49 research outputs found

    Genetic and Physical Interactions between Tel2 and the Med15 Mediator Subunit in Saccharomyces cerevisiae

    Get PDF
    International audienceBACKGROUND: In budding yeast, the highly conserved Tel2 protein is part of several complexes and its main function is now believed to be in the biogenesis of phosphatidyl inositol 3-kinase related kinases. PRINCIPAL FINDINGS: To uncover potentially novel functions of Tel2, we set out to isolate temperature-sensitive (ts) mutant alleles of TEL2 in order to perform genetic screenings. MED15/GAL11, a subunit of Mediator, a general regulator of transcription, was isolated as a suppressor of these mutants. The isolated tel2 mutants exhibited a short telomere phenotype that was partially rescued by MED15/GAL11 overexpression. The tel2-15 mutant was markedly deficient in the transcription of EST2, coding for the catalytic subunit of telomerase, potentially explaining the short telomere phenotype of this mutant. In parallel, a two-hybrid screen identified an association between Tel2 and Rvb2, a highly conserved member of the AAA+ family of ATPases further found by in vivo co-immunoprecipitation to be tight and constitutive. Transiently overproduced Tel2 and Med15/Gal11 associated together, suggesting a potential role for Tel2 in transcription. Other Mediator subunits, as well as SUA7/TFIIB, also rescued the tel2-ts mutants. SIGNIFICANCE: Altogether, the present data suggest the existence of a novel role for Tel2, namely in transcription, possibly in cooperation with Rvb2 and involving the existence of physical interactions with the Med15/Gal11 Mediator subunit

    Reliability of an injury scoring system for horses

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The risk of injuries is of major concern when keeping horses in groups and there is a need for a system to record external injuries in a standardised and simple way. The objective of this study, therefore, was to develop and validate a system for injury recording in horses and to test its reliability and feasibility under field conditions.</p> <p>Methods</p> <p>Injuries were classified into five categories according to severity. The scoring system was tested for intra- and inter-observer agreement as well as agreement with a 'golden standard' (diagnosis established by a veterinarian). The scoring was done by 43 agricultural students who classified 40 photographs presented to them twice in a random order, 10 days apart. Attribute agreement analysis was performed using Kendall's coefficient of concordance (Kendall's <it>W</it>), Kendall's correlation coefficient (Kendall's τ) and Fleiss' kappa. The system was also tested on a sample of 100 horses kept in groups where injury location was recorded as well.</p> <p>Results</p> <p>Intra-observer agreement showed Kendall's <it>W </it>ranging from 0.94 to 0.99 and 86% of observers had kappa values above 0.66 (substantial agreement). Inter-observer agreement had an overall Kendall's <it>W </it>of 0.91 and the mean kappa value was 0.59 (moderate). Agreement for all observers versus the 'golden standard' had Kendall's τ of 0.88 and the mean kappa value was 0.66 (substantial). The system was easy to use for trained persons under field conditions. Injuries of the more serious categories were not found in the field trial.</p> <p>Conclusion</p> <p>The proposed injury scoring system is easy to learn and use also for people without a veterinary education, it shows high reliability, and it is clinically useful. The injury scoring system could be a valuable tool in future clinical and epidemiological studies.</p

    Mnesic imbalance: a cognitive theory about autism spectrum disorders

    Get PDF
    Autism is characterized by impairments in social interaction, communicative capacity and behavioral flexibility. Some cognitive theories can be useful for finding a relationship between these irregularities and the biological mechanisms that may give rise to this disorder. Among such theories are mentalizing deficit, weak central coherence and executive dysfunction, but none of them has been able to explain all three diagnostic symptoms of autism. These cognitive disorders may be related among themselves by faulty learning, since several research studies have shown that the brains of autistic individuals have abnormalities in the cerebellum, which plays a role in procedural learning. In keeping with this view, one may postulate the possibility that declarative memory replaces faulty procedural memory in some of its functions, which implies making conscious efforts in order to perform actions that are normally automatic. This may disturb cognitive development, resulting in autism symptoms. Furthermore, this mnesic imbalance is probably involved in all autism spectrum disorders. In the present work, this theory is expounded, including preliminary supporting evidence

    In vitro re-hardening of artificial enamel caries lesions using enamel matrix proteins or self-assembling peptides

