2,550 research outputs found

    The Hall current system revealed as a statistical significant pattern during fast flows

    Get PDF
    We have examined the dawn-dusk component of the magnetic field, <I>B<sub>Y</sub></I>, in the night side current sheet during fast flows in the neutral sheet. 237 h of Cluster data from the plasma sheet between 2 August 2002 and 2 October 2002 have been analysed. The spatial pattern of <I>B<sub>Y</sub></I> as a function of the distance from the centre of the current sheet has been estimated by using a Harris current sheet model. We have used the average slopes of these patterns to estimate earthward and tailward currents. For earthward fast flows there is a tailward current in the inner central plasma sheet and an earthward current in the outer central plasma sheet on average. For tailward fast flows the currents are oppositely directed. These observations are interpreted as signatures of Hall currents in the reconnection region or as field aligned currents which are connected with these currents. Although fast flows often are associated with a dawn-dusk current wedge, we believe that we have managed to filter out such currents from our statistical patterns

    Cluster observations of a field aligned current at the dawn flank of a bursty bulk flow

    Get PDF
    This article describes observations of a bursty bulk flow (BBF) in the outer central plasma sheet. The observations are made with the Cluster satellites, located approximately 19 <I>R<sub>E</sub></I> downtail, close to the midnight sector in the Southern Hemisphere. 40–60 s after Cluster first detected the BBF, there was a large bipolar perturbation in the magnetic field. A Grad-Shafranov reconstruction has revealed that this is created by a field-aligned current at the flank of the BBF. Further analysis of the plasma moments has shown that the BBF has the properties of a depleted flux tube. Depleted flux tubes are an important theoretical model for how plasma and magnetic flux can be transported Earthward in the magnetotail as part of the Dungey cycle. The field aligned current is directed Earthward and is located at the dawn side of the BBF. Thus, it is consistent with the magnetic shear at the flank of an Earthward moving BBF. The total current has been estimated to be about 0.1 MA

    Parent-of-origin-environment interactions in case-parent triads with or without independent controls

    Get PDF
    With case–parent triad data, one can frequently deduce parent of origin of the child's alleles. This allows a parent‐of‐origin (PoO) effect to be estimated as the ratio of relative risks associated with the alleles inherited from the mother and the father, respectively. A possible cause of PoO effects is DNA methylation, leading to genomic imprinting. Because environmental exposures may influence methylation patterns, gene–environment interaction studies should be extended to allow for interactions between PoO effects and environmental exposures (i.e., PoOxE). One should thus search for loci where the environmental exposure modifies the PoO effect. We have developed an extensive framework to analyze PoOxE effects in genome‐wide association studies (GWAS), based on complete or incomplete case–parent triads with or without independent control triads. The interaction approach is based on analyzing triads in each exposure stratum using maximum likelihood estimation in a log‐linear model. Interactions are then tested applying a Wald‐based posttest of parameters across strata. Our framework includes a complete setup for power calculations. We have implemented the models in the R software package Haplin. To illustrate our PoOxE test, we applied the new methodology to top hits from our previous GWAS, assessing whether smoking during the periconceptional period modifies PoO effects on cleft palate only.publishedVersio

    Dynamic effects of restoring footpoint symmetry on closed magnetic field lines

    Get PDF
    Here we present an event where simultaneous global imaging of the aurora from both hemispheres reveals a large longitudinal shift of the nightside aurora of about 3 h, being the largest relative shift reported on from conjugate auroral imaging. This is interpreted as evidence of closed field lines having very asymmetric footpoints associated with the persistent positive y component of the interplanetary magnetic field before and during the event. At the same time, the Super Dual Auroral Radar Network observes the ionospheric nightside convection throat region in both hemispheres. The radar data indicate faster convection toward the dayside in the dusk cell in the Southern Hemisphere compared to its conjugate region. We interpret this as a signature of a process acting to restore symmetry of the displaced closed magnetic field lines resulting in flux tubes moving faster along the banana cell than the conjugate orange cell. The event is analyzed with emphasis on Birkeland currents (BC) associated with this restoring process, as recently described by Tenfjord et al. (2015). Using data from the Active Magnetosphere and Planetary Electrodynamics Response Experiment (AMPERE) during the same conditions as the presented event, the large-scale BC pattern associated with the event is presented. It shows the expected influence of the process of restoring symmetry on BCs. We therefore suggest that these observations should be recognized as being a result of the dynamic effects of restoring footpoint symmetry on closed field lines in the nightside
    • 

    corecore