15 research outputs found

    Trajectories of change in Mediterranean Holocene vegetation through classification of pollen data

    Get PDF
    © 2017 Springer-Verlag GmbH Germany, part of Springer Nature Quantification of vegetation cover from pollen analysis has been a goal of palynologists since the advent of the method in 1916 by the great Lennart von Post. Pollen-based research projects are becoming increasingly ambitious in scale, and the emergence of spatially extensive open-access datasets, advanced methods and computer power has facilitated sub-continental analysis of Holocene pollen data. This paper presents results of one such study, focussing on the Mediterranean basin. Pollen data from 105 fossil sequences have been extracted from the European Pollen database, harmonised by both taxonomy and chronologies, and subjected to a hierarchical agglomerative clustering method to synthesise the dataset into 16 main groupings. A particular focus of analysis was to describe the common transitions from one group to another to understand pathways of Holocene vegetation change in the Mediterranean. Two pollen-based indices of human impact (OJC: Oleaceae, Juglans, Castanea; API: anthropogenic pollen indicators) have been used to infer the degree of human modification of vegetation within each pollen grouping. Pollen-inferred cluster groups that are interpreted as representing more natural vegetation states show a restricted number of pathways of change. A set of cluster groups were identified that closely resemble anthropogenically-disturbed vegetation, and might be considered anthromes (anthopogenic biomes). These clusters show a very wide set of potential pathways, implying that all potential vegetation communities identified through this analysis have been altered in response to land exploitation and transformation by human societies in combination with other factors, such as climatic change. Future work to explain these ecosystem pathways will require developing complementary datasets from the social sciences and humanities (archaeology and historical sources), along with synthesis of the climatic records from the region

    Long-term land-cover/use change in a traditional farming landscape in Romania inferred from pollen data, historical maps and satellite images

    Get PDF
    Traditional farming landscapes in the temperate zone that have persisted for millennia can be exceptionally species-rich and are therefore key conservation targets. In contrast to Europe’s West, Eastern Europe harbours widespread traditional farming landscapes, but drastic socio-economic and political changes in the twentieth century are likely to have impacted these landscapes profoundly. We reconstructed long-term land-use/