112 research outputs found

    Cutoff for the Ising model on the lattice

    Full text link
    Introduced in 1963, Glauber dynamics is one of the most practiced and extensively studied methods for sampling the Ising model on lattices. It is well known that at high temperatures, the time it takes this chain to mix in L1L^1 on a system of size nn is O(logn)O(\log n). Whether in this regime there is cutoff, i.e. a sharp transition in the L1L^1-convergence to equilibrium, is a fundamental open problem: If so, as conjectured by Peres, it would imply that mixing occurs abruptly at (c+o(1))logn(c+o(1))\log n for some fixed c>0c>0, thus providing a rigorous stopping rule for this MCMC sampler. However, obtaining the precise asymptotics of the mixing and proving cutoff can be extremely challenging even for fairly simple Markov chains. Already for the one-dimensional Ising model, showing cutoff is a longstanding open problem. We settle the above by establishing cutoff and its location at the high temperature regime of the Ising model on the lattice with periodic boundary conditions. Our results hold for any dimension and at any temperature where there is strong spatial mixing: For Z2\Z^2 this carries all the way to the critical temperature. Specifically, for fixed d1d\geq 1, the continuous-time Glauber dynamics for the Ising model on (Z/nZ)d(\Z/n\Z)^d with periodic boundary conditions has cutoff at (d/2λ)logn(d/2\lambda_\infty)\log n, where λ\lambda_\infty is the spectral gap of the dynamics on the infinite-volume lattice. To our knowledge, this is the first time where cutoff is shown for a Markov chain where even understanding its stationary distribution is limited. The proof hinges on a new technique for translating L1L^1 to L2L^2 mixing which enables the application of log-Sobolev inequalities. The technique is general and carries to other monotone and anti-monotone spin-systems.Comment: 34 pages, 3 figure

    Mean-field analysis of the q-voter model on networks

    Get PDF
    We present a detailed investigation of the behavior of the nonlinear q-voter model for opinion dynamics. At the mean-field level we derive analytically, for any value of the number q of agents involved in the elementary update, the phase diagram, the exit probability and the consensus time at the transition point. The mean-field formalism is extended to the case that the interaction pattern is given by generic heterogeneous networks. We finally discuss the case of random regular networks and compare analytical results with simulations.Comment: 20 pages, 10 figure

    The spectral gap for some spin chains with discrete symmetry breaking

    Full text link
    We prove that for any finite set of generalized valence bond solid (GVBS) states of a quantum spin chain there exists a translation invariant finite-range Hamiltonian for which this set is the set of ground states. This result implies that there are GVBS models with arbitrary broken discrete symmetries that are described as combinations of lattice translations, lattice reflections, and local unitary or anti-unitary transformations. We also show that all GVBS models that satisfy some natural conditions have a spectral gap. The existence of a spectral gap is obtained by applying a simple and quite general strategy for proving lower bounds on the spectral gap of the generator of a classical or quantum spin dynamics. This general scheme is interesting in its own right and therefore, although the basic idea is not new, we present it in a system-independent setting. The results are illustrated with an number of examples.Comment: 48 pages, Plain TeX, BN26/Oct/9

    Coevolution of Glauber-like Ising dynamics on typical networks

    Full text link
    We consider coevolution of site status and link structures from two different initial networks: a one dimensional Ising chain and a scale free network. The dynamics is governed by a preassigned stability parameter SS, and a rewiring factor ϕ\phi, that determines whether the Ising spin at the chosen site flips or whether the node gets rewired to another node in the system. This dynamics has also been studied with Ising spins distributed randomly among nodes which lie on a network with preferential attachment. We have observed the steady state average stability and magnetisation for both kinds of systems to have an idea about the effect of initial network topology. Although the average stability shows almost similar behaviour, the magnetisation depends on the initial condition we start from. Apart from the local dynamics, the global effect on the dynamics has also been studied. These parameters show interesting variations for different values of SS and ϕ\phi, which helps in determining the steady-state condition for a given substrate.Comment: 8 pages, 10 figure

    Survival of contact processes on the hierarchical group

    Get PDF
    We consider contact processes on the hierarchical group, where sites infect other sites at a rate depending on their hierarchical distance, and sites become healthy with a constant recovery rate. If the infection rates decay too fast as a function of the hierarchical distance, then we show that the critical recovery rate is zero. On the other hand, we derive sufficient conditions on the speed of decay of the infection rates for the process to exhibit a nontrivial phase transition between extinction and survival. For our sufficient conditions, we use a coupling argument that compares contact processes on the hierarchical group with freedom two with contact processes on a renormalized lattice. An interesting novelty in this renormalization argument is the use of a result due to Rogers and Pitman on Markov functionals.Comment: Minor changes compared to previous version. Final version. 30 pages. 1 figur

    Hierarchy of Scales in Language Dynamics

    Get PDF
    Methods and insights from statistical physics are finding an increasing variety of applications where one seeks to understand the emergent properties of a complex interacting system. One such area concerns the dynamics of language at a variety of levels of description, from the behaviour of individual agents learning simple artificial languages from each other, up to changes in the structure of languages shared by large groups of speakers over historical timescales. In this Colloquium, we survey a hierarchy of scales at which language and linguistic behaviour can be described, along with the main progress in understanding that has been made at each of them − much of which has come from the statistical physics community. We argue that future developments may arise by linking the different levels of the hierarchy together in a more coherent fashion, in particular where this allows more effective use of rich empirical data sets

    The role of sulfoglucuronosyl glycosphingolipids in the pathogenesis of monoclonal IgM paraproteinemia and peripheral neuropathy

    Get PDF
    In IgM paraproteinemia and peripheral neuropathy, IgM M-protein secretion by B cells leads to a T helper cell response, suggesting that it is antibody-mediated autoimmune disease involving carbohydrate epitopes in myelin sheaths. An immune response against sulfoglucuronosyl glycosphingolipids (SGGLs) is presumed to participate in demyelination or axonal degeneration in the peripheral nervous system (PNS). SGGLs contain a 3-sulfoglucuronic acid residue that interacts with anti-myelin-associated glycoprotein (MAG) and the monoclonal antibody anti-HNK-1. Immunization of animals with sulfoglucuronosyl paragloboside (SGPG) induced anti-SGPG antibodies and sensory neuropathy, which closely resembles the human disease. These animal models might help to understand the disease mechanism and lead to more specific therapeutic strategies. In an in vitro study, destruction or malfunction of the blood-nerve barrier (BNB) was found, resulting in the leakage of circulating antibodies into the PNS parenchyma, which may be considered as the initial key step for development of disease

    Open data from the third observing run of LIGO, Virgo, KAGRA, and GEO

    Get PDF
    The global network of gravitational-wave observatories now includes five detectors, namely LIGO Hanford, LIGO Livingston, Virgo, KAGRA, and GEO 600. These detectors collected data during their third observing run, O3, composed of three phases: O3a starting in 2019 April and lasting six months, O3b starting in 2019 November and lasting five months, and O3GK starting in 2020 April and lasting two weeks. In this paper we describe these data and various other science products that can be freely accessed through the Gravitational Wave Open Science Center at https://gwosc.org. The main data set, consisting of the gravitational-wave strain time series that contains the astrophysical signals, is released together with supporting data useful for their analysis and documentation, tutorials, as well as analysis software packages
    corecore