93 research outputs found
Recommended from our members
Radiative forcing due to aviation water vapour emissions
Three emissions inventories have been used with a fully Lagrangian trajectory model to calculate the stratospheric accumulation of water vapour emissions from aircraft, and the resulting radiative forcing. The annual and global mean
radiative forcing due to present-day aviation water vapour emissions has been found to be 0.9 [0.3 to 1.4] mW m^2. This is around a factor of three smaller than the value given in recent assessments, and the upper bound is much lower than a recently suggested 20 mW m^2 upper bound. This forcing is sensitive to the vertical distribution of emissions, and, to a lesser extent, interannual variability in meteorology. Large differences in the vertical distribution of emissions within the inventories have been identified, which result in the choice of inventory being the largest source of differences in the calculation of the radiative forcing due to the emissions.
Analysis of Northern Hemisphere trajectories demonstrates that the assumption of an e-folding time is not always appropriate for stratospheric emissions. A linear model is more representative for emissions that enter the stratosphere far above the tropopause
Recommended from our members
A simple framework for assessing the trade-off between the climate impact of aviation carbon dioxide emissions and contrails for a single flight
Persistent contrails are an important climate impact of aviation which could potentially be reduced by re-routing aircraft to avoid contrailing; however this generally increases both the flight length and its corresponding CO emissions. Here, we provide a simple framework to assess the trade-off between the climate impact of CO emissions and contrails for a single flight, in terms of the absolute global warming potential and absolute global temperature potential metrics for time horizons of 20, 50 and 100 years. We use the framework to illustrate the maximum extra distance (with no altitude changes) that can be added to a flight and still reduce its overall climate impact. Small aircraft can fly up to four times further to avoid contrailing than large aircraft. The results have a strong dependence on the applied metric and time horizon. Applying a conservative estimate of the uncertainty in the contrail radiative forcing and climate efficacy leads to a factor of 20 difference in the maximum extra distance that could be flown to avoid a contrail. The impact of re-routing on other climatically-important aviation emissions could also be considered in this framework
Recommended from our members
The detailed dynamics of the June–August Hadley Cell
The seminal theory for the Hadley Cells has demonstrated that their existence is necessary for the reduction of tropical temperature gradients to a value such that the implied zonal winds are realisable. At the heart of the theory is the notion of angular momentum conservation in the upper branch of the Hadley Cells. Eddy mixing associated with extra‐tropical systems is invoked to give continuity at the edge of the Hadley Cell and to reduce the subtropical jet by a factor of 3 or more to those observed. In this paper a detailed view is presented of the dynamics of the June–August Hadley Cell, as given by ERA data for the period 1981–2010, with an emphasis on the dynamics of the upper branch. The steady and transient northward fluxes of angular momentum have a very similar structure, both having a maximum on the equator and a reversal in sign near 12°S, with the transient flux merging into that associated with eddies on the winter sub‐tropical jet. In the northward absolute vorticity flux, the Coriolis torque is balanced by both the steady and transient fluxes. The overturning circulations that average to give the Hadley Cell are confined to specific longitudinal regions, as are the steady and transient momentum fluxes. In these regions, both intra‐seasonal and synoptic variations are important. The dominant contributor to the Hadley Cell is from the Indian Ocean and W Pacific regions, and the maxima in OLR variability and meridional wind in these regions have a characteristic structure associated with the Westward‐moving Mixed Rossby‐Gravity wave. Much of the upper tropospheric motion into the winter hemisphere occurs in filaments of air from the summer equatorial region. These filaments can reach the winter sub‐tropical jet, leading to the strengthening of it and of the eddies on it, implying strong tropical‐extratropical interaction
Recommended from our members
Diagnosing topographic forcing in an atmospheric dataset: the case of the North American Cordillera
It is well known from modelling studies that surface topography influences the large-scale atmospheric circulation and that several model biases are associated with incorrect representation of topography. The textbook explanation of topographic effects on large-scale circulation appeals to the theoretical relationship between surface forcing and vortex stretching along trajectories in single-layer models. The goal of this study is to design and use a simple diagnostic of the large-scale forcing on the atmosphere when air is passing over topography, directly from atmospheric fields, based on this theoretical relationship. The study examines the interaction of the atmosphere with the North American Cordillera and samples the flow by means of trajectories during Northern Hemisphere winter. We detect a signal of topographic forcing in the atmospheric dataset, which, although much less distinct than in the theoretical relationship, nevertheless exhibits a number of expected properties. Namely, the signal increases with latitude, is usually stronger upslope than downslope, and is enhanced if the flow is more orthogonal to the mountain ridge, for example during periods of positive PNA. Furthermore, a connection is found between an enhanced signal of topographic forcing downslope of the North American Cordillera and periods of more frequent downstream European blocking
Recommended from our members
The zonal asymmetry of the Southern Hemisphere storm-track
Atmospheric general circulation model experiments have been performed to investigate how the significant zonal asymmetry in the Southern Hemisphere (SH) winter storm track is forced by sea surface temperature (SST) and orography. An experiment with zonally symmetric tropical SSTs expands the SH upper-tropospheric storm track poleward and eastward and destroys its spiral structure. Diagnosis suggests that these aspects of the observed storm track result from Rossby wave propagation from a wave source in the Indian Ocean region associated with the monsoon there. The lower-tropospheric storm track is not sensitive to this forcing. However, an experiment with zonally symmetric midlatitude SSTs exhibits a marked reduction in the magnitude of the maximum intensity of the lower-tropospheric storm track associated with reduced SST gradients in the western Indian Ocean. Experiments without the elevation of the South African Plateau or the Andes show reductions in the intensity of the major storm track downstream of them due to reduced cyclogenesis associated with the topography. These results suggest that the zonal asymmetry of the SH winter storm track is mainly established by stationary waves excited by zonal asymmetry in tropical SST in the upper troposphere and by local SST gradients in the lower troposphere, and that it is modified through cyclogenesis associated with the topography of South Africa and South America
Recommended from our members
Convectively coupled equatorial waves: Part I: Horizontal and vertical structure
- …