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Abstract

Acetate kinase (ACK) (EC no: 2.7.2.1) interconverts acetyl-phosphate and acetate to either catabolize or synthesize acetyl-
CoA dependent on the metabolic requirement. Among all ACK entries available in UniProt, we found that around 45% are
multiple ACKs in some organisms including more than 300 species but surprisingly, little work has been done to clarify
whether this has any significance. In an attempt to gain further insight we have studied the two ACKs (AckA1, AckA2)
encoded by two neighboring genes conserved in Lactococcus lactis (L. lactis) by analyzing protein sequences, characterizing
transcription structure, determining enzyme characteristics and effect on growth physiology. The results show that the two
ACKs are most likely individually transcribed. AckA1 has a much higher turnover number and AckA2 has a much higher
affinity for acetate in vitro. Consistently, growth experiments of mutant strains reveal that AckA1 has a higher capacity for
acetate production which allows faster growth in an environment with high acetate concentration. Meanwhile, AckA2 is
important for fast acetate-dependent growth at low concentration of acetate. The results demonstrate that the two ACKs
have complementary physiological roles in L. lactis to maintain a robust acetate metabolism for fast growth at different
extracellular acetate concentrations. The existence of ACK isozymes may reflect a common evolutionary strategy in bacteria
in an environment with varying concentrations of acetate.
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Introduction

There are many examples where products of metabolism are

excreted and later re-assimilated by organisms, e.g. acetate (OAc)

in E. coli [1] and ethanol in yeast [2]. The ability to switch between

dissimilation and assimilation of the same metabolite is an

important trait for maximizing growth in a changing environment.

The acetate switch is a prominent example of this type of behavior.

Acetate is one of the main metabolic products, and re-assimilation

happens in order to exploit an available carbon source for further

biomass formation after the primary carbon source has been

depleted. A general review of the switch in acetate metabolism can

be found in Wolfe [3].

Lactococcus lactis (L. lactis) is an important Gram-positive model

organism which belongs to the group of Lactic Acid Bacteria

(LAB) and is widely used in cheese production. In L. lactis, acetate

may also be excreted or assimilated, depending on the environ-

mental conditions. Fig.1 summarizes the relevant metabolic

reactions. Under anaerobic conditions L. lactis produces mainly

lactate as well as formate, ethanol and acetate. The amounts of

formate, ethanol and acetate become very significant when growth

depends on slowly fermentable sugars like maltose and galactose

[4]. Acetate can also be a precursor of Ac-CoA which is vital to L.

lactis because Ac-CoA is a precursor in fatty acid biosynthesis [5],

cysteine biosynthesis [6] and peptidoglycan biosynthesis [7], etc.

Acetate is required for growth when other routes to Ac-CoA are

blocked. In L. lactis there are three known pathways leading to Ac-

CoA, including the pyruvate dehydrogenase complex (PDHc),

pyruvate formate lyase (PFL) and phosphotransacetylase (PTA) in

conjunction with acetate kinase (ACK) (Fig. 1). PDHc is mainly

active under aerobic conditions in the presence of the cofactor

lipoic acid. Under strict anaerobiosis, PDHc was shown to have

low activity [8] and growth depends on PFL in the absence of

acetate [9,10]. PFL is active only anaerobically due to inactivation

by oxygen [11]. The PTA-ACK pathway, which converts acetate

into Ac-CoA, can support growth when PDHc and PFL are both

inactive provided that acetate is added to the media. If all the three

known pathways leading to Ac-CoA are blocked, L. lactis is unable

to grow [9]. A gene predicted to encode either the AMP-forming

Ac-CoA synthetase (ACS) (which is important for Ac-CoA

production from acetate in E. coli [3]) or acyl-CoA synthetase is

also present in some L. lactis strains but no ACS activity has been

reported. There are no other annotated genes in L. lactis encoding

enzymes known to catalyze the conversion between Ac-CoA and

acetate.

Interestingly, in all available sequenced genomes of L. lactis, two

well conserved neighboring homologous genes are predicted to

encode ACK. A further search on all available ACK sequences

shows that in fact .300 species have multiple ACKs, including

some other LAB species. The prevalence suggests a plausible

advantage conferred by multiple ACK genes to L. lactis and other

bacteria. In the literature, the kinetics and mechanism of ACK have

long been a subject of study. The kinetics of ACK among different

organisms has been characterized, e.g. [12–15]. Crystallographic

studies, site-specific mutagenesis and sequence comparisons have
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revealed sites important for substrate binding and catalysis, e.g.

[13,16–19]. Several reaction mechanisms have also been proposed

[20–22]. Despite the massive amount of literature on ACK,

surprisingly, little work has been done on ACK isozymes which

exist in many species, with the exception of one kinetic study in a

spirochete [23].

In the hope of revealing the significance of ACK isozymes, in

this study we investigated the two ACKs in L. lactis by sequence

analysis, characterization of transcription structure, enzyme

activity and effect on growth physiology.

Materials and Methods

Bacterial Strains and Plasmids
All the L. lactis strains involved in this study were derived from

the plasmid-free laboratory strain L. lactis subsp. cremoris MG1363

[24]. For overexpression of ACKs, E. coli strain M15 pREP4

groESL [25] was used. The plasmid pCS1966 containing genes

encoding erythromycin resistance and an orotate transporter was

used for markerless gene inactivation in L. lactis [26]. The plasmids

pLB65, harboring a gene encoding a site-specific integrase, and

pLB85, containing the gusA reporter gene and a gene encoding

erythromycin resistance, were used for constructing strains needed

for in vivo promoter strength assessment [27]. The primers,

plasmids and strains used in the study are listed in Table S1, Table

S2 and Table S3 respectively.

