776 research outputs found

    Stability and collapse of a coupled Bose-Einstein condensate

    Full text link
    The dynamics of a coupled Bose-Einstein condensate involving trapped atoms in two quantum states is studied using the time-dependent Gross-Pitaevskii equation including an interaction which can transform atoms from one state to the other. We find interesting oscillation of the number of atoms in each of the states. For all repulsive interactions, stable condensates are formed. When some of the atomic interactions are attractive, the possibility of collapse is studied by including an absorptive contact interaction and a quartic three-body recombination term. One or both components of the condensate may undergo collapse when one or more of the nonlinear terms are attractive in nature.Comment: 14 Latex pages, 6 postscript figure

    Two Epochs of Very Large Array Observations of Water Maser Emission in the active galaxy NGC 6240

    Full text link
    Studies of 22GHz H2O maser emission from the merging galaxy NGC 6240 with double nuclei are presented. Two epochs of Very Large Array (VLA) observations in the A-configuration in spectral-line mode were carried out at 0.1 arcsec resolution by covering the redshifted velocity range of ~ 300 km/s with respect to the systemic velocity of the galaxy. The purpose of these new observations is twofold: to detect an H2O maser that an earlier VLA observation pinpointed in the southern nucleus in the northern nucleus as well to clarify the kinematics of the double nuclei, and to understand the origin of the maser in the galaxy. In the second epoch, one velocity feature peaking at Vlsr=7491.1 km/s, redshifted by ~200 km/s relative to the systemic velocity, was detected only toward the southern nucleus. The detection of an H2O maser feature at or near this velocity had never been reported in earlier observations. However, including the known velocity features at redshifted velocities, no other velocity features were observed toward either nuclei throughout these epochs. The maser remains unresolved at an angular resolution of ~ 0".1, corresponding to a linear size of less than about 45 pc. The two epochs of VLA observations show that the maser intensity is variable on timescales of at least three months, while the correlation between the maser intensity and the radio continuum intensity is not certain from our data. It is plausible that the maser in NGC 6240 is associated with the activity of an active galactic nucleus in the southern nucleus. Alternatively, the maser can be explained by starforming activity at the site of massive starformation in the galaxy.Comment: 6 Pages, 3 Figures, published in AJ, the journal reference adde

    Morphology and kinematics of the ionised gas in early-type galaxies

    Full text link
    We present results of our ongoing study of the morphology and kinematics of the ionised gas in 48 representative nearby elliptical and lenticular galaxies using the SAURON integral-field spectrograph on the 4.2m William Herschel Telescope. Making use of a recently developed technique, emission is detected in 75% of the galaxies. The ionised-gas distributions display varied morphologies, ranging from regular gas disks to filamentary structures. Additionally, the emission-line kinematic maps show, in general, regular motions with smooth variations in kinematic position angle. In most of the galaxies, the ionised-gas kinematics is decoupled from the stellar counterpart, but only some of them present signatures of recent accretion of gaseous material. The presence of dust is very common in our sample and is usually accompanied by gas emission. Our analysis of the [OIII]/Hbeta emission-line ratios, both across the whole sample as well as within the individual galaxies, suggests that there is no unique mechanism triggering the ionisation of the gas.Comment: 8 pages, 2 figures, submitted to "Adaptive Optics-Assisted Integral-Field Spectroscopy", Rutten R.G.M., Benn C.R., Mendez J., eds., May 2005, La Palma (Spain), New Astr. Rev. For full resolution PS, see http://www.strw.leidenuniv.nl/~jfalcon/JFB_AOmeeting_color_hires.ps.g

    Minimal Length Uncertainty Relation and the Hydrogen Spectrum

    Get PDF
    Modifications of Heisenberg's uncertainty relations have been proposed in the literature which imply a minimum position uncertainty. We study the low energy effects of the new physics responsible for this by examining the consequent change in the quantum mechanical commutation relations involving position and momenta. In particular, the modifications to the spectrum of the hydrogen atom can be naturally interpreted as a varying (with energy) fine structure constant. From the data on the energy levels we attempt to constrain the scale of the new physics and find that it must be close to or larger than the weak scale. Experiments in the near future are expected to change this bound by at least an additional order of magnitude.Comment: 8 pages, no figure. Corrected typos, added a reference with comment

    Quantum tunneling across spin domains in a Bose-Einstein condensate

    Full text link
    Quantum tunneling was observed in the decay of metastable spin domains in gaseous Bose-Einstein condensates. A mean-field description of the tunneling was developed and compared with measurement. The tunneling rates are a sensitive probe of the boundary between spin domains, and indicate a spin structure in the boundary between spin domains which is prohibited in the bulk fluid. These experiments were performed with optically trapped F=1 spinor Bose-Einstein condensates of sodium.Comment: 5 pages, 4 figure

    Coupled Bose-Einstein condensate: Collapse for attractive interaction

    Full text link
    We study the collapse in a coupled Bose-Einstein condensate of two types of bosons 1 and 2 under the action of a trap using the time-dependent Gross-Pitaevskii equation. The system may undergo collapse when one, two or three of the scattering lengths aija_{ij} for scattering of boson ii with jj, i,j=1,2i,j = 1, 2 , are negative representing an attractive interaction. Depending on the parameters of the problem a single or both components of the condensate may experience collapse.Comment: 5 pages and 9 figures, small changes mad

    Observation of metastable states in spinor Bose-Einstein condensates

    Full text link
    Bose-Einstein condensates have been prepared in long-lived metastable excited states. Two complementary types of metastable states were observed. The first is due to the immiscibility of multiple components in the condensate, and the second to local suppression of spin-relaxation collisions. Relaxation via re-condensation of non-condensed atoms, spin relaxation, and quantum tunneling was observed. These experiments were done with F=1 spinor Bose-Einstein condensates of sodium confined in an optical dipole trap.Comment: 3 figures included in paper, fourth figure separat

    Collective dynamics of internal states in a Bose gas

    Get PDF
    Theory for the Rabi and internal Josephson effects in an interacting Bose gas in the cold collision regime is presented. By using microscopic transport equation for the density matrix the problem is mapped onto a problem of precession of two coupled classical spins. In the absence of an external excitation field our results agree with the theory for the density induced frequency shifts in atomic clocks. In the presence of the external field, the internal Josephson effect takes place in a condensed Bose gas as well as in a non-condensed gas. The crossover from Rabi oscillations to the Josephson oscillations as a function of interaction strength is studied in detail.Comment: 18 pages, 2 figure

    Numerical study of the coupled time-dependent Gross-Pitaevskii equation: Application to Bose-Einstein condensation

    Full text link
    We present a numerical study of the coupled time-dependent Gross-Pitaevskii equation, which describes the Bose-Einstein condensate of several types of trapped bosons at ultralow temperature with both attractive and repulsive interatomic interactions. The same approach is used to study both stationary and time-evolution problems. We consider up to four types of atoms in the study of stationary problems. We consider the time-evolution problems where the frequencies of the traps or the atomic scattering lengths are suddenly changed in a stable preformed condensate. We also study the effect of periodically varying these frequencies or scattering lengths on a preformed condensate. These changes introduce oscillations in the condensate which are studied in detail. Good convergence is obtained in all cases studied.Comment: 9 pages, 10 figures, accepted in Physical Review
    • …
    corecore