The dissipation associated with nonequilibrium flow processes is reflected by
the formation of strange attractor distributions in phase space. The
information dimension of these attractors is less than that of the equilibrium
phase space, corresponding to the extreme rarity of nonequilibrium states. Here
we take advantage of a simple model for heat conduction to demonstrate that the
nonequilibrium dimensionality loss can definitely exceed the number of
phase-space dimensions required to thermostat an otherwise Hamiltonian system.Comment: 5 pages, 2 figures, minor typos correcte