Antibiotics
When needed erythromycin was added at 5 mg ml21 for L. lactis.

Ampicillin and kanamycin were applied at 100 mg ml21 and 25 mg

ml21 respectively for E. coli.

Culture Media and Growth Conditions
E. coli was grown aerobically at 37uC in Lysogeny Broth (LB). L.

lactis strains were cultivated at 30uC without aeration in M17 broth

supplemented with 2 g L21 of glucose or in chemically defined SA

medium [28] devoid of acetate and supplemented with 2 g L21 of

maltose (MSA). L. lactis growth experiments were carried out in

flasks at 30uC under static conditions with slow stirring and optical

density at 600 nm (OD600) was measured regularly. As inoculum

an over-night exponentially growing culture in the same medium

was used and the start OD600<0.02. The growth rate was

calculated as the average of three replications. The cell density was

correlated to the cell mass of L. lactis to be 0.36 g (dry weight) per

liter of SA medium of OD600 = 1.

Quantification of Maltose and Fermentation Products
HPLC was employed to measure the concentration of maltose,

lactate, formate and acetate in the samples taken during the

growth experiments as previously described [29].

DNA Techniques
The method used to isolate the chromosomal DNA from L. lactis

was modified from a previous method [30]. PCR amplification,

restriction, ligation, transformation and plasmid purification from

E. coli were performed following procedures described in

Sambrook et al. [31] and the description from the manufacturer

of the enzymes used. Electrocompetent cells of L. lactis were grown

in M17 broth supplemented with 10 g L21 glucose and 10 g L21

glycine and transformed by electroporation as described previously

[32].

Gene Inactivation
Gene inactivation was achieved by deleting the whole gene or

part of the gene containing the necessary active sites using the

plasmid pCS1966 [26]. <800-bp regions upstream and down-

stream of the target to be deleted were PCR amplified and inserted

into pCS1966. The resulting plasmids were used as previously

described [26].

Construction of gusA Reporter Strains
The promoter containing region upstream a specific gene was

PCR amplified and inserted into plasmid pLB85 and transformed

into the desired L. lactis strain expressing phage TP901-1 integrase

as described previously [27]. Transformants were selected on

GM17 with erythromycin and verified by sequencing using

primers CSO50 and CSO263 (Table S1).

Rapid Amplification of cDNA Ends (RACE)
For RNA isolation, cells of MG1363 were harvested from an

exponentially growing SA culture supplemented with 2 g L21

glucose or maltose, with 2 mg ml21 of lipoic acid and nucleosides.

Cells were then resuspended in 200 ml Solution I (0.3 M sucrose

and 0.01 M NaAc, pH 4.8) and 200 ml preheated Solution II (2%

SDS and 0.01 M NaAc, pH 4.8). 400 ml phenol/acetate (phenol

equilibrated with 100 mM NaAc, pH 4.8) was added and the

mixture was disrupted by glass beads (106-mm diameter; Sigma,

Prod. No. G4649) using a FastPrep (MP Biomedicals, Santa Ana,

USA). The resulting lysate was centrifuged and the water phase

was extracted by phenol/acetate two times and finally by phenol/

acetate mixed with chloroform in a 1:1 ratio. RNA was

precipitated by ethanol and dissolved in DEPC-treated water.

Figure 1. Pyruvate and Ac-CoA metabolism. Pi: inorganic phosphate. CO2: carbon dioxide. Enzyme names are in bold. LDH: lactate
dehydrogenase. PFL: pyruvate formate lyase. PHDc: pyruvate dehydrogenase complex. PTA: phosphotransacetylase. ACK: acetate kinase. ADHE: bi-
functional alcohol dehydrogenase.
doi:10.1371/journal.pone.0092256.g001
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RACE was performed using the SMARTerTM RACE cDNA

Amplification Kit (Clontech) according to the instructions of the

manufacturer.

Overproduction of L. lactis ACK in E. coli
The two ACK genes (ackA1, ackA2) from MG1363 were PCR

amplified using primers 71f, 71r and 62f, 62r respectively. After

digestion with BglII, SalI and BamHI, SalI respectively, the

fragments were inserted into the vector pQE30 (Qiagen) digested

with the same enzymes and subsequently introduced into the E.

coli strain M15 pREP4groESL [25]. The strains were grown and

His-tagged ACKs were produced via IPTG induction and

purification on a Ni-NTA resin (Qiagen) according to the

manufacturer’s instruction. Purified protein was gel-filtrated on a

PD-10 column (GE Healthcare) thereby transferring it to Solution

A (50 mM Tris-HCl pH 7.5, 100 mM NaCl, 10% glycerol).

Protein concentration was determined using Bradford Reagent

(Sigma, Prod. No. B6916) and a protein standard (200 mg ml21

BSA, Sigma, Prod. No. P5369), following the protocol provided by

the manufacturer. The molecular weight of the protein was

estimated by gel filtration using a HiPrepTM 16/60 SephacrylTM

S-300 High Resolution column (GE Healthcare) and a Gel

Filtration Standard (BioRad, Cat. No. 151-1901). The mobile

phase used was 0.05 M sodium phosphate, 0.15 M NaCl, pH 7.0

and the flow rate was 0.2 ml min21. Proteins were detected using

the Ultimate 3000 Diode Array Detector (Dionex) at 280 nm.

