1,273 research outputs found

    Effects of Preterm Birth on Cortical Thickness Measured in Adolescence

    Get PDF
    Despite the extensive research into brain development after preterm birth, few studies have investigated its long-term effects on cortical thickness. The Stockholm Neonatal Project included infants between 1988 and 1993 with birth weight (BW) ≤1500 g. Using a previously published method, cortical thickness was estimated on T1-weighted 3D anatomical images acquired from 74 ex-preterm and 69 term-born adolescents (mean age 14.92 years). The cortex was significantly thinner in ex-preterm individuals in focal regions of the temporal and parietal cortices as indicated by voxel-wise t-tests. In addition, large regions around the central sulcus and temporal lobe as well as parts of the frontal and occipital lobes tended also to be thinner in the ex-preterm group. Although these results were not significant on voxel-wise tests, the spatially coherent arrangement of the thinning in ex-preterm individuals made it notable. When the group of ex-preterm individuals was divided by gestational age or BW, the thinning tended to be more pronounced in the anterior and posterior poles in those born nearer term or with a BW closer to 1500 g. These results support the notion that preterm birth is a risk factor for long-term development of cortical thickness

    A Co-Opted DEAD-Box RNA Helicase Enhances Tombusvirus Plus-Strand Synthesis

    Get PDF
    Replication of plus-strand RNA viruses depends on recruited host factors that aid several critical steps during replication. In this paper, we show that an essential translation factor, Ded1p DEAD-box RNA helicase of yeast, directly affects replication of Tomato bushy stunt virus (TBSV). To separate the role of Ded1p in viral protein translation from its putative replication function, we utilized a cell-free TBSV replication assay and recombinant Ded1p. The in vitro data show that Ded1p plays a role in enhancing plus-strand synthesis by the viral replicase. We also find that Ded1p is a component of the tombusvirus replicase complex and Ded1p binds to the 3′-end of the viral minus-stranded RNA. The data obtained with wt and ATPase deficient Ded1p mutants support the model that Ded1p unwinds local structures at the 3′-end of the TBSV (−)RNA, rendering the RNA compatible for initiation of (+)-strand synthesis. Interestingly, we find that Ded1p and glyceraldehyde-3-phosphate dehydrogenase (GAPDH), which is another host factor for TBSV, play non-overlapping functions to enhance (+)-strand synthesis. Altogether, the two host factors enhance TBSV replication synergistically by interacting with the viral (−)RNA and the replication proteins. In addition, we have developed an in vitro assay for Flock house virus (FHV), a small RNA virus of insects, that also demonstrated positive effect on FHV replicase activity by the added Ded1p helicase. Thus, two small RNA viruses, which do not code for their own helicases, seems to recruit a host RNA helicase to aid their replication in infected cells

    The TPR Domain in the Host Cyp40-like Cyclophilin Binds to the Viral Replication Protein and Inhibits the Assembly of the Tombusviral Replicase

    Get PDF
    Replication of plus-stranded RNA viruses is greatly affected by numerous host-coded proteins acting either as susceptibility or resistance factors. Previous genome-wide screens and global proteomics approaches with Tomato bushy stunt tombusvirus (TBSV) in a yeast model host revealed the involvement of cyclophilins, which are a large family of host prolyl isomerases, in TBSV replication. In this paper, we identified those members of the large cyclophilin family that interacted with the viral replication proteins and inhibited TBSV replication. Further characterization of the most effective cyclophilin, the Cyp40-like Cpr7p, revealed that it strongly inhibits many steps during TBSV replication in a cell-free replication assay. These steps include viral RNA recruitment inhibited via binding of Cpr7p to the RNA-binding region of the viral replication protein; the assembly of the viral replicase complex and viral RNA synthesis. Since the TPR (tetratricopeptide repeats) domain, but not the catalytic domain of Cpr7p is needed for the inhibitory effect on TBSV replication, it seems that the chaperone activity of Cpr7p provides the negative regulatory function. We also show that three Cyp40-like proteins from plants can inhibit TBSV replication in vitro and Cpr7p is also effective against Nodamura virus, an insect pathogen. Overall, the current work revealed a role for Cyp40-like proteins and their TPR domains as regulators of RNA virus replication

    Arterio-venous gradients of IL-6, plasma and serum VEGF and D-dimers in human cancer

    Get PDF
    The circulating angiogenic factors vascular endothelial growth factor-A, interleukin-6 and the fibrin D-dimer fragment were measured in the mesenteric vein, the uterine vein, as well as in peripheral venous and arterial samples in 21 randomly selected patients with operable colorectal, ovarian and cervical carcinoma. In addition, immunohistochemistry for vascular endothelial growth factor-A and interleukin-6 was performed on colorectal tumours of such patients. Serum and plasma vascular endothelial growth factor-A were not significantly elevated in the vein draining the tumours, despite tumour cell expression of vascular endothelial growth factor-A. Serum vascular endothelial growth factor-A is therefore not all tumour-derived. In contrast, serum interleukin-6 was highly elevated in the draining veins in agreement with expression of interleukin-6 in the cytoplasm of tumour cells. In the megakaryoblastic cell line MEG-01, the expression of vascular endothelial growth factor-A was found to be regulated by interleukin-6. Thus, the higher platelet vascular endothelial growth factor-A load resulting in higher serum vascular endothelial growth factor levels in cancer patients may partly result from an interleukin-6 mediated up-regulation of the expression of vascular endothelial growth factor-A in the precursor of the platelet, i.e. the megakaryocyte. We also confirmed by immunohistochemistry that platelets adhere and aggregate on tumour endothelium. We propose that interleukin-6 indirectly promotes tumour angiogenesis through its up-regulation of the vascular endothelial growth factor-A load in platelets. In addition, the correlations found between peripheral venous interleukin-6 and peripheral venous fibrinogen and D-dimers levels, and the high D-dimer levels found in the draining vein of the tumour, in agreement with fibrin deposits found in the tumour stroma, suggest an important role for interleukin-6 in extra-vascular fibrinogen metabolism. Our results suggest a pivotal role for interleukin-6 in the intrinsic link between haemostasis and angiogenesis. This might be of importance in the development of anti-angiogenic agents based on interference with haemostasis

