27 research outputs found

    Glacial History of the North Atlantic Marine Snail, Littorina saxatilis, Inferred from Distribution of Mitochondrial DNA Lineages

    Get PDF
    The North Atlantic intertidal gastropod, Littorina saxatilis (Olivi, 1792), exhibits extreme morphological variation between and within geographic regions and has become a model for studies of local adaptation; yet a comprehensive analysis of the species' phylogeography is lacking. Here, we examine phylogeographic patterns of the species' populations in the North Atlantic and one remote Mediterranean population using sequence variation in a fragment of the mitochondrial cytochrome b gene (607 bp). We found that, as opposed to many other rocky intertidal species, L. saxatilis has likely had a long and continuous history in the Northwest Atlantic, including survival during the last glacial maximum (LGM), possibly in two refugia. In the Northeast Atlantic, several areas likely harboured refugial populations that recolonized different parts of this region after glacial retreat, resulting in strong population structure. However, the outlying monomorphic Venetian population is likely a recent anthropogenic introduction from northern Europe and not a remnant of an earlier wider distribution in the Mediterranean Sea. Overall, our detailed phylogeography of L. saxatilis adds an important piece to the understanding of Pleistocene history in North Atlantic marine biota as well as being the first study to describe the species' evolutionary history in its natural range. The latter contribution is noteworthy because the snail has recently become an important model species for understanding evolutionary processes of speciation; thus our work provides integral information for such endeavours

    Growth and retreat of the last British–Irish Ice Sheet, 31 000 to 15 000 years ago: the BRITICE-CHRONO reconstruction

    Get PDF
    The BRITICE-CHRONO consortium of researchers undertook a dating programme to constrain the timing of advance, maximum extent and retreat of the British?Irish Ice Sheet between 31?000 and 15?000?years before present. The dating campaign across Ireland and Britain and their continental shelves, and across the North Sea included 1500?days of field investigation yielding 18?000?km of marine geophysical data, 377 cores of sea floor sediments, and geomorphological and stratigraphical information at 121 sites on land; generating 690 new geochronometric ages. These findings are reported in 28 publications including synthesis into eight transect reconstructions. Here we build ice sheet-wide reconstructions consistent with these findings and using retreat patterns and dates for the inter-transect areas. Two reconstructions are presented, a wholly empirical version and a version that combines modelling with the new empirical evidence. Palaeoglaciological maps of ice extent, thickness, velocity, and flow geometry at thousand-year timesteps are presented. The maximum ice volume of 1.8?m sea level equivalent occurred at 23?ka. A larger extent than previously defined is found and widespread advance of ice to the continental shelf break is confirmed during the last glacial. Asynchrony occurred in the timing of maximum extent and onset of retreat, ranging from 30 to 22?ka. The tipping point of deglaciation at 22?ka was triggered by ice stream retreat and saddle collapses. Analysis of retreat rates leads us to accept our hypothesis that the marine-influenced sectors collapsed rapidly. First order controls on ice-sheet demise were glacio-isostatic loading triggering retreat of marine sectors, aided by glaciological instabilities and then climate warming finished off the smaller, terrestrial ice sheet. Overprinted on this signal were second order controls arising from variations in trough topographies and with sector-scale ice geometric readjustments arising from dispositions in the geography of the landscape. These second order controls produced a stepped deglaciation. The retreat of the British?Irish Ice Sheet is now the world?s most well-constrained and a valuable data-rich environment for improving ice-sheet modelling

    A New Integrated Approach to Taxonomy: The Fusion of Molecular and Morphological Systematics with Type Material in Benthic Foraminifera

    Get PDF
    This work was supported by NERC grant NE4/G018502/1 and NE/G020310/1 (Website: http://www.nerc.ac.uk). The authors also thank the following for their support the Carnegie Trust for the Universities of Scotland (Website: http://www.carnegie-trust.org) and the Estuarine Coastal and Shelf Science Association (Website: http://www.ecsanews.org). M.S. was also supported by the Swiss National Science Foundation (SNSF), fellowships for advanced researchers PA00P2_126226 and PA00P2_142065 (Website: http://www.snf.ch/en/Pages/default.aspx).A robust and consistent taxonomy underpins the use of fossil material in palaeoenvironmental research and long-term assessment of biodiversity. This study presents a new integrated taxonomic protocol for benthic foraminifera by unequivocally reconciling the traditional taxonomic name to a specific genetic type. To implement this protocol, a fragment of the small subunit ribosomal RNA (SSU rRNA) gene is used in combination with 16 quantitative morphometric variables to fully characterise the benthic foraminiferal species concept of Elphidium williamsoni Haynes, 1973. A combination of live contemporary topotypic specimens, original type specimens and specimens of genetic outliers were utilised in this study. Through a series of multivariate statistical tests we illustrate that genetically characterised topotype specimens are morphologically congruent with both the holotype and paratype specimens of E. williamsoni Haynes, 1973. We present the first clear link between morphologically characterised type material and the unique SSU rRNA genetic type of E. williamsoni. This example provides a standard framework for the benthic foraminifera which bridges the current discontinuity between molecular and morphological lines of evidence, allowing integration with the traditional Linnaean roots of nomenclature to offer a new prospect for taxonomic stability.Publisher PDFPeer reviewe

