937 research outputs found
"Open Innovation" and "Triple Helix" Models of Innovation: Can Synergy in Innovation Systems Be Measured?
The model of "Open Innovations" (OI) can be compared with the "Triple Helix
of University-Industry-Government Relations" (TH) as attempts to find surplus
value in bringing industrial innovation closer to public R&D. Whereas the firm
is central in the model of OI, the TH adds multi-centeredness: in addition to
firms, universities and (e.g., regional) governments can take leading roles in
innovation eco-systems. In addition to the (transversal) technology transfer at
each moment of time, one can focus on the dynamics in the feedback loops. Under
specifiable conditions, feedback loops can be turned into feedforward ones that
drive innovation eco-systems towards self-organization and the auto-catalytic
generation of new options. The generation of options can be more important than
historical realizations ("best practices") for the longer-term viability of
knowledge-based innovation systems. A system without sufficient options, for
example, is locked-in. The generation of redundancy -- the Triple Helix
indicator -- can be used as a measure of unrealized but technologically
feasible options given a historical configuration. Different coordination
mechanisms (markets, policies, knowledge) provide different perspectives on the
same information and thus generate redundancy. Increased redundancy not only
stimulates innovation in an eco-system by reducing the prevailing uncertainty;
it also enhances the synergy in and innovativeness of an innovation system.Comment: Journal of Open Innovations: Technology, Market and Complexity, 2(1)
(2016) 1-12; doi:10.1186/s40852-016-0039-
Activity and social interactions in a wideranging specialist scavenger, the Tasmanian devil (Sarcophilus harrisii), revealed by animalborne video collars
Observing animals directly in the field provides the most accurate understanding of animal behaviour and resource selection. However, making prolonged observation of undisturbed animals is difficult or impossible for many species. To overcome this problem for the Tasmanian devil (Sarcophilus harrisii), a cryptic and nocturnal carnivore, we developed animal-borne video collars to investigate activity patterns, foraging behaviour and social interactions. We collected 173 hours of footage from 13 individual devils between 2013 and 2017. Devils were active mostly at night, and resting was the most common behaviour in all diel periods. Devils spent more time scavenging than hunting and exhibited opportunistic and flexible foraging behaviours. Scavenging occurred mostly in natural vegetation but also in anthropogenic vegetation and linear features (roads and fence lines). Scavenging frequency was inversely incremental with size e.g. small carcasses were scavenged most frequently. Agonistic interactions with conspecifics occurred most often when devils were traveling but also occurred over carcasses or dens. Interactions generally involved vocalisations and brief chases without physical contact. Our results highlight the importance of devils as a scavenger in the Tasmanian ecosystem, not just of large carcasses for which devils are well known but in cleaning up small items of carrion in the bush. Our results also show the complex nature of intraspecific interactions, revealing greater detail on the context in which interactions occur. In addition, this study demonstrates the benefits of using animal-borne imaging in quantifying behaviour of elusive, nocturnal carnivores not previously seen using conventional field methods
Identification of a Transcription Factor Controlling pH-Dependent Organic Acid Response in Aspergillus niger.
Acid formation in Aspergillus niger is known to be subjected to tight regulation, and the acid production profiles are fine-tuned to respond to the ambient pH. Based on transcriptome data, putative trans-acting pH responding transcription factors were listed and through knock out studies, mutants exhibiting an oxalate overproducing phenotype were identified. The yield of oxalate was increased up to 158% compared to the wild type and the corresponding transcription factor was therefore entitled Oxalic Acid repression Factor, OafA. Detailed physiological characterization of one of the ΔoafA mutants, compared to the wild type, showed that both strains produced substantial amounts of gluconic acid, but the mutant strain was more efficient in re-uptake of gluconic acid and converting it to oxalic acid, particularly at high pH (pH 5.0). Transcriptional profiles showed that 241 genes were differentially expressed due to the deletion of oafA and this supported the argument of OafA being a trans-acting transcription factor. Furthermore, expression of two phosphoketolases was down-regulated in the ΔoafA mutant, one of which has not previously been described in fungi. It was argued that the observed oxalate overproducing phenotype was a consequence of the efficient re-uptake of gluconic acid and thereby a higher flux through glycolysis. This results in a lower flux through the pentose phosphate pathway, demonstrated by the down-regulation of the phosphoketolases. Finally, the physiological data, in terms of the specific oxygen consumption, indicated a connection between the oxidative phosphorylation and oxalate production and this was further substantiated through transcription analysis
Sociological and Communication-Theoretical Perspectives on the Commercialization of the Sciences
Both self-organization and organization are important for the further
development of the sciences: the two dynamics condition and enable each other.
