711 research outputs found
User developed applications and information systems success: A test of DeLone and McLean's model
DeLone and McLean’s (1992) model of information systems success has received much attention amongst researchers. This study provides the first empirical test of an adaptation of DeLone and McLean’s model in the user-developed application domain. The model tested was only partially supported by the data. Of the nine hypothesized relationships tested, four were found to be significant and the remainder not significant. The model provided strong support for the relationships between perceived system quality and user satisfaction, perceived information quality and user satisfaction, user satisfaction and intended use, and user satisfaction and perceived individual impact. This study indicates that user perceptions of information systems success play a significant role in the user-developed application domain. There was, however, no relationship between user developers’ perceptions of system quality and independent experts’ evaluations, and user ratings of individual impact were not associated with organizational impact measured as company performance in a business simulation. Further research is required to understand the relationship between user perceptions of IS success and objective measures of success, and to provide a model of IS success appropriate to end user development
Moving beyond least developed country status: Challenges to diversifying Bangladesh’s seafood exports
Bangladesh is due to graduate from Least Developed Country status, resulting in the loss of preferential market access for textiles and ready-made-garments in key import markets. The paper examines the opportunities and constraints for developing a stronger export market orientation in the Bangladesh fish and seafood sector. We discuss the role of public and private standards in food safety and quality, as well as empirical evidence for their effect on fish and seafood value chains. We assess the factors limiting diversification into fish and seafood exports and constraints to value chain enhancement. The experience of export-oriented shrimp value chains provides lessons for the aquaculture sector. High costs of compliance with public and private standards and inability to meet traceability requirements for food safety and quality present a significant challenge. In diversifying beyond domestic markets for fish and seafood, the policy challenge lies in striking an appropriate balance between intervention and guidance
Formation of the Stomatal Outer Cuticular Ledge Requires a Guard Cell Wall Proline-Rich Protein
Stomata are formed by a pair of guard cells which have thickened, elastic cell walls to withstand the large increases in turgor pressure that have to be generated to open the pore that they surround. We have characterised FOCL1, a guard cell-expressed, secreted protein with homology to hydroxyproline-rich cell wall proteins. FOCL1-GFP localises to the guard cell outer cuticular ledge and plants lacking FOCL1 produce stomata without a cuticular ledge. Instead the majority of stomatal pores are entirely covered-over by a continuous fusion of the cuticle, and consequently plants have decreased levels of transpiration and display drought tolerance. The focl1 guard cells are larger and less able to reduce the aperture of their stomatal pore in response to closure signals suggesting that the flexibility of guard cell walls is impaired. FOCL1 is also expressed in lateral root initials where it aids lateral root emergence. We propose that FOCL1 acts in these highly specialised cells of the stomata and root to impart cell wall strength at high turgor and/or to facilitate interactions between the cell wall and the cuticle
Are the magnetic fields of millisecond pulsars ~ 10^8 G?