Measurement of ACK Activities
ACK activities were measured on either purified proteins or in

cell extracts. Cell extracts were obtained by harvesting exponen-

tially growing cells which were then resuspended in extract buffer

[29] and disrupted by glass beads (106-mm diameter; Sigma, Prod.

No. G4649) using a FastPrep (MP Biomedicals, Santa Ana, USA).

The master buffer used for the assay was adapted from Goel et al.

[33]: 100 mM HEPES, 50 mM NaCl, 400 mM potassium

glutamate, 1 mM potassium phosphate and 106 diluted metal

ions present in SA medium, adjusted to pH 7.5 with potassium

hydroxide. For the production of acetate from Ac-P, the same

assay mix was used as in Goel et al. [33]: master buffer, 5 mM

MgSO4, 2 mM D-glucose, 0.4 mM NAD+, 8.5 U ml21 hexoki-

nase, 12.7 U ml21 D-glucose 6-phosphate dehydrogenase, with

varying amounts of ADP and Ac-P. For measurements of Vmax in

cell extracts, 3 mM ADP and 2 mM Ac-P were used. For the

reverse direction, the assay mix was modified from a previous

article [34]: master buffer, 4.2 mM MgCl2, 1.7 mM phospho-

enolpyruvate, 0.24 mM NADH, 9 U ml21 pyruvate kinase, 12 U

ml21 lactate dehydrogenase, with varying amounts of ATP and

potassium acetate. For measurement of Vmax in cell extracts,

4 mM ATP and 200 mM acetate were used. The enzyme

activities were determined by monitoring OD340 corresponding

to the concentration of NADH using the InfiniteH M1000 PRO

microplate reader (TECAN) and the accompanying software

Magellan. The 96-well microplates used were purchased from

Greiner Bio-one (Cat. No. 655901).

Measurement of b-glucuronidase Activity
The procedure used for measuring b-glucuronidase activities

was modified from Miller [35] and Israelsen et al. [36].

Sequence Analysis
Protein sequences were obtained from UniProt (http://www.

uniprot.org/). Nucleotide sequences were downloaded from

GenBank (http://www.ncbi.nlm.nih.gov/genbank/). Multiple

alignments and phylogenetic construction were performed using

MUSCLE [37] in CLC Main Workbench (http://www.clcbio.

com/products/clc-main-workbench/). Phylogenies were visual-

ized in FigTree (http://tree.bio.ed.ac.uk/software/figtree/). RNA

secondary structure was predicted using Vienna RNA Web

Services [38].

Results

Homologous sequences of AckA1 and AckA2 in L. lactis
MG1363

Protein sequences of the two ACKs in MG1363, AckA1 and

AckA2 encoded by ackA1 and ackA2 respectively, are homologous

with an identity of 68%. Alignment to ACKs from Salmonella

typhimurium and Methanosarcina thermophila (M. thermophila) whose

structures are known [16,17] (Fig. S1) showed conservation of

active site, substrate, nucleotide triphosphate and metal binding

sites except one residue in an ATP binding site (V331 of AckA1

and I331 of AckA2 respectively) which is also not conserved

among other organisms. It is thus difficult to predict differences in

enzymatic properties based on sequences alone.

Multiple ackA genes existing in L. lactis and many other
species

To understand the evolutionary relationship between the ACKs

from Lactococcus and other closely related LAB, a search for species

with multiple acetate kinases was initiated. Under the genus

Lactococcus, there are a total of 15 strains of three species, ten L.

lactis, four L. garvieae and one L. raffinolactis. Interestingly, all

Lactococcus strains except L. raffinolactis harbor two homologous

ACK genes. For Streptococcus which is closest to Lactococcus, in

contrast, among more than 500 strains with available ACK

sequences, only 16 of them have two or more ACKs. It is however

not a distinctive feature for Lactococcus but in fact a very general

phenomenon in bacteria. Among the 11,100 entries predicted to

encode ACKs in Uniprot, around 5,000 of them are not the

unique gene for ACK in an organism. These multiple ACK genes

exist in 2,242 strains from 320 species under 135 genera.

Interested readers are referred to Table S4 for the complete list

and the criteria for distinguishing multiple ACKs.

Two Types of ACK Conserved in Lactococcus
A multiple alignment including sequences from all Lactococcus,

several Streptococcus and Lactobacillus representatives with the

experimentally studied species as outgroup was performed to

construct a phylogeny (Fig. 2). From the phylogeny, it became

clear that, except for L. raffinolactis, one ACK in each Lactococcus

strain forms a monophyly and the other ACK in each strain forms

another (filled triangles in Fig.2). A multiple alignment indicating

the conserved differences of amino acid sequences between the

two types of ACK in all Lactococcus strains is also shown in Fig. S2.

For Streptococcus and Lactobacillus, similar but more complex

relationships could be observed. For example, a S. urinalis strain

has two ACKs more similar to ACKs in other species than to each

other. One of the three ACKs of Lb. sakei also has a larger

divergence with the other two ACKs than with the ACKs from

bacteria in other phyla.

From the alignment of the two types of ACK in L. lactis with

ACKs of known structure [16,17,39] (Fig. S2), it was observed that

some important residues conserved within each type of ACK were

different between the two types, e.g. position 331 (relative to

MG1363’s AckA1) in an ATP binding site and position 287–291

including a deletion on a helix containing an ATP binding site.

