00 5.50 9.30 8.00 8.20 6.20 5.90

U 2.06 2.58 1.40
143Nd/
144Nd

0.51238 0.51246 0.51250

87Sr/
86Sr

0.70738 0.70668 0.70737

206Pb/
204Pb

18.82 18.74 18.50

207Pb/
204Pb

15.69 15.68 15.67

208Pb/
204Pb

39.02 38.90 38.67
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IEGZN- ME1574 ME1579 ME1580 ME1582 ME8415 ME1585 ME1592 ME1593
Locality 59 61 62 63 65 66 69 70
Lat. [N] 37.603 37.606 37.608 37.620 37.590 37.612 37.611 37.588
Long. [E] 23.332 23.347 23.353 23.324 23.356 23.401 23.374 23.391
Elevation [m] 77.40 465.03 541.40 192.78 134.17 234.98 584.64 94.91
SiO2  58.68 60.34 61.51 54.40 61.69 61.07 58.19 58.80
TiO2  0.58 0.60 0.61 0.76 0.55 0.67 0.64 0.68
Al2O3 17.54 17.39 17.34 17.69 17.40 17.37 17.96 17.89
Fe2O3 6.43 5.93 5.72 7.32 5.88 5.32 6.48 6.36
MnO 0.14 0.13 0.12 0.14 0.14 0.12 0.13 0.13
MgO 3.32 2.94 2.81 5.41 2.24 2.85 3.57 3.35
CaO 7.66 6.45 6.18 9.08 6.09 6.32 7.36 6.95
Na2O 3.43 3.26 3.53 3.22 3.48 3.27 3.10 3.30
K2O   1.65 1.83 1.87 1.34 1.78 1.94 1.72 1.72
P2O5 0.11 0.14 0.14 0.12 0.16 0.15 0.13 0.14
LOI 0.31 0.83 0.00 0.36 0.43 0.77 0.55 0.52
Total 99.85 99.84 99.84 99.84 99.85 99.84 99.84 99.84
Li 20.8 18.7 16.9
Sc 14.9 16.3 17.3
V 114 126 147
V* 136 101 111 180 92.5 122 125 136
Cr 20.2 20.6 12.3
Cr* 29.3 26.0 24.1 119 7.60 23.3 53.4 13.8
Co 13.3 13.1 16.7
Ni 9.21 12.9 9.04
Ni* 7.00 13.5 11.2 38.1 2.90 9.00 17.2 13.1
Cu 15.1 17.6 15.5
Zn 59.8 53.8 61.6
Zn* 73.8 65.7 63.4 60.3 72.0 57.0 68.0 65.4
Ga 40.4 44.8 42.2
Ga* 17.4 14.5 15.2 17.6 14.6 16.9 17.5 17.5
Rb 57.2 62.3 53.5
Rb* 53.5 56.9 58.5 43.8 49.1 60.2 46.7 52.6
Sr 301 303 313
Sr* 273 281 277 272 297 285 294 300
Y 19.2 19.7 18.6
Y* 21.4 21.0 19.6 21.4 22.0 21.0 20.6 19.4
Zr 98.7 90.7 97.3
Zr* 118 135 135 103 145 156 138 129
Nb 7.63 8.94 6.53
Nb* 7.50 9.90 8.80 7.10 8.00 8.20 9.00 7.70
Mo 1.21 1.18 1.05
Sn 2.21 2.63 1.59
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IEGZN- ME1574 ME1579 ME1580 ME1582 ME8415 ME1585 ME1592 ME1593
Cs 2.77 2.47 2.35
Ba 413 503 429
Ba* 346 386 415 267 413 461 370 396
La 22.3 24.6 19.9
Ce 43.7 52.2 40.3
Pr 4.86 5.42 4.49
Nd 18.6 20.5 17.5
Sm 3.71 4.05 3.57
Eu 1.00 1.07 1.00
Gd 3.47 3.71 3.37
Tb 0.54 0.58 0.53
Dy 3.41 3.60 3.30
Ho 0.70 0.73 0.68
Er 2.10 2.16 2.04
Tm 0.31 0.32 0.30
Yb 2.16 2.15 2.08
Lu 0.32 0.32 0.32
Hf 2.70 2.69 2.63
Ta 0.53 0.62 0.43
W 0.93 0.85 0.71
Tl 0.30 0.34 0.20
Pb 10.3 10.7 9.70
Th 7.60 8.07 6.51
Th* 6.80 7.00 7.30 4.60 5.40 7.00 6.10 4.70
U 1.86 1.79 1.54
143Nd/
144Nd

0.51238 0.51253

87Sr/
86Sr

0.70753 0.70669

206Pb/
204Pb

18.87 18.90

207Pb/
204Pb

15.70 15.69

208Pb/
204Pb

39.06 39.03
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Table 2. Detailed petrography description of selected thin sections.

ME15-12 enclave basaltic 
andesite

50% plag up to 4.5mm, sub- to anhedral and partly sieve-
textured; 20% biotite <3mm, subhedral and elongated; 15% 
amph <1mm, sub- to anhedral, strongly altered with 
secondary rims (px?); 3% subhedral Fe- Ti oxides <40m; 
matrix of microfibrous plagioclase needles (<200m); 5% 
cavities.

ME15-46 lava dacite 25% plag up to 4.5mm, sub- to anhedral and partly sieve-
textured; 15% amph <3.5mm, eu- to subhedral; 10% 
anhedral biotite <1.5mm; less than 5% subhedral Fe-Ti 
oxides up to 600m; 3% anhedral pyroxene, cpx <800m, 
opx <140m; 2% subhedral olivine <200m; 45% matrix 
of microfibrous plagioclase needles (<200m); 2% 
cavities.