It is generally assumed that the magnetic fields of millisecond pulsars
(MSPs) are G. We argue that this may not be true and the fields
may be appreciably greater. We present six evidences for this: (1) The G field estimate is based on magnetic dipole emission losses which is
shown to be questionable; (2) The MSPs in low mass X-ray binaries (LMXBs) are
claimed to have G on the basis of a Rayleygh-Taylor instability
accretion argument. We show that the accretion argument is questionable and the
upper limit G may be much higher; (3) Low magnetic field neutron
stars have difficulty being produced in LMXBs; (4) MSPs may still be accreting
indicating a much higher magnetic field; (5) The data that predict G for MSPs also predict ages on the order of, and greater than, ten
billion years, which is much greater than normal pulsars. If the predicted ages
are wrong, most likely the predicted G fields of MSPs are wrong;
(6) When magnetic fields are measured directly with cyclotron lines in X-ray
binaries, fields G are indicated. Other scenarios should be
investigated. One such scenario is the following. Over 85% of MSPs are
confirmed members of a binary. It is possible that all MSPs are in large
separation binaries having magnetic fields G with their magnetic
dipole emission being balanced by low level accretion from their companions.Comment: 16 pages, accept for publication in Astrophysics and Space Scienc
Region of Excessive Flux of PeV Cosmic Rays in the Direction Toward Pulsars PSR J1840+5640 and LAT PSR J1836+5925
An analysis of arrival directions of extensive air showers (EAS) registered
with the EAS MSU and EAS-1000 prototype arrays has revealed a region of
excessive flux of PeV cosmic rays in the direction toward pulsars PSR
J1840+5640 and LAT PSR J1836+5925 at significance level up to 4.5sigma. The
first of the pulsars was discovered almost 30 years ago and is a well-studied
old radio pulsar located at the distance of 1.7pc from the Solar system. The
second pulsar belongs to a new type of pulsars, discovered by the space
gamma-ray observatory Fermi, pulsations of which are not observed in optical
and radio wavelengths but only in the gamma-ray range of energies
(gamma-ray-only pulsars). In our opinion, the existence of the region of
excessive flux of cosmic rays registered with two different arrays provides a
strong evidence that isolated pulsars can give a noticeable contribution to the
flux of Galactic cosmic rays in the PeV energy range.Comment: 14 pages; v.2: a few remarks to match a version accepted for
Astronomy Letters added. They can be found by redefining the \NEW command in
the preamble of the LaTeX fil
The scientific potential of space-based gravitational wave detectors
The millihertz gravitational wave band can only be accessed with a
space-based interferometer, but it is one of the richest in potential sources.
Observations in this band have amazing scientific potential. The mergers
between massive black holes with mass in the range 10 thousand to 10 million
solar masses, which are expected to occur following the mergers of their host
galaxies, produce strong millihertz gravitational radiation. Observations of
these systems will trace the hierarchical assembly of structure in the Universe
in a mass range that is very difficult to probe electromagnetically. Stellar
mass compact objects falling into such black holes in the centres of galaxies
generate detectable gravitational radiation for several years prior to the
final plunge and merger with the central black hole. Measurements of these
systems offer an unprecedented opportunity to probe the predictions of general
relativity in the strong-field and dynamical regime. Millihertz gravitational
waves are also generated by millions of ultra-compact binaries in the Milky
Way, providing a new way to probe galactic stellar populations. ESA has
recognised this great scientific potential by selecting The Gravitational
Universe as its theme for the L3 large satellite mission, scheduled for launch
in ~2034. In this article we will review the likely sources for millihertz
gravitational wave detectors and describe the wide applications that
observations of these sources could have for astrophysics, cosmology and
fundamental physics.Comment: 18 pages, 2 figures, contribution to Gravitational Wave Astrophysics,
the proceedings of the 2014 Sant Cugat Forum on Astrophysics; v2 includes one
additional referenc
Nucleosynthesis Constraints on a Massive Gravitino in Neutralino Dark Matter Scenarios
The decays of massive gravitinos into neutralino dark matter particles and
Standard Model secondaries during or after Big-Bang nucleosynthesis (BBN) may
alter the primordial light-element abundances. We present here details of a new
suite of codes for evaluating such effects, including a new treatment based on
PYTHIA of the evolution of showers induced by hadronic decays of massive,
unstable particles such as a gravitino. We also develop an analytical treatment
of non-thermal hadron propagation in the early universe, and use this to derive
analytical estimates for light-element production and in turn on decaying
particle lifetimes and abundances. We then consider specifically the case of an
unstable massive gravitino within the constrained minimal supersymmetric
extension of the Standard Model (CMSSM). We present upper limits on its
possible primordial abundance before decay for different possible gravitino
masses, with CMSSM parameters along strips where the lightest neutralino
provides all the astrophysical cold dark matter density. We do not find any
CMSSM solution to the cosmological Li7 problem for small m_{3/2}. Discounting
this, for m_{1/2} ~ 500 GeV and tan beta = 10 the other light-element
abundances impose an upper limit m_{3/2} n_{3/2}/n_\gamma < 3 \times 10^{-12}
GeV to < 2 \times 10^{-13} GeV for m_{3/2} = 250 GeV to 1 TeV, which is similar
in both the coannihilation and focus-point strips and somewhat weaker for tan
beta = 50, particularly for larger m_{1/2}. The constraints also weaken in
general for larger m_{3/2}, and for m_{3/2} > 3 TeV we find a narrow range of
m_{3/2} n_{3/2}/n_\gamma, at values which increase with m_{3/2}, where the Li7
abundance is marginally compatible with the other light-element abundances.Comment: 74 pages, 40 Figure
Magnetic Field Generation in Stars
Enormous progress has been made on observing stellar magnetism in stars from
the main sequence through to compact objects. Recent data have thrown into
sharper relief the vexed question of the origin of stellar magnetic fields,
which remains one of the main unanswered questions in astrophysics. In this
chapter we review recent work in this area of research. In particular, we look
at the fossil field hypothesis which links magnetism in compact stars to
magnetism in main sequence and pre-main sequence stars and we consider why its
feasibility has now been questioned particularly in the context of highly
magnetic white dwarfs. We also review the fossil versus dynamo debate in the
context of neutron stars and the roles played by key physical processes such as
buoyancy, helicity, and superfluid turbulence,in the generation and stability
of neutron star fields.