Acetate Kinase Isozymes as a Robust Acetate Switch
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Predicted Transcription Terminator between the Two
ACK Genes in L. lactis

In all L. lactis strains, the genes for the two ACKs are neighbors

of each other. In MG1363, the gene upstream was annotated as

ackA1 and the other as ackA2. To see if they form an operon, the

intergenic RNA secondary structure was predicted using Vien-

naRNA Web Services [38]. A stem-loop structure followed by a

poly-U sequence which is a potential transcription terminator

located 8 bp downstream of the stop codon of ackA1 was predicted

(Fig. 3). The prediction is conserved for all sequenced L. lactis.

Distinct Transcription Start Sites for ackA1 and ackA2
A 59-end RACE was conducted on RNA samples from

MG1363 growing on glucose and maltose respectively to locate

the transcription start site (TSS) of the two ackA genes. For each

gene, an individual TSS was identified and putative 235 element

and extended 210 element containing a TGn motif [40] were

proposed (Fig. 3). We were unable to demonstrate the existence of

an additional transcript containing both ackA2 and ackA1 although

this should have been possible for the RACE approach used.

Distinct Transcription Units and Activities
Reporter fusions were constructed as a quantitative approach to

examine the transcription activity of ackA1 and ackA2. Five

resulting strains with fragments A–E (Fig. 4a) respectively fused

transcriptionally to gusA were grown on MSA medium and the b-

glucuronidase activities were determined (Fig. 4b).

Fragment A including the putative promoter (PP) of ackA1

resulted in the highest activity of 5 Miller units. Fragment B

includes both the PPs of ackA1 and ackA2 whereas fragment C

includes only the PP of ackA2. They resulted in very similar

activities (<2 Miller units). This shows that the PP of ackA1 had

negligible effect on the transcription of ackA2. Fragment D and E,

starting at the same 59 end of fragment B and C respectively and

both ending just after the predicted terminator but before the PP

of ackA2, resulted in activities indistinguishable from the

background activity (‘bg’ in Fig. 4b). This demonstrates that the

predicted terminator is effective and that the transcription of ackA2

is governed by its own promoter.

Huge Differences in kcat and Km for acetate
The molecular weights of the His-tagged ACKs were estimated

to be 100 kDa for AckA1 and 84 kDa for AckA2 using gel

filtration, close to a double of the monomer (43 kDa). Both

proteins are concluded to be homodimeric. ACK activities of the

enzymes were measured (Fig. S3). Both AckA1 and AckA2 were

active in both directions. kcat and Km for all four substrates were

estimated (Table 1). Two exceptional differences between AckA1

and AckA2 were first the much higher kcat of AckA1 in both

directions (8-fold higher for acetate production and 4-fold higher

for the reverse) and second the much lower apparent Km for

Figure 2. Phylogeny of acetate kinases from Lactococcus,
Streptococcus and other species. One ACK from each L. lactis and
L. garvieae strain forms a monophyletic group and the other ACK forms
another (filled triangles). A triangle represents a cluster of sequences
lumped in one line and the number in the bracket is the size of the
cluster.
doi:10.1371/journal.pone.0092256.g002

Figure 3. Nucleotide sequence upstream of ackA1 and ackA2. TSS: putative transcription start site. Putative 235 and extended 210 element
are underlined. Shaded nucleotides in 210 element: TGn motif. cre site responsible for carbon catabolite repression is dotted underscored. Bracket
pairs represent the base pairing in the predicted stem-loop structure which is conserved among all L. lactis strains.
doi:10.1371/journal.pone.0092256.g003
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acetate of AckA2 (1.87 mM) compared to that of AckA1

(22.07 mM).

Additive Cell Extract Activities of Mutant Strains
To study the physiological roles of the two ACKs in L. lactis,

three mutant strains, MG1363DackA1, MG1363DackA2 and

MG1363DackA1DackA2, were constructed by inactivating ackA1,

ackA2 and both respectively. Vmax of ACK in MG1363 and the

three mutant strains growing on MSA media were measured

(Fig. 5a). MG1363 showed the highest activity, followed by

MG1363DackA2 and then MG1363DackA1. MG1363DackA1-

DackA2 had the lowest activity. An interesting observation was

the additivity of the activities. When subtracting the activity in

MG1363DackA1DackA2 (which represents the background activity)

from the activities in the other three strains, the sum of the

activities in MG1363DackA1 and MG1363DackA2 was approxi-

mately equal to the activity in MG1363. The implication is

discussed below.

To verify the much lower Km for acetate of AckA2, Vmax was

also determined in the presence of 1 mM acetate (Fig. 5b).

MG1363DackA1 did show a higher activity than MG1363DackA2.

This is opposite to what was observed under normal assay

conditions with 200 mM acetate and agrees with the differences in

the Km.

Slower Acetate Production by MG1363DackA1 at a High
Extracellular Acetate Concentration

To test whether the two ACKs performed differently in vivo,

growth experiments of MG1363, MG1363DackA1,

MG1363DackA2 and MG1363DackA1DackA2 were conducted on

MSA media with or without 50 mM acetate. Fig. 6 shows

representative growth curves of the four strains and the average

growth rates. In all experiments the wild type and single-deletion

strains were able to grow up to an OD600<1 where the HPLC

analysis showed that the sugar had been consumed (data not

shown). The double deletion strain MG1363DackA1DackA2

stopped growing at a much lower cell density of OD600<0.1.

