104 research outputs found

    Insertion Sequence Inversions Mediated by Ectopic Recombination between Terminal Inverted Repeats

    Get PDF
    Transposable elements are widely distributed and diverse in both eukaryotes and prokaryotes, as exemplified by DNA transposons. As a result, they represent a considerable source of genomic variation, for example through ectopic (i.e. non-allelic homologous) recombination events between transposable element copies, resulting in genomic rearrangements. Ectopic recombination may also take place between homologous sequences located within transposable element sequences. DNA transposons are typically bounded by terminal inverted repeats (TIRs). Ectopic recombination between TIRs is expected to result in DNA transposon inversions. However, such inversions have barely been documented. In this study, we report natural inversions of the most common prokaryotic DNA transposons: insertion sequences (IS). We identified natural TIR-TIR recombination-mediated inversions in 9% of IS insertion loci investigated in Wolbachia bacteria, which suggests that recombination between IS TIRs may be a quite common, albeit largely overlooked, source of genomic diversity in bacteria. We suggest that inversions may impede IS survival and proliferation in the host genome by altering transpositional activity. They may also alter genomic instability by modulating the outcome of ectopic recombination events between IS copies in various orientations. This study represents the first report of TIR-TIR recombination within bacterial IS elements and it thereby uncovers a novel mechanism of structural variation for this class of prokaryotic transposable elements

    Chlamydia trachomatis infection during pregnancy associated with preterm delivery: a population-based prospective cohort study

    Get PDF
    Chlamydia trachomatis infection is the most prevalent bacterial sexually transmitted infection and may influence pregnancy outcome. This study was conducted to assess the effect of chlamydial infection during pregnancy on premature delivery and birthweight. Pregnant women attending a participating midwifery practice or antenatal clinic between February 2003 and January 2005 were eligible for the study. From 4,055 women self-administered questionnaires and urine samples, tested by PCR, were analysed for C. trachomatis infection. Pregnancy outcomes were obtained from midwives and hospital registries. Gestational ages and birthweights were analysed for 3,913 newborns. The C. trachomatis prevalence was 3.9%, but varied by age and socio-economic background. Chlamydial infection was, after adjustment for potential confounders, associated with preterm delivery before 32 weeks (OR 4.35 [95% CI 1.3, 15.2]) and 35 weeks gestation (OR 2.66 [95% CI 1.1, 6.5]), but not with low birthweight. Of all deliveries before 32 weeks and 35 weeks gestation 14.9% [95% CI 4.5, 39.5] and 7.4% [95% CI 2.5, 20.1] was attributable to C. trachomatis infection. Chlamydia trachomatis infection contributes significantly to early premature delivery and should be considered a public health problem, especially in young women and others at increased risk of C. trachomatis infection

    Expression of Transposable Elements in Neural Tissues during Xenopus Development

    Get PDF
    Transposable elements comprise a large proportion of animal genomes. Transposons can have detrimental effects on genome stability but also offer positive roles for genome evolution and gene expression regulation. Proper balance of the positive and deleterious effects of transposons is crucial for cell homeostasis and requires a mechanism that tightly regulates their expression. Herein we describe the expression of DNA transposons of the Tc1/mariner superfamily during Xenopus development. Sense and antisense transcripts containing complete Tc1-2_Xt were detected in Xenopus embryos. Both transcripts were found in zygotic stages and were mainly localized in Spemann's organizer and neural tissues. In addition, the Tc1-like elements Eagle, Froggy, Jumpy, Maya, Xeminos and TXr were also expressed in zygotic stages but not oocytes in X. tropicalis. Interestingly, although Tc1-2_Xt transcripts were not detected in Xenopus laevis embryos, transcripts from other two Tc1-like elements (TXr and TXz) presented a similar temporal and spatial pattern during X. laevis development. Deep sequencing analysis of Xenopus tropicalis gastrulae showed that PIWI-interacting RNAs (piRNAs) are specifically derived from several Tc1-like elements. The localized expression of Tc1-like elements in neural tissues suggests that they could play a role during the development of the Xenopus nervous system

    A Genome-Wide Association Study of Diabetic Kidney Disease in Subjects With Type 2 Diabetes

    Get PDF
    dentification of sequence variants robustly associated with predisposition to diabetic kidney disease (DKD) has the potential to provide insights into the pathophysiological mechanisms responsible. We conducted a genome-wide association study (GWAS) of DKD in type 2 diabetes (T2D) using eight complementary dichotomous and quantitative DKD phenotypes: the principal dichotomous analysis involved 5,717 T2D subjects, 3,345 with DKD. Promising association signals were evaluated in up to 26,827 subjects with T2D (12,710 with DKD). A combined T1D+T2D GWAS was performed using complementary data available for subjects with T1D, which, with replication samples, involved up to 40,340 subjects with diabetes (18,582 with DKD). Analysis of specific DKD phenotypes identified a novel signal near GABRR1 (rs9942471, P = 4.5 x 10(-8)) associated with microalbuminuria in European T2D case subjects. However, no replication of this signal was observed in Asian subjects with T2D or in the equivalent T1D analysis. There was only limited support, in this substantially enlarged analysis, for association at previously reported DKD signals, except for those at UMOD and PRKAG2, both associated with estimated glomerular filtration rate. We conclude that, despite challenges in addressing phenotypic heterogeneity, access to increased sample sizes will continue to provide more robust inference regarding risk variant discovery for DKD.Peer reviewe

    Genes Required for Growth at High Hydrostatic Pressure in Escherichia coli K-12 Identified by Genome-Wide Screening

    Get PDF
    Despite the fact that much of the global microbial biosphere is believed to exist in high pressure environments, the effects of hydrostatic pressure on microbial physiology remain poorly understood. We use a genome-wide screening approach, combined with a novel high-throughput high-pressure cell culture method, to investigate the effects of hydrostatic pressure on microbial physiology in vivo. The Keio collection of single-gene deletion mutants in Escherichia coli K-12 was screened for growth at a range of pressures from 0.1 MPa to 60 MPa. This led to the identification of 6 genes, rodZ, holC, priA, dnaT, dedD and tatC, whose products were required for growth at 30 MPa and a further 3 genes, tolB, rffT and iscS, whose products were required for growth at 40 MPa. Our results support the view that the effects of pressure on cell physiology are pleiotropic, with DNA replication, cell division, the cytoskeleton and cell envelope physiology all being potential failure points for cell physiology during growth at elevated pressure
    corecore