Commercial and public considerations can interact and "interpenetrate" in
historical organization; different codes of communication are then
"recombined." However, self-organization in the symbolically generalized codes
of communication can be expected to operate at the global level. The Triple
Helix model allows for both a neo-institutional appreciation in terms of
historical networks of university-industry-government relations and a
neo-evolutionary interpretation in terms of three functions: (i) novelty
production, (i) wealth generation, and (iii) political control. Using this
model, one can appreciate both subdynamics. The mutual information in three
dimensions enables us to measure the trade-off between organization and
self-organization as a possible synergy. The question of optimization between
commercial and public interests in the different sciences can thus be made
empirical.Comment: Science & Education (forthcoming
Acetate Kinase Isozymes Confer Robustness in Acetate Metabolism
Acetate kinase (ACK) (EC no: 2.7.2.1) interconverts acetyl-phosphate and acetate to either catabolize or synthesize acetyl-CoA dependent on the metabolic requirement. Among all ACK entries available in UniProt, we found that around 45% are multiple ACKs in some organisms including more than 300 species but surprisingly, little work has been done to clarify whether this has any significance. In an attempt to gain further insight we have studied the two ACKs (AckA1, AckA2) encoded by two neighboring genes conserved in Lactococcus lactis (L. lactis) by analyzing protein sequences, characterizing transcription structure, determining enzyme characteristics and effect on growth physiology. The results show that the two ACKs are most likely individually transcribed. AckA1 has a much higher turnover number and AckA2 has a much higher affinity for acetate in vitro. Consistently, growth experiments of mutant strains reveal that AckA1 has a higher capacity for acetate production which allows faster growth in an environment with high acetate concentration. Meanwhile, AckA2 is important for fast acetate-dependent growth at low concentration of acetate. The results demonstrate that the two ACKs have complementary physiological roles in L. lactis to maintain a robust acetate metabolism for fast growth at different extracellular acetate concentrations. The existence of ACK isozymes may reflect a common evolutionary strategy in bacteria in an environment with varying concentrations of acetate
A distinct bacterial dysbiosis associated skin inflammation in ovine footrot
Ovine footrot is a highly prevalent bacterial disease caused by Dichelobacter nodosus and characterised by the separation of the hoof horn from the underlying skin. The role of innate immune molecules and other bacterial communities in the development of footrot lesions remains unclear. This study shows a significant association between the high expression of IL1β and high D. nodosus load in footrot samples. Investigation of the microbial population identified distinct bacterial populations in the different disease stages and also depending on the level of inflammation. Treponema (34%), Mycoplasma (29%) and Porphyromonas (15%) were the most abundant genera associated with high levels of inflammation in footrot. In contrast, Acinetobacter (25%), Corynebacteria (17%) and Flavobacterium (17%) were the most abundant genera associated with high levels of inflammation in healthy feet. This demonstrates for the first time there is a distinct microbial community associated with footrot and high cytokine expression
Diel surface temperature range scales with lake size
Ecological and biogeochemical processes in lakes are strongly dependent upon water temperature. Long-term surface warming of many lakes is unequivocal, but little is known about the comparative magnitude of temperature variation at diel timescales, due to a lack of appropriately resolved data. Here we quantify the pattern and magnitude of diel temperature variability of surface waters using high-frequency data from 100 lakes. We show that the near-surface diel temperature range can be substantial in summer relative to long-term change and, for lakes smaller than 3 km2, increases sharply and predictably with decreasing lake area. Most small lakes included in this study experience average summer diel ranges in their near-surface temperatures of between 4 and 7°C. Large diel temperature fluctuations in the majority of lakes undoubtedly influence their structure, function and role in biogeochemical cycles, but the full implications remain largely unexplored