When acetate was absent, MG1363 and the two single deletion

strains grew with similar growth rates about 0.45 h21. With

50 mM acetate present in the media, MG1363DackA1 had a

significantly reduced growth rate of 0.38 h21, equal to a 20%

reduction compared to MG1363 and MG1363DackA2 (0.49 h21).

The product formation from the three growing strains was also

measured (Table 2). In the absence of acetate, the distribution of

fermentation products was very similar for all three strains. Since

MG1363DackA1DackA2 was unable to grow and produce acetate

after OD600<0.1, the acetate production in MG1363DackA1 and

MG1363DackA2 can be attributed to AckA2 and AckA1 respec-

tively. This implies that both individual ACKs were able to sustain

a flux equal to that in the wild type where both ACKs were

present. In the presence of 50 mM acetate, however, the reduced

acetate production rate concomitant with the reduced growth rate

(Fig. 6c), formate production rate and maltose uptake rate in

MG1363DackA1 reveals that the flux entering the mixed acid

branch decreased while the lactate flux remained unchanged

(Table 2). This indicates that AckA2 alone in MG1363DackA1 was

unable to maintain the same flux as in MG1363 and

MG1363DackA2 where AckA1 was present. It can thus be

concluded that AckA1 performed better than AckA2 in acetate

production in the presence of a high concentration of acetate

(50 mM) in the media.

Slower Acetate Uptake by MG1363DackA2Dpfl at Low
Acetate Concentrations

An acetate-assimilating growth condition was created by

excluding lipoic acid from the medium and knocking out PFL in

Figure 4. Transcription activities of ackA genes. (A) Fragments used for transcriptional fusion. Numbers on arrows refer to primers in Table S1.
PP: putative promoter. UR1s: <500 bp upstream of ackA1. UR1e: <50 bp after the start codon of ackA1. UR2s: <500 bp upstream of ackA2. UR2e:
<50 bp after the start codon of ackA2. T: position just after the predicted terminator. (B) The b-glucuronidase activities induced by the corresponding
fragments. bg: background activity from the control strain without any promoter upstream of gusA. Error bars are equal to standard deviations of
measurements on three replications.
doi:10.1371/journal.pone.0092256.g004

Table 1. Estimated Km and kcat for AckA1 and AckA2.

AckA1 AckA2

Km (mM) Ac-P 0.35 (0.02) 0.086 (0.02)

ADP 0.94 (0.09) 1.15 (0.12)

OAc 22.07 (1.05) 1.87 (0.29)

ATP 0.086 (0.0078) 0.21 (0.12)

kcat (s21) OAcRAc-P 3234 (221) 394 (27)

Ac-PROAc 1033 (98) 282 (28)

Ac-P: acetyl-phosphate. OAc: acetate. Values in bracket represent the standard
error of estimation from $20 data points.
doi:10.1371/journal.pone.0092256.t001
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the ackA deletion strains. The PFL-deleted strains, MG1363Dpfl,

MG1363DackA1Dpfl, MG1363DackA2Dpfl and MG1363DackA1-

DackA2Dpfl, were grown in MSA media supplemented with

acetate. Fig. 7 shows the growth in media supplemented with no

acetate, 8 mM, 12 mM and 50 mM acetate respectively. When

acetate was absent, all four strains stopped growing at OD600<0.1

(Fig. 7a), showing that the cells depended on acetate for growth

beyond this point. When acetate was added to the media, further

growth could be seen for all strains except MG1363DackA1Dack-

A2Dpfl. A clear transition occurred between OD600 = 0.2 and 0.3,

Figure 5. ACK activites in crude extracts of MG1363 and derived ackA deletion strains. (A) Activities under normal assay conditions with
200 mM acetate. When subtracting the activity in MG1363DackA1DackA2 (which represents background activity) from the activities in the other three
strains, the sum of the activities in MG1363DackA1 and MG1363DackA2 was approximately equal to the activity in MG1363. (B) Activities of
MG1363DackA1 and MG1363DackA2 in the presence of 1 mM or 200 mM of acetate (OAc). Error bars are equal to standard deviations of
measurements on three replications.
doi:10.1371/journal.pone.0092256.g005

Figure 6. Representative growth curves and growth rates of MG1363 and derived ackA deletion strains. Growth with (A) 0 mM and (B)
50 mM acetate. Only data obtained 5 hours after the start of the experiments are plotted for better visualization. (C) Table showing the legend and
average growth rates. Values in brackets represent standard deviations of three replications.
doi:10.1371/journal.pone.0092256.g006
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after which growth depends on acetate. The final OD600 was

around 0.6 where HPLC analysis indicated that all maltose had

been consumed.

Very slow acetate-dependent growth was observed for

MG1363DackA2Dpfl at 8 or 12 mM of extracellular acetate, .

10-fold slower than MG1363DackA1Dpfl and MG1363Dpfl (Fig. 7b,

c). MG1363DackA1Dpfl also grew even faster than MG1363Dpfl at

these acetate concentrations. When the acetate concentration

increased to 50 mM, however, the growth rates were similar for all

three strains (0.22–0.23 h21, Fig. 7d).