    Foraminiferal isoleucine epimerisation determinations from the Nar Valley Clay, Norfolk, UK: Implications for interglacial correlations in the southern North Sea Basin

    No full text
    Fully temperate freshwater, brackish and marine sediments overlying Anglian till and glacilacustrine sediments in the Nar Valley area of northwest Norfolk, UK, have been attributed to the Middle Pleistocene Hoxnian temperate stage on palynological grounds, and basal peats associated with this sequence have been recently correlated with oxygen isotope stage 9 on the basis of a series of Th-230/U-238 dates (mean 317 +/- 14 ka). At Tottenhill these sediments (Nar Valley Freshwater Beds, Nar Valley Clay) underlie a deltaic complex attributed to the Wolstonian ice margin. The lithostratigraphical relations between the major formations in the Nar Valley, and the pollen stratigraphy of the fully temperate sequence, are very similar to the Pleistocene sequence in the Inner Silver Pit area of the southern North Sea, and correlation has been proposed between the successions described from these two localities. However, the Inner Silver Pit sequence has yielded aminostratigraphic data consistent with isotopic stage 11.Benthic foraminiferal assemblages and foraminiferal amino-acid determinations have been investigated from the Nar Valley Clay in order to test further the palaeoenvironmental setting of the sequence and to help resolve the age of the sequence and correlation with the Inner Silver Pit interglacial. The foraminiferal assemblages support previous sedimentological and palaeontological evidence for a transgressive tendency within this sequence. Multiple isoleucine epimerization determinations on Ammonia beccarii and Aubignyna perlucida from five levels within the Nar Valley Clay give mean aIle/Ile ratios of 0.135 and 0.111, respectively. The A. beccarii ratios are much lower than mean aIle/Ile ratios on equivalent species from the interglacial sequence in the Inner Silver Pit (upper Sand Hole Formation), which are close to 0.2, and the two datasets fail to overlap at the lo level. The new aminostratigraphic ratios indicate correlation of the Nar Valley Clay with oxygen isotope stage 9, and therefore support the pre-existing Th-230/U-238 data.These results suggest that two temperate stages of Hoxnian palynological affinity are present in the Quaternary record of East Anglia and the southern North Sea basin, a conclusion consistent with independent new U-series data from other Hoxnian sites in East Anglia. An alternative model in which the amino-acid ratios are explained as a function of different post-depositional thermal histories, related to length of cover by ice and water, is discussed but considered unlikely. The conclusions have important implications for the timing and number of glacial events in and around the southern North Sea basin, and help to resolve discrepancies in relative sea-level histories and biogeography in temperate sequences hitherto accommodated within a single stage.</p

    Bimodal Plio-Quaternary glacial erosion of fjords and low-relief surfaces in Scandinavia

    No full text
    International audienceGlacial landscapes are characterized by dramatic local relief, but they also commonly exhibit high-elevation, lowreliefsurfaces. These surfaces have been attributed to glacial headward erosion and periglacial processes in Alpinesettings. However, the timing and processes responsible for their formation in northern high-latitude regions remainelusive. Here, we infer the topographic evolution of western Scandinavia during the Plio-Quaternary glaciations(0-2.8 Ma) by linking onshore erosion to offshore sedimentation. We estimate the rate of fjord erosion from geophysicalrelief and compare that with the erosion reflected by offshore sedimentation. We find that the sedimentsgenerated by fjord erosion (65-100 103 km3) over the entire western Scandinavia during the Plio-Quaternaryglaciations accounts for only 35–55% of the equivalent bedrock erosion deduced from total sediment volume depositedoff the coast of Norway. This large mismatch implies that during this period, significant erosion (300-400m) must have also taken place away from the fjords at high elevation and thus indicates a bimodal distribution ofglacial erosion. Furthermore, comparing the distribution of the high-elevation, low-relief surfaces with estimatesof the long-term glacier equilibrium line altitude supports the idea that effective erosion in extensively glaciatedareas limits topographic height, a process known as the glacial buzzsaw. We therefore conclude that glacial andperiglacial processes have a substantial impact on the formation of low-relief surfaces observed in glaciated mountainbelts and high-latitude continental margins
    corecore