806 research outputs found

    A novel multi-network approach reveals tissue-specific cellular modulators of fibrosis in systemic sclerosis

    Get PDF
    BACKGROUND: Systemic sclerosis (SSc) is a multi-organ autoimmune disease characterized by skin fibrosis. Internal organ involvement is heterogeneous. It is unknown whether disease mechanisms are common across all involved affected tissues or if each manifestation has a distinct underlying pathology. METHODS: We used consensus clustering to compare gene expression profiles of biopsies from four SSc-affected tissues (skin, lung, esophagus, and peripheral blood) from patients with SSc, and the related conditions pulmonary fibrosis (PF) and pulmonary arterial hypertension, and derived a consensus disease-associate signature across all tissues. We used this signature to query tissue-specific functional genomic networks. We performed novel network analyses to contrast the skin and lung microenvironments and to assess the functional role of the inflammatory and fibrotic genes in each organ. Lastly, we tested the expression of macrophage activation state-associated gene sets for enrichment in skin and lung using a Wilcoxon rank sum test. RESULTS: We identified a common pathogenic gene expression signature-an immune-fibrotic axis-indicative of pro-fibrotic macrophages (MØs) in multiple tissues (skin, lung, esophagus, and peripheral blood mononuclear cells) affected by SSc. While the co-expression of these genes is common to all tissues, the functional consequences of this upregulation differ by organ. We used this disease-associated signature to query tissue-specific functional genomic networks to identify common and tissue-specific pathologies of SSc and related conditions. In contrast to skin, in the lung-specific functional network we identify a distinct lung-resident MØ signature associated with lipid stimulation and alternative activation. In keeping with our network results, we find distinct MØ alternative activation transcriptional programs in SSc-associated PF lung and in the skin of patients with an "inflammatory" SSc gene expression signature. CONCLUSIONS: Our results suggest that the innate immune system is central to SSc disease processes but that subtle distinctions exist between tissues. Our approach provides a framework for examining molecular signatures of disease in fibrosis and autoimmune diseases and for leveraging publicly available data to understand common and tissue-specific disease processes in complex human diseases

    New Experimental Limits on Macroscopic Forces Below 100 Microns

    Full text link
    Results of an experimental search for new macroscopic forces with Yukawa range between 5 and 500 microns are presented. The experiment uses 1 kHz mechanical oscillators as test masses with a stiff conducting shield between them to suppress backgrounds. No signal is observed above the instrumental thermal noise after 22 hours of integration time. These results provide the strongest limits to date between 10 and 100 microns, improve on previous limits by as much as three orders of magnitude, and rule out half of the remaining parameter space for predictions of string-inspired models with low-energy supersymmetry breaking. New forces of four times gravitational strength or greater are excluded at the 95% confidence level for interaction ranges between 200 and 500 microns.Comment: 25 Pages, 7 Figures: Minor Correction

    Antipredatory Function of Head Shape for Vipers and Their Mimics

    Get PDF
    Most research into the adaptive significance of warning signals has focused on the colouration and patterns of prey animals. However, behaviour, odour and body shape can also have signal functions and thereby reduce predators' willingness to attack defended prey. European vipers all have a distinctive triangular head shape; and they are all venomous. Several non-venomous snakes, including the subfamily Natricinae, commonly flatten their heads (also known as head triangulation) when disturbed. The adaptive significance of this potential behavioural mimicry has never been investigated

    Human Young Children as well as Adults Demonstrate ‘Superior’ Rapid Snake Detection When Typical Striking Posture Is Displayed by the Snake

    Get PDF
    Humans as well as some nonhuman primates have an evolved predisposition to associate snakes with fear by detecting their presence as fear-relevant stimuli more rapidly than fear-irrelevant ones. In the present experiment, a total of 74 of 3- to 4-year-old children and adults were asked to find a single target black-and-white photo of a snake among an array of eight black-and-white photos of flowers as distracters. As target stimuli, we prepared two groups of snake photos, one in which a typical striking posture was displayed by a snake and the other in which a resting snake was shown. When reaction time to find the snake photo was compared between these two types of the stimuli, its mean value was found to be significantly smaller for the photos of snakes displaying striking posture than for the photos of resting snakes in both the adults and children. These findings suggest the possibility that the human perceptual bias for snakes per se could be differentiated according to the difference of the degree to which their presence acts as a fear-relevant stimulus