The consumption of acetate was also quantified (Table 3). The

acetate uptake rate of MG1363DackA1Dpfl was significantly higher

than that of MG1363Dpfl (2–3 fold) and MG1363DackA2Dpfl (.6

fold) at 8 or 12 mM extracellular acetate. They were nonetheless

indistinguishable at 50 mM extracellular acetate. Since

MG1363DackA1DackA2Dpfl did not show acetate-dependent

growth, the acetate uptake in MG1363DackA1Dpfl and

MG1363DackA2Dpfl could be attributed to the presence of AckA2

and AckA1 respectively. It can thus be concluded that at a high

acetate concentration (50 mM), both individual ACKs were able

to take up acetate as fast as in MG1363Dpfl whereas at low acetate

concentrations (#12 mM), AckA2 has a significant higher

capability for acetate uptake than AckA1.

Discussion

Prevalence of multiple ACKs in bacteria
ACK sequence data from Uniprot revealed that the existence of

multiple ACKs is a very common phenomenon in bacteria which

is interesting and emphasizes its possible importance. Unfortu-

nately, there are few studies on ACK isozymes in the literature

except for a spirochete [23]. We believed that the importance of

ACK isozymes on acetate metabolism is being neglected while the

acetate metabolism in bacteria is still a subject under active

research, for instances, current generation of Geobacter sulfurredu-

cens’s growth on acetate [41] and acetate dependency of the

probiotic Lactobacillus johnsonii [42]. Interestingly, the strains used in

the two studies also have multiple ACKs. Knowledge on ACK

isozymes in these organisms may provide insights into these studies

and their applications. The current study attempts to fill the gap by

studying the two ACKs in L. lactis at different levels.

ackA1 and ackA2 in L. lactis probably resulted from gene
duplication

Protein sequence analysis revealed the conserved differences

between the two ACKs found in Lactococcus. This brought an

insight into the potential evolutionary advantage of having ACK

isozymes. From the simple phylogenetic analysis, the two ackA

genes may have resulted from a duplication event in a common

ancestor of Lactococcus which had already been differentiated from

Streptococcus. To prove this point, however, a more formal

phylogenetic analysis is required.

AckA1 and AckA2 in MG1363 being isozymes rather than
subunits

With respect to the expression of ackA1 and ackA2, our results

suggest that the two genes are transcribed individually rather than

in an operon. This is actually consistent with the Northern Blot

results in de Felipe and Gaudu (2009) [43] where a transcript of

around 1 kb was found for ackA1. Interestingly, in their study,

ackA1 was assumed to encode one subunit of ACK in L. lactis. This

question may be worth asking because the two ACKs are in fact

homologous to each other.

In the current study, nevertheless, the state of being isozymes

rather than subunits of one ACK for the two ackA gene products

was assumed for several reasons. First, we found that the

individual His-tagged enzymes could catalyze the reaction in both

directions. Second, the ackA mutant strains could produce as well

as utilize acetate. Third, the crude extracts from ackA mutant

strains showed additive activities (VMG1363
max ~VMG1363DackA1

max z

VMG1363DackA2
max {VMG1363DackA1DackA2

max ). If a hetero-oligomeric

form of ACK with different kinetic properties exists, the additivity

is less likely to hold. Fourth, most of the ACKs reported in the

literature appear to be homodimeric [16,17,22,44–47]. Finally, we

have data analogous to those in Fig. 4b showing that when

growing on glucose, the promoter activity of ackA2 was 10-fold

lower than that of ackA1 and was close to the value of background

activity (unpublished results). This is consistent with the cre site

identified 6 bp downstream of the ackA2’s TSS (Fig. 3) which is

subject to carbon catabolite repression [48]. In light of this huge

difference between the transcriptional activities, it is unlikely that

the two gene products from ackA1 and ackA2 form one protein

complex. However, the possibility that hetero-oligomeric ACK

exists cannot be entirely ruled out.

Possible different roles suggested by enzyme kinetics
From the His-tagged purified enzymes, AckA1 was shown to have

much higher turnover number kcat than AckA2 whereas AckA2 has

a higher affinity towards acetate. The apparent Km is the lowest of

all the reported ACKs where Km for acetate usually is notoriously

high (the highest being 300 mM in E. coli [13]). The kinetic

properties of the two ACKs thus suggest a possible complementary

role in metabolism. For the effect of His-tagging on enzymes, we

have looked into the 3D structure of the ACK from M. thermophile

(PDB ID: 1TUY) [22] which is homologus to AckA1 and AckA2 in

L. lactis. The first few residues from the N-terminus are outside the

Table 2. Average specific rates of consumption of maltose, production of lactate, formate and acetate of MG1363, MG1363DackA1
and MG1363DackA2 at 0 or 50 mM of extracellular acetate.

Specific rate of consumption/production (mmol h21 gdw21)

MSA, 0 mM OAc MSA, 50 mM OAc

maltose lactate formate acetate maltose lactate formate acetate

MG1363 7.9 (0.5) 20.6 (1.5) 12.5 (0.9) 7.5 (0.8) 8.3 (0.6) 20.1 (1.6) 14.0 (1.4) 7.9 (0.9)

MG1363DackA1 8.0 (0.5) 19.9 (1.4) 12.7 (1.0) 8.0 (0.4) 7.2 (0.5) 19.0 (1.8) 8.9 (1.0) 5.1 (1.0)

MG1363DackA2 7.3 (0.6) 18.8 (1.1) 12.5 (1.2) 7.4 (0.4) 8.0 (0.6) 18.0 (1.1) 14.3 (1.2) 7.7 (0.7)

OAc: acetate. Values in brackets represent standard deviations of three replications.
doi:10.1371/journal.pone.0092256.t002
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catalytic core. Together with the consistency between the assays on

purified enzymes and crude extracts, we believed that the His-tag is

unlikely to interfere with the reaction.

Physiological roles of ACK reported in literature
Among the ACKs reported previously, some were found to have

ATP production as their primary physiological role while some are

more likely to be responsible for acetate activation. For instance,

the ACK in Lactobacillus sanfranciscensis was suggested to take the

role of ATP formation [13]. The ACKs in Bacillus subtilis were

shown to be non-essential for growth on acetate and meanwhile

important for excretion of excess carbohydrate by producing

acetate [49].

With respect to examples of acetate activation, in Corynebacterium

glutamicum, ACK activities were proven to be necessary for growth

on acetate [50]. Another interesting case is M. thermophile which is

acetotrophic. The Km for acetate of the ACK from M. thermophile

was found to be 22 mM [18]. Site-directed mutagenesis in the

same study revealed that only a single-residue mutation could

cause a 10-fold lower Km for acetate concomitant with a 6-fold

reduction in kcat. This striking similarity between the pair of ACKs

in M. thermophile (wild-type and mutated) and the pair of ACKs in

L. lactis (AckA1 and AckA2) leaves a possible hint for how AckA1

and AckA2 differentiated and specialized. The author suggested

that the sacrifice of a low Km in return for a high kcat conferred the

advantage of more rapid acetate uptake to Methanosarcina species in

an environment with a high acetate concentration [18].

These are only a few examples among many different studies. It

must be noted that despite the particular functions of ACK

demonstrated in the mentioned studies, one should not exclude

other possibilities. The physiological role might be dependent on

the nutrients available and complementary to other enzymes like

the AMP-forming ACS in bacteria. For example, in E. coli, a

number of studies on ACK-deficient mutants showed that PTA-

ACK is the primary pathway for acetate production, e.g. [51,52].

Other studies found that it is important for growth on high acetate

concentration ($25 mM) whereas growth on low acetate concen-

tration (#2.5 mM) depends on ACS [1,53] (reviewed in [3]). This

example of PTA-ACK complementary to ACS in E. coli also

resembles AckA1 and AckA2 in the sense that ACS has a much

lower Km for acetate (0.2 mM) and lower Vmax [53]. The

difference lies in the irreversibility of ACS in E. coli and the

dependence of AckA2 on PTA to produce Ac-CoA in L. lactis. A

final example is a spirochete with two ACKs [23]. They had a

lower Km for Ac-P and acetate respectively. The authors

mentioned the possibility of the two ACKs being specialized in

different directions respectively.

Growth on maltose as a test of the physiological roles in
L. lactis

To find out whether the two ACKs have different physiological

roles, mutant strains were constructed and their response to

acetate during growth was examined. In our growth experiments,

maltose was chosen as the carbon source because for MG1363

Figure 7. Representative growth curves of MG1363Dpfl and derived ackA-pfl deletion strains. Growth with (A) 0 mM, (B) 8 mM, (C)
12 mM and (D) 50 mM acetate. Only data obtained 5 hours after the start of the experiments are plotted for better visualization. (E) Table showing
the legend and average growth rates. Values in brackets represent standard deviations of three replications.
doi:10.1371/journal.pone.0092256.g007
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growing on maltose, a more significant amount of formate, acetate

and ethanol is produced than on glucose [54]. Via growth on

maltose the capacity of the two ACKs to bear a high flux from

glycolysis can be tested. Another reason is the much lower ATP/

ADP ratio in L. lactis when growing on maltose than on glucose.

The ATP/ADP ratio in MG1363 was around 9 when growing on

glucose [55] and was around 4 when growing on maltose [56].

The lower ATP/ADP ratio provided a more stringent condition

for acetate uptake in the mutant strains.

Complementary roles in acetate metabolism
Our results show that under favorable conditions either one of

the ACKs is sufficient for the dual function of acetate production

and uptake. In an environment where the concentrations of

acetate, lipoic acid (activating PDHc) and oxygen (inactivating

PFL) are varying, nonetheless, AckA1 and AckA2 have their own

advantages and complement each other to allow fast growth at

different extracellular acetate concentrations. In an environment

with high acetate concentration (50 mM), AckA1 showed its

superior capability of acetate production. This is consistent with

the kinetic properties in vitro. The much higher affinity for acetate

of AckA2 probably led to a larger effect of product inhibition by

extracellular acetate diffused into the cells. In contrast, in a

dynamic environment where PFL and PDHc are inactive, e.g.

containing oxygen and without lipoic acid, our results from the

growth experiments of PFL and ACK defective strains show that

AckA2 is important for acetate uptake when the acetate source is

scarce (#12 mM). The lower growth yield compared to PFL-

effective strains (OD600 = 0.6 vs 1) was probably a result of loss of

the ATP generated from acetate production combined with

additional ATP consumed for acetate uptake.

Another possible function of the two ACKs that should not be

overlooked is the emergent properties of combining the isozymes.

A possibility is thus a switch to fine-tune the direction and rate of

the reaction in response to the cellular requirement by altering the

expression of the two ackA genes. It would be interesting to look

into the regulation of the expression of ackA1 and ackA2 to examine

this hypothesis.

