3,993 research outputs found

    Remarks on NonHamiltonian Statistical Mechanics: Lyapunov Exponents and Phase-Space Dimensionality Loss

    Full text link
    The dissipation associated with nonequilibrium flow processes is reflected by the formation of strange attractor distributions in phase space. The information dimension of these attractors is less than that of the equilibrium phase space, corresponding to the extreme rarity of nonequilibrium states. Here we take advantage of a simple model for heat conduction to demonstrate that the nonequilibrium dimensionality loss can definitely exceed the number of phase-space dimensions required to thermostat an otherwise Hamiltonian system.Comment: 5 pages, 2 figures, minor typos correcte

    Rumen digestive physiology and microbial ecology

    Get PDF

    Time-reversed symmetry and covariant Lyapunov vectors for simple particle models in and out of thermal equilibrium

    Full text link
    Recently, a new algorithm for the computation of covariant Lyapunov vectors and of corresponding local Lyapunov exponents has become available. Here we study the properties of these still unfamiliar quantities for a number of simple models, including an harmonic oscillator coupled to a thermal gradient with a two-stage thermostat, which leaves the system ergodic and fully time reversible. We explicitly demonstrate how time-reversal invariance affects the perturbation vectors in tangent space and the associated local Lyapunov exponents. We also find that the local covariant exponents vary discontinuously along directions transverse to the phase flow.Comment: 13 pages, 11 figures submitted to Physical Review E, 201

    INCORPORATION OF QUANTUM STATISTICAL FEATURES IN MOLECULAR DYNAMICS

    Full text link
    We formulate a method for incorporating quantum fluctuations into molecular- dynamics simulations of many-body systems, such as those employed for energetic nuclear collision processes. Based on Fermi's Golden Rule, we allow spontaneous transitions to occur between the wave packets which are not energy eigenstates. The ensuing diffusive evolution in the space of the wave packet parameters exhibits appealing physical properties, including relaxation towards quantum- statistical equilibrium.Comment: 8 latex pages + 1 uuencoded ps figur

    Lyapunov instability for a periodic Lorentz gas thermostated by deterministic scattering

    Full text link
    In recent work a deterministic and time-reversible boundary thermostat called thermostating by deterministic scattering has been introduced for the periodic Lorentz gas [Phys. Rev. Lett. {\bf 84}, 4268 (2000)]. Here we assess the nonlinear properties of this new dynamical system by numerically calculating its Lyapunov exponents. Based on a revised method for computing Lyapunov exponents, which employs periodic orthonormalization with a constraint, we present results for the Lyapunov exponents and related quantities in equilibrium and nonequilibrium. Finally, we check whether we obtain the same relations between quantities characterizing the microscopic chaotic dynamics and quantities characterizing macroscopic transport as obtained for conventional deterministic and time-reversible bulk thermostats.Comment: 18 pages (revtex), 7 figures (postscript

    Ion dynamics in a linear radio-frequency trap with a single cooling laser

    Full text link
    We analyse the possibility of cooling ions with a single laser beam, due to the coupling between the three components of their motion induced by the Coulomb interaction. For this purpose, we numerically study the dynamics of ion clouds of up to 140 particles, trapped in a linear quadrupole potential and cooled with a laser beam propagating in the radial plane. We use Molecular Dynamics simulations and model the laser cooling by a stochastic process. For each component of the motion, we systematically study the dependence of the temperature with the anisotropy of the trapping potential. Results obtained using the full radio-frequency (rf) potential are compared to those of the corresponding pseudo-potential. In the rf case, the rotation symmetry of the potential has to be broken to keep ions inside the trap. Then, as for the pseudo-potential case, we show that the efficiency of the Coulomb coupling to thermalize the components of motion depends on the geometrical configuration of the cloud. Coulomb coupling appears to be not efficient when the ions organise as a line or a pancake and the three components of motion reach the same temperature only if the cloud extends in three dimensions

    Macroscopic equations for the adiabatic piston

    Get PDF
    A simplified version of a classical problem in thermodynamics -- the adiabatic piston -- is discussed in the framework of kinetic theory. We consider the limit of gases whose relaxation time is extremely fast so that the gases contained on the left and right chambers of the piston are always in equilibrium (that is the molecules are uniformly distributed and their velocities obey the Maxwell-Boltzmann distribution) after any collision with the piston. Then by using kinetic theory we derive the collision statistics from which we obtain a set of ordinary differential equations for the evolution of the macroscopic observables (namely the piston average velocity and position, the velocity variance and the temperatures of the two compartments). The dynamics of these equations is compared with simulations of an ideal gas and a microscopic model of gas settled to verify the assumptions used in the derivation. We show that the equations predict an evolution for the macroscopic variables which catches the basic features of the problem. The results here presented recover those derived, using a different approach, by Gruber, Pache and Lesne in J. Stat. Phys. 108, 669 (2002) and 112, 1177 (2003).Comment: 13 pages, 7 figures (revTeX4) The paper has been completely rewritten with new derivation and results, supplementary information can be found at http://denali.phys.uniroma1.it/~cencini/Papers/cppv07_supplements.pd

    Lyapunov instability of fluids composed of rigid diatomic molecules

    Full text link
    We study the Lyapunov instability of a two-dimensional fluid composed of rigid diatomic molecules, with two interaction sites each, and interacting with a WCA site-site potential. We compute full spectra of Lyapunov exponents for such a molecular system. These exponents characterize the rate at which neighboring trajectories diverge or converge exponentially in phase space. Quam. These exponents characterize the rate at which neighboring trajectories diverge or converge exponentially in phase space. Qualitative different degrees of freedom -- such as rotation and translation -- affect the Lyapunov spectrum differently. We study this phenomenon by systematically varying the molecular shape and the density. We define and evaluate ``rotation numbers'' measuring the time averaged modulus of the angular velocities for vectors connecting perturbed satellite trajectories with an unperturbed reference trajectory in phase space. For reasons of comparison, various time correlation functions for translation and rotation are computed. The relative dynamics of perturbed trajectories is also studied in certain subspaces of the phase space associated with center-of-mass and orientational molecular motion.Comment: RevTeX 14 pages, 7 PostScript figures. Accepted for publication in Phys. Rev.
    corecore