48 research outputs found

    Meteorological OSSEs for new zenith total delay observations: impact assessment for the hydroterra geosynchronous satellite on the October 2019 Genoa event

    Get PDF
    Along the Mediterranean coastlines, intense and localized rainfall events are responsible for numerous casualties and several million euros of damage every year. Numerical forecasts of such events are rarely skillful, because they lack information in their initial and boundary conditions at the relevant spatio-temporal scales, namely O(km) and O(h). In this context, the tropospheric delay observations (strongly related to the vertically integrated water vapor content) of the future geosynchronous Hydroterra satellite could provide valuable information at a high spatio-temporal resolution. In this work, Observing System Simulation Experiments (OSSEs) are performed to assess the impact of assimilating this new observation in a cloud-resolving meteorological model, at different grid spacing and temporal frequencies, and with respect to other existent observations. It is found that assimilating the Hydroterra observations at 2.5 km spacing every 3 or 6 h has the largest positive impact on the forecast of the event under study. In particular, a better spatial localization and extent of the heavy rainfall area is achieved and a realistic surface wind structure, which is a crucial element in the forecast of such heavy rainfall events, is modele

    Systematic Detection of Anomalous Ionospheric Perturbations Above LEOs From GNSS POD Data Including Possible Tsunami Signatures

    Get PDF
    In this article, we show the capability of a global navigation satellite system (GNSS) precise orbit determination (POD) low Earth orbit (LEO) data to detect anomalous ionospheric disturbances in the spectral range of the signals associated with earthquakes and tsunamis, applied to two of these events in Papua New Guinea (PNG) and the Solomon Islands during 2016. This is achieved thanks to the new PIES approach (POD-GNSS LEO Detrended Ionospheric Electron Content Significant Deviations). The significance of such ionospheric signals above the swarm LEOs is confirmed with different types of independent data: in situ electron density measurements provided by the Langmuir Probe (LP) onboard swarm LEOs, DORIS, and ground-based GNSS colocated measurements, as it is described in this article. In this way, we conclude the possible detection of the tsunami-related ionospheric gravity wave in PNG 2016 event, consistent with the most-recent theory, which shows that a tsunami (which is localized in space and time) excites a spectrum of gravity waves, some of which have faster horizontal phase speeds than the tsunami. We believe that this work shows as well the feasibility of a future potential monitoring system of ionospheric disturbances, to be made possible by hundreds of CubeSats with POD GNSS receivers among other appropriate sensors, and supported for real-time or near real-time confirmation and characterization by thousands of worldwide existing ground GNSS receivers

    Precursory worldwide signatures of earthquake occurrences on Swarm satellite data

    Get PDF
    The study of the preparation phase of large earthquakes is essential to understand the physical processes involved, and potentially useful also to develop a future reliable short-term warning system. Here we analyse electron density and magnetic field data measured by Swarm three-satellite constellation for 4.7 years, to look for possible in-situ ionospheric precursors of large earthquakes to study the interactions between the lithosphere and the above atmosphere and ionosphere, in what is called the Lithosphere-Atmosphere-Ionosphere Coupling (LAIC). We define these anomalies statistically in the whole space-time interval of interest and use a Worldwide Statistical Correlation (WSC) analysis through a superposed epoch approach to study the possible relation with the earthquakes. We find some clear concentrations of electron density and magnetic anomalies from more than two months to some days before the earthquake occurrences. Such anomaly clustering is, in general, statistically significant with respect to homogeneous random simulations, supporting a LAIC during the preparation phase of earthquakes. By investigating different earthquake magnitude ranges, not only do we confirm the well-known Rikitake empirical law between ionospheric anomaly precursor time and earthquake magnitude, but we also give more reliability to the seismic source origin for many of the identified anomalies.Publishedid 202872A. Fisica dell'alta atmosferaJCR Journa

    The Swarm Initial Field Model for the 2014 geomagnetic field

    Get PDF
    Data from the first year of ESA's Swarm constellation mission are used to derive the Swarm Initial Field Model (SIFM), a new model of the Earth's magnetic field and its time variation. In addition to the conventional magnetic field observations provided by each of the three Swarm satellites, explicit advantage is taken of the constellation aspect by including east-west magnetic intensity gradient information from the lower satellite pair. Along-track differences in magnetic intensity provide further information concerning the north-south gradient. The SIFM static field shows excellent agreement (up to at least degree 60) with recent field models derived from CHAMP data, providing an initial validation of the quality of the Swarm magnetic measurements. Use of gradient data improves the determination of both the static field and its secular variation, with the mean misfit for east-west intensity differences between the lower satellite pair being only 0.12 nT

    Animal models for COVID-19

    Get PDF
    Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the aetiological agent of coronavirus disease 2019 (COVID-19), an emerging respiratory infection caused by the introduction of a novel coronavirus into humans late in 2019 (frst detected in Hubei province, China). As of 18 September 2020, SARS-CoV-2 has spread to 215 countries, has infected more than 30 million people and has caused more than 950,000 deaths. As humans do not have pre-existing immunity to SARS-CoV-2, there is an urgent need to develop therapeutic agents and vaccines to mitigate the current pandemic and to prevent the re-emergence of COVID-19. In February 2020, the World Health Organization (WHO) assembled an international panel to develop animal models for COVID-19 to accelerate the testing of vaccines and therapeutic agents. Here we summarize the fndings to date and provides relevant information for preclinical testing of vaccine candidates and therapeutic agents for COVID-19.info:eu-repo/semantics/acceptedVersio
    corecore