    Full text link
    ABSTRACT Objectives To assess the re-hardening potential of enamel matrix derivatives (EMD) and self-assembling peptides in vitro, hypothesizing that these materials may increase the mineralization of artificial carious lesions and improve hardness profiles. Material and Methods Forty-eight enamel samples were prepared from extracted bovine lower central incisors. After embedding and polishing, nail varnish was applied, leaving a defined test area. One third of this area was covered with a flowable composite (non-demineralized control). The remaining area was demineralized in an acidic buffer solution for 18 d to simulate a carious lesion. Half the demineralized area was then covered with composite (demineralized control), while the last third was left open for three test and one control treatments: (A) Application of enamel-matrix proteins (EMD - lyophilized protein fractions dissolved in acetic acid, Straumann), (B) self-assembling peptides (SAP, Curodont), or (C) amine fluoride solution (Am-F, GABA) for 5 min each. Untreated samples (D) served as control. After treatment, samples were immersed in artificial saliva for four weeks (remineralization phase) and microhardness (Knoop) depth profiles (25-300 µm) were obtained at sections. Two-way ANOVA was calculated to determine differences between the areas (re-hardening or softening). Results Decalcification resulted in significant softening of the subsurface enamel in all groups (A-D). A significant re-hardening up to 125 µm was observed in the EMD and SAP groups. Conclusions This study showed that EMD and SAP were able to improve the hardness profiles when applied to deep demineralized artificial lesions. However, further research is needed to verify and improve this observed effect

    EMD in periodontal regenerative surgery modulates cytokine profiles: A randomised controlled clinical trial

    Get PDF
    The enamel matrix derivative (EMD) contains hundreds of peptides in different levels of proteolytic processing that may provide a range of biological effects of importance in wound healing. The aim of the present study was to compare the effect of EMD and its fractions on the cytokine profiles from human gingival fibroblasts in vitro and in gingival crevicular fluid (GCF) in a randomized controlled split-mouth clinical study (n = 12). Levels of cytokines in cell culture medium and in GCF were measured by Luminex over a 2-week period. In the clinical study, levels of pro-inflammatory cytokines and chemokines were increased, whereas the levels of transforming growth factor-α (TGF-α) and platelet-derived growth factor-BB (PDGF-BB) were reduced. The in vitro study showed that EMD and its high and low molecular weight fractions reduced the secretion of pro-inflammatory cytokines and chemokines compared to untreated cells. EMD had an effect on levels of cytokines related to fibroplasia, angiogenesis, inflammation and chemotaxis both in vitro and in vivo, however, the anti-inflammatory effect induced by EMD observed in the in vitro study could not be confirmed clinically

    Tracking Endogenous Amelogenin and Ameloblastin In Vivo

    Get PDF
    Research on enamel matrix proteins (EMPs) is centered on understanding their role in enamel biomineralization and their bioactivity for tissue engineering. While therapeutic application of EMPs has been widely documented, their expression and biological function in non-enamel tissues is unclear. Our first aim was to screen for amelogenin (AMELX) and ameloblastin (AMBN) gene expression in mandibular bones and soft tissues isolated from adult mice (15 weeks old). Using RT-PCR, we showed mRNA expression of AMELX and AMBN in mandibular alveolar and basal bones and, at low levels, in several soft tissues; eyes and ovaries were RNA-positive for AMELX and eyes, tongues and testicles for AMBN. Moreover, in mandibular tissues AMELX and AMBN mRNA levels varied according to two parameters: 1) ontogenic stage (decreasing with age), and 2) tissue-type (e.g. higher level in dental epithelial cells and alveolar bone when compared to basal bone and dental mesenchymal cells in 1 week old mice). In situ hybridization and immunohistodetection were performed in mandibular tissues using AMELX KO mice as controls. We identified AMELX-producing (RNA-positive) cells lining the adjacent alveolar bone and AMBN and AMELX proteins in the microenvironment surrounding EMPs-producing cells. Western blotting of proteins extracted by non-dissociative means revealed that AMELX and AMBN are not exclusive to mineralized matrix; they are present to some degree in a solubilized state in mandibular bone and presumably have some capacity to diffuse. Our data support the notion that AMELX and AMBN may function as growth factor-like molecules solubilized in the aqueous microenvironment. In jaws, they might play some role in bone physiology through autocrine/paracrine pathways, particularly during development and stress-induced remodeling

    Employment Trends for People with ASD

    No full text

    High performance, LED powered, waveguide based total internal reflection microscopy

    Get PDF
    Total internal reflection fluorescence (TIRF) microscopy is a rapidly expanding optical technique with excellent surface sensitivity and limited background fluorescence. Commercially available TIRF systems are either objective based that employ expensive special high numerical aperture (NA) objectives or prism based that restrict integrating other modalities of investigation for structure-function analysis. Both techniques result in uneven illumination of the field of view and require training and experience in optics. Here we describe a novel, inexpensive, LED powered, waveguide based TIRF system that could be used as an add-on module to any standard fluorescence microscope even with low NA objectives. This system requires no alignment, illuminates the entire field evenly, and allows switching between epifluorescence/TIRF/bright field modes without adjustments or objective replacements. The simple design allows integration with other imaging systems, including atomic force microscopy (AFM), for probing complex biological systems at their native nanoscale regimes
    corecore