Multidimentional proteomics for cell biology
The proteome is a dynamic system in which each protein has interconnected properties — dimensions — that together contribute to the phenotype of a cell. Measuring these properties has proved challenging owing to their diversity and dynamic nature. Advances in mass spectrometry-based proteomics now enable the measurement of multiple properties for thousands of proteins, including their abundance, isoform expression, turnover rate, subcellular localization, post-translational modifications and interactions. Complementing these experimental developments are new data analysis, integration and visualization tools as well as data-sharing resources. Together, these advances in the multidimensional analysis of the proteome are transforming our understanding of various cellular and physiological processes
Recommended from our members
Towards a Critical Sociology of Dominant Ideologies: An Unexpected Reunion between Pierre Bourdieu and Luc Boltanski
This article aims to demonstrate the enduring relevance of Pierre Bourdieu and Luc Boltanski’s ‘La production de l’idéologie dominante’ [‘The production of the dominant ideology’], which was originally published in Actes de la recherche en sciences sociales in 1976. More than three decades later, in 2008, a re-edited version of this study was printed in book format as La production de l’idéologie dominante, which was accompanied by a detailed commentary, written by Luc Boltanski and entitled Rendre la réalité inacceptable. À propos de « La production de l’idéologie dominante » [Making Reality Unacceptable. Comments on ‘The production of the dominant ideology’]. In addition to containing revealing personal anecdotes and providing important sociological insights, this commentary offers an insider account of the genesis of one of the most seminal pieces Boltanski co-wrote with his intellectual father, Bourdieu. In the Anglophone literature on contemporary French sociology, however, the theoretical contributions made both in the original study and in Boltanski’s commentary have received little – if any – serious attention. This article aims to fill this gap in the literature, arguing that these two texts can be regarded not only as forceful reminders of the fact that the ‘dominant ideology thesis’ is far from obsolete but also as essential for understanding both the personal and the intellectual underpinnings of the tension-laden relationship between Bourdieu and Boltanski. Furthermore, this article offers a critical overview of the extent to which the unexpected, and partly posthumous, reunion between ‘the master’ (Bourdieu) and his ‘dissident disciple’ (Boltanski) equips us with powerful conceptual tools, which, whilst illustrating the continuing centrality of ‘ideology critique’, permit us to shed new light on key concerns in contemporary sociology and social theory. Finally, the article seeks to push the debate forward by reflecting upon several issues that are not given sufficient attention by Bourdieu and Boltanski in their otherwise original and insightful enquiry into the complexities characterizing the daily production of ideology
Climate change and freshwater zooplankton: what does it boil down to?
Recently, major advances in the climate–zooplankton interface have been made some of which appeared to receive much attention in a broader audience of ecologists as well. In contrast to the marine realm, however, we still lack a more holistic summary of recent knowledge in freshwater. We
discuss climate change-related variation in physical and biological attributes of lakes and running waters, high-order ecological functions, and subsequent alteration
in zooplankton abundance, phenology, distribution, body size, community structure, life history parameters, and behavior by focusing on community level responses. The adequacy of large-scale climatic indices in ecology has received considerable support and provided a framework for the interpretation of community and species level responses in freshwater zooplankton. Modeling perspectives deserve particular consideration, since this promising stream of
ecology is of particular applicability in climate change
research owing to the inherently predictive nature of
this field. In the future, ecologists should expand their
research on species beyond daphnids, should address
questions as to how different intrinsic and extrinsic
drivers interact, should move beyond correlative
approaches toward more mechanistic explanations,
and last but not least, should facilitate transfer of
biological data both across space and time
- …