Independent information on the internal magnetic field of neutron stars will
come from future gravitational wave detections. Thus we maybe at the dawn of a
new era of exciting discoveries in compact star magnetism driven by the opening
of a new, non-electromagnetic observational window.
We also review recent advances in the theory and computation of
magnetohydrodynamic turbulence as it applies to stellar magnetism and dynamo
theory. These advances offer insight into the action of stellar dynamos as well
as processes whichcontrol the diffusive magnetic flux transport in stars.Comment: 41 pages, 7 figures. Invited review chapter on on magnetic field
generation in stars to appear in Space Science Reviews, Springe
Dilepton mass spectra in p+p collisions at sqrt(s)= 200 GeV and the contribution from open charm
The PHENIX experiement has measured the electron-positron pair mass spectrum
from 0 to 8 GeV/c^2 in p+p collisions at sqrt(s)=200 GeV. The contributions
from light meson decays to e^+e^- pairs have been determined based on
measurements of hadron production cross sections by PHENIX. They account for
nearly all e^+e^- pairs in the mass region below 1 GeV/c^2. The e^+e^- pair
yield remaining after subtracting these contributions is dominated by
semileptonic decays of charmed hadrons correlated through flavor conservation.
Using the spectral shape predicted by PYTHIA, we estimate the charm production
cross section to be 544 +/- 39(stat) +/- 142(syst) +/- 200(model) \mu b, which
is consistent with QCD calculations and measurements of single leptons by
PHENIX.Comment: 375 authors from 57 institutions, 18 pages, 4 figures, 2 tables.
Submitted to Physics Letters B. v2 fixes technical errors in matching authors
to institutions. Plain text data tables for the points plotted in figures for
this and previous PHENIX publications are (or will be) publicly available at
http://www.phenix.bnl.gov/papers.htm
Inclusive cross section and double helicity asymmetry for \pi^0 production in p+p collisions at sqrt(s)=200 GeV: Implications for the polarized gluon distribution in the proton
The PHENIX experiment presents results from the RHIC 2005 run with polarized
proton collisions at sqrt(s)=200 GeV, for inclusive \pi^0 production at
mid-rapidity. Unpolarized cross section results are given for transverse
momenta p_T=0.5 to 20 GeV/c, extending the range of published data to both
lower and higher p_T. The cross section is described well for p_T < 1 GeV/c by
an exponential in p_T, and, for p_T > 2 GeV/c, by perturbative QCD. Double
helicity asymmetries A_LL are presented based on a factor of five improvement
in uncertainties as compared to previously published results, due to both an
improved beam polarization of 50%, and to higher integrated luminosity. These
measurements are sensitive to the gluon polarization in the proton, and exclude
maximal values for the gluon polarization.Comment: 375 authors, 7 pages, 3 figures. Submitted to Phys. Rev. D, Rapid
Communications. Plain text data tables for the points plotted in figures for
this and previous PHENIX publications are (or will be) publicly available at
http://www.phenix.bnl.gov/papers.htm
- …