ME15-49 Enclave 
1

basalt 35% plag <1.2mm, eu- to subhedral, partly sieve-textured; 
25% sub- to anhedral amph <200m; 10% biotite < 
800m; 5% Fe-Ti oxides <200m; 15% sub- to anhedral 
px, cpx <800m, opx <240m; <5% subhedral olivine 
<250m; 5% cavities.

ME15-49 Enclave 
2

basalt 35% plag up to 4mm, sub- to anhedral, partly soluted and 
sieve-textured; 20% anhedral, strongly altered biotite 
<2.5mm; 15% strongly altered, anhedral amph <100m; 
10% anhedral Fe-Ti oxides <600m; 5% subhedral px, cpx 
<400m, opx <240m; 1% subhedral olivine <320m; 
10% matrix of microfibrous plagioclase needles (<400m); 
5% cavities.

ME15-61 lava dacite 20% plag up to 4mm, sub- to anhedral; 10% euhedral- to 
subhedral amph <3mm; 10% anhedral, elongated biotite 
<4mm; 5% anhedral Fe-Ti oxides <120m; 1% anhedral 
opx <600m; 45% matrix of microfibrous plagioclase 
needles (<600m); 10% cavities.

ME15-61 Enclave 
1

15% plag up to 800m, sub- to anhedral, partly sieve-
textured; 15% sub- to anhedral amph <400m; 10% 
anhedral, elongated biotite <800m; 3% anhedral Fe-Ti 
oxides <100m; 1% subhedral olivine <400m; 50% 
matrix of microfibrous plagioclase needles (<160m); 6% 
cavities.

ME15-61 Enclave 
2

10% plag up to 1.6mm, eu- to subhedral, partly sieve-
textured; 15% subhedral amph <1.5mm; 15% anhedral, 
elongated biotite <2mm; 5% anhedral Fe-Ti oxides 
<400m; 40% matrix of euhedral, elongated, fibrous plag; 
15% cavities.
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ME15-64 Lava dacite 20% plag up to 2.4mm, eu- to subhedral; 10% subhedral 
amph <1.2mm; 10% anhedral biotite <2mm; 5% anhedral 
Fe-Ti oxides <800m; 2% subhedral opx <400m; <50% 
matrix of microfibrous plagioclase needles (<20m); 5% 
cavities.

ME15-68 lava dacite 30% plag up to 4mm, sub- to anhedral, partly sieve-
textured; 15% sub- to anhedral amph <320m; 10% 
anhedral, partly strongly altered biotite <800m; 5% 
anhedral Fe-Ti oxides <400m; 5% anhedral opx <1.2mm; 
35% matrix of microfibrous plagioclase needles (<80m).

ME15-68 enclave 30% plag up to 1.6mm, subhedral, partly sieve-textured; 
15% sub- to anhedral amph, <600m; 10% subhedral, 
elongated biotite <1.6mm; <2% anhedral opx <600m; 
<1% anhedral Fe-Ti oxides <400m; >40% cavities.

ME15-72 lava andesite 25% plag up to 1.4mm, subhedral, partly sieve-textured; 
5% anhedral biotite <4mm; 5% subhedral Fe-Ti oxides 
<1.2mm, often shaped like amph; 2% anhedral opx 
<400m; 1% anhedral olivine <120m; <1% euhedral 
amph <300m; 10% cavities.

ME15-85 lava andesite 30% plag up to 4.3mm, subhedral, partly sieve-textured; 
6% sub- to anhedral px <400m, opx often grown together 
with cpx; 5% amph <1.2mm, strongly altered, sieve-
textured or crisscrossed by px and Fe-Ti oxides; 5% sub- to 
anhedral, strongly altered biotite <1.2m; 5% anhedral Fe-
Ti oxides <400m; 4% olivine <1mm; 35% matrix of 
microfibrous plagioclase needles (<60m); 10% cavities. 

ME15-85 enclave 20% plag up to 800m, subhedral, partly sieve-textured; 
10% anhedral px, cpx <400m, opx <320m; 10% 
subhedral, elongated olivine <400m; 8% anhedral Fe-Ti 
oxides <160m; 5% subhedral olivine <300m; 2% amph 
<600m, strongly altered, sieve-textured or crisscrossed by 
px and Fe-Ti oxides; 35% matrix of microfibrous 
plagioclase needles (<200m); 5% cavities.

ME15-89 lava andesite 20% plag up to 4.3mm, subhedral, partly sieve-textured; 
15% sub- to anhedral biotite <4mm; 10% eu- to subhedral 
amph <2mm; 10% anhedral px, cpx <1.6mm, opx <400m; 
5% anhedral Fe-Ti oxides <800m; 5% subhedral olivine 
<240m; 30% matrix of microfibrous plagioclase needles 
(<30m).
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Table 3. Parameters used in the EC-RAFC modelling.

Sr Nd Pb Th
Magma conc. 230 10 8 2.5
Bulk D 0.54 0.33 0.12 0.01
Assimilant 
conc.

400 26 30 6

Bulk D 0.6 0.35 0.25 0.01
87Sr/86Sr 143Nd/144Nd 206Pb/204Pb

Magma isotope 
ratio

0.7055 0.51265 18.8

Assimilant 
isotope ratio

0.7115 0.5121 19.0
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