    Multi-trait mimicry of ants by a parasitoid wasp

    Get PDF
    Many animals avoid attack from predators through toxicity or the emission of repellent chemicals. Defensive mimicry has evolved in many species to deceive shared predators, for instance through colouration and other morphological adaptations, but mimicry hardly ever seems to involve multi-trait similarities. Here we report on a wingless parasitoid wasp that exhibits a full spectrum of traits mimicing ants and affording protection against ground-dwelling predators (wolf spiders). In body size, morphology and movement Gelis agilis (Ichneumonidae) is highly similar to the black garden ant (Lasius niger) that shares the same habitat. When threatened, G. agilis also emits a volatile chemical that is similar to an ant-produced chemical that repels spiders. In bioassays with L. niger, G. agilis, G. areator, Cotesia glomerata and Drosophila melanogaster, ants and G. agilis were virtually immune to spider attack, in contrast the other species were not. Volatile characterisation with gas chromatography-mass spectrometry identified G. agilis emissions as 6-methyl-5-hepten-2-one, a known insect defence semiochemical that acts as an alarm pheromone in ants. We argue that multi-trait mimicry, as observed in G. agilis, might be much more common among animals than currently realized

    Predator Mimicry: Metalmark Moths Mimic Their Jumping Spider Predators

    Get PDF
    Cases of mimicry provide many of the nature's most convincing examples of natural selection. Here we report evidence for a case of predator mimicry in which metalmark moths in the genus Brenthia mimic jumping spiders, one of their predators. In controlled trials, Brenthia had higher survival rates than other similarly sized moths in the presence of jumping spiders and jumping spiders responded to Brenthia with territorial displays, indicating that Brenthia were sometimes mistaken for jumping spiders, and not recognized as prey. Our experimental results and a review of wing patterns of other insects indicate that jumping spider mimicry is more widespread than heretofore appreciated, and that jumping spiders are probably an important selective pressure shaping the evolution of diurnal insects that perch on vegetation

    Communication : where evolutionary linguistics went wrong

    Get PDF
    In this article we offer a detailed assessment of current approaches to the origins of language, with a special focus on their historical and theoretical underpinnings. It is a widely accepted view within evolutionary linguistics that an account of the emergence of human language necessarily involves paying special attention to its communicative function and its relation to other animal communication systems. Ever since Darwin, some variant of this view has constituted the mainstream version in evolutionary linguistics; however, it is our contention in this article that this approach is seriously flawed, and that "animal communication" does not constitute a natural kind on which a sound theoretical model can be built. As a consequence, we argue that this communicative perspective is better abandoned in favor of a structural/formal approach based on the notion of homology, and that some interesting and unexpected similarities may be found by applying this venerable comparative method founded in the 19th century by Richard Owen

    Production of phi mesons at mid-rapidity in sqrt(s_NN) = 200 GeV Au+Au collisions at RHIC

    Get PDF
    We present the first results of meson production in the K^+K^- decay channel from Au+Au collisions at sqrt(s_NN) = 200 GeV as measured at mid-rapidity by the PHENIX detector at RHIC. Precision resonance centroid and width values are extracted as a function of collision centrality. No significant variation from the PDG accepted values is observed. The transverse mass spectra are fitted with a linear exponential function for which the derived inverse slope parameter is seen to be constant as a function of centrality. These data are also fitted by a hydrodynamic model with the result that the freeze-out temperature and the expansion velocity values are consistent with the values previously derived from fitting single hadron inclusive data. As a function of transverse momentum the collisions scaled peripheral.to.central yield ratio RCP for the is comparable to that of pions rather than that of protons. This result lends support to theoretical models which distinguish between baryons and mesons instead of particle mass for explaining the anomalous proton yield.Comment: 326 authors, 24 pages text, 23 figures, 6 tables, RevTeX 4. To be submitted to Physical Review C as a regular article. Plain text data tables for the points plotted in figures for this and previous PHENIX publications are (or will be) publicly available at http://www.phenix.bnl.gov/papers.htm

    Time-Ordered Networks Reveal Limitations to Information Flow in Ant Colonies

    Get PDF
    BACKGROUND: An important function of many complex networks is to inhibit or promote the transmission of disease, resources, or information between individuals. However, little is known about how the temporal dynamics of individual-level interactions affect these networks and constrain their function. Ant colonies are a model comparative system for understanding general principles linking individual-level interactions to network-level functions because interactions among individuals enable integration of multiple sources of information to collectively make decisions, and allocate tasks and resources. METHODOLOGY/FINDINGS: Here we show how the temporal and spatial dynamics of such individual interactions provide upper bounds to rates of colony-level information flow in the ant Temnothorax rugatulus. We develop a general framework for analyzing dynamic networks and a mathematical model that predicts how information flow scales with individual mobility and group size. CONCLUSIONS/SIGNIFICANCE: Using thousands of time-stamped interactions between uniquely marked ants in four colonies of a range of sizes, we demonstrate that observed maximum rates of information flow are always slower than predicted, and are constrained by regulation of individual mobility and contact rate. By accounting for the ordering and timing of interactions, we can resolve important difficulties with network sampling frequency and duration, enabling a broader understanding of interaction network functioning across systems and scales
    corecore