    Model for in vivo progression of tumors based on co-evolving cell population and vasculature

    Get PDF
    With countless biological details emerging from cancer experiments, there is a growing need for minimal mathematical models which simultaneously advance our understanding of single tumors and metastasis, provide patient-personalized predictions, whilst avoiding excessive hard-to-measure input parameters which complicate simulation, analysis and interpretation. Here we present a model built around a co-evolving resource network and cell population, yielding good agreement with primary tumors in a murine mammary cell line EMT6-HER2 model in BALB/c mice and with clinical metastasis data. Seeding data about the tumor and its vasculature from in vivo images, our model predicts corridors of future tumor growth behavior and intervention response. A scaling relation enables the estimation of a tumor's most likely evolution and pinpoints specific target sites to control growth. Our findings suggest that the clinically separate phenomena of individual tumor growth and metastasis can be viewed as mathematical copies of each other differentiated only by network structure

    Validation and Use of 22Na Turnover to Measure Food Intake in Free-Ranging Lizards

    Get PDF
    As the food intake of free-ranging animals has proved to be difficult to measure by traditional means, the feasibility of using radioactive Na to measure food consumption in a small scincid lizard (Lampropholis guichenoti) was assessed. This technique has previously been used only for several species of mammal. A significant relationship between food intake and Na turnover was found in the laboratory, with Na turnover underestimating intake by 7.6%. The food intake of free-ranging members of a field population was estimated by 22Na turnover to be 9.55, 0.65, 9.39 and 13.75 mg dry weight (day)-1 during autumn, winter, spring and summer respectively. Estimates of assimilated and expended energy from these food intake values agree closely with data reported for other lizards using alternative techniques. This study also describes the technical innovations which were necessary to study lizards weighing less than 1 g; and it suggests that 22Na can provide an easy, reliable and inexpensive means of studying the energetics of many free-living animals

    A Unique Role for the Host ESCRT Proteins in Replication of Tomato bushy stunt virus

    Get PDF
    Plus-stranded RNA viruses replicate in infected cells by assembling viral replicase complexes consisting of viral- and host-coded proteins. Previous genome-wide screens with Tomato bushy stunt tombusvirus (TBSV) in a yeast model host revealed the involvement of seven ESCRT (endosomal sorting complexes required for transport) proteins in viral replication. In this paper, we show that the expression of dominant negative Vps23p, Vps24p, Snf7p, and Vps4p ESCRT factors inhibited virus replication in the plant host, suggesting that tombusviruses co-opt selected ESCRT proteins for the assembly of the viral replicase complex. We also show that TBSV p33 replication protein interacts with Vps23p ESCRT-I and Bro1p accessory ESCRT factors. The interaction with p33 leads to the recruitment of Vps23p to the peroxisomes, the sites of TBSV replication. The viral replicase showed reduced activity and the minus-stranded viral RNA in the replicase became more accessible to ribonuclease when derived from vps23Δ or vps24Δ yeast, suggesting that the protection of the viral RNA is compromised within the replicase complex assembled in the absence of ESCRT proteins. The recruitment of ESCRT proteins is needed for the precise assembly of the replicase complex, which might help the virus evade recognition by the host defense surveillance system and/or prevent viral RNA destruction by the gene silencing machinery

    The influence of long chain polyunsaturate supplementation on docosahexaenoic acid and arachidonic acid in baboon neonate central nervous system

    Get PDF
    BACKGROUND: Docosahexaenoic acid (DHA) and arachidonic acid (ARA) are major components of the cerebral cortex and visual system, where they play a critical role in neural development. We quantitatively mapped fatty acids in 26 regions of the four-week-old breastfed baboon CNS, and studied the influence of dietary DHA and ARA supplementation and prematurity on CNS DHA and ARA concentrations. METHODS: Baboons were randomized into a breastfed (B) and four formula-fed groups: term, no DHA/ARA (T-); term, DHA/ARA supplemented (T+); preterm, no DHA/ARA (P-); preterm and DHA/ARA supplemented (P+). At four weeks adjusted age, brains were dissected and total fatty acids analyzed by gas chromatography and mass spectrometry. RESULTS: DHA and ARA are rich in many more structures than previously reported. They are most concentrated in structures local to the brain stem and diencephalon, particularly the basal ganglia, limbic regions, thalamus and midbrain, and comparatively lower in white matter. Dietary supplementation increased DHA in all structures but had little influence on ARA concentrations. Supplementation restored DHA concentrations to levels of breastfed neonates in all regions except the cerebral cortex and cerebellum. Prematurity per se did not exert a strong influence on DHA or ARA concentrations. CONCLUSION: 1) DHA and ARA are found in high concentration throughout the primate CNS, particularly in gray matter such as basal ganglia; 2) DHA concentrations drop across most CNS structures in neonates consuming formulas with no DHA, but ARA levels are relatively immune to ARA in the diet; 3) supplementation of infant formula is effective at restoring DHA concentration in structures other than the cerebral cortex. These results will be useful as a guide to future investigations of CNS function in the absence of dietary DHA and ARA
    corecore