PTA-ACK as the only pathway interconverting Ac-CoA
and acetate in L. lactis

The inability of MG1363DackA1DackA2 and MG1363DackA1-

DackA2Dpfl to grow on MSA media suggests the absence of other

pathways involved in the interconversion between Ac-CoA and

acetate. For MG1363DackA1DackA2, the only known pathway left

for catabolizing Ac-CoA is the NAD+-generating bi-functional

alcohol dehydrogenase (ADHE) because of the lack of ACKs. The

redox imbalance could lead to the accumulation of toxic

intermediate metabolites such as acetaldehyde which prevents

growth. For MG1363DackA1DackA2Dpfl, no acetate was assimilat-

ed to form Ac-CoA to satisfy anabolic requirements. If other

pathways for either direction exist, one of the strains should be

able to grow. Thus, these results further emphasize the importance

of AckA1 and AckA2 in the acetate metabolism of L. lactis. For the

initial growth up to OD600<0.1 of the two strains, it was found to

be caused by the small amounts of lipoic acid present as impurity

in the amino acids composing the media which could activate

PDHc. Adding lipoic acid to these cultures indeed allowed growth

beyond OD600 = 0.1 and growth experiments in media with

reduced amounts of amino acids showed that these strains stopped

growing at a lower OD600 whereas the wild-type MG1363 was

unaffected (data not shown). This indicated the presence of small

amounts of lipoic acid in the amino acid stock which caused the

initial growth of MG1363DackA1DackA2 and MG1363DackA1-

DackA2Dpfl.

Conclusions
In conclusion, the present study demonstrated the different and

yet complementary roles of the two acetate kinases in L. lactis

MG1363 with one being specialized in acetate production and the

other in acetate uptake. It was observed from the sequence and

phylogenetic analysis, supported with transcriptional analysis and

the enzyme kinetics, and finally confirmed by the different growth

behavior of mutant strains harboring only ackA1 and ackA2

respectively. The findings can be of great significance in bacterial

metabolism in light of the fact that more than 300 species of

organisms actually have multiple ACKs. Evolution to multiple

ACKs specialized in complementary functions may be a common

strategy in bacteria in response to the dual nature of acetate which

can be an essential substrate but also an inhibitor for growth

depending on environmental conditions.
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Table S1 Primers used in this study.

(DOCX)

Table S2 Plasmid used in this study. Ermr, Camr and

Ampr stand for erythromycin, chloramphenicol and ampicillin

resistance respectively. CDS: coding sequence.

(DOCX)

Table S3 Strains used in this study.

(DOCX)

Table S4 ACK entries in Uniprot. (a) Complete list

downloaded from Uniprot, sorted in alphabetical order of

organism names. (b) Identification of multiple ACKs existing in

Table 3. Average specific rates of consumption of maltose, acetate and production of lactate of MG1363Dpfl, MG1363DackA1Dpfl
and MG1363DackA2Dpfl.

Specific consumption/production rate (mmol h21 gdw21)

8 mM OAc 12 mM OAc 50 mM OAc

maltose lactate acetate maltose lactate acetate maltose lactate acetate

MG1363Dpfl 1.3 (0.1) 2.8 (0.20) 0.02 (0.003) 2.7 (0.3) 8.1 (1.0) 0.16 (0.02) 7.1 (0.4) 28 (1) 2.5 (0.5)

MG1363DackA1Dpfl 2.1 (0.2) 5.5 (0.7) 0.06 (0.02) 3.7 (0.3) 12.1 (1.0) 0.27 (0.02) 6.8 (0.2) 27 (1) 2.6 (0.4)

MG1363DackA2Dpfl 0.2 (0.03) 0.54 (0.09) N.D. 0.3 (0.05) 0.8 (0.4) 0.04 (0.01) 6.7 (0.3) 27 (1) 2.6 (0.5)

Formate production was not detectable in all cases. Values in brackets represent standard deviations of three replications. N.D.: not detectable.
doi:10.1371/journal.pone.0092256.t003
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the same organism from the complete list. Criteria to distinguish

isozymes from the same strain: 1. Sequence length lies between

350aa and 450aa, where the main cluster of ACK sequences have

(<95%). All reported ACKs in the literature also have length in

this range. Ignore other outliers. 2. Exclude entries with the word

‘fragment’ in ‘protein name’ which can mean a fragment of the

same protein represented by another entry, leading to false

positive. 3. Exclude entries without a specific strain name in

‘organism’, which can be results from metagenomic studies,

leading to possible false positive. (c) Entries identified as multiple

ACKs existing in the same organism, sorted in alphabetical order

of organism names. (d) Counting the number of different strains,

species and genera and the number of ACKs in each strain.

(XLSX)

Figure S1 Multiple alignment of AckA1, AckA2 and
ACKs from Salmonella typhimurium and Methanosar-
cina thermophila. Structures identified in previous crystallo-

graphic studies [16,17] are annotated.

(EPS)

Figure S2 Multiple alignment of all lactococcal ACKs.
Residues conserved with each type of ACK but different between

the two types are annotated.

(EPS)

Figure S3 Activities of purified acetate kinases. (a) AckA1

and (b) AckA2 converting acetate (OAc) into acetyl-phosphate (Ac-

P) at different levels of (i) acetate and (ii) ATP and, converting

acetyl-phosphate into acetate at different levels of (iii) Ac-P and (iv)

ADP, respectively.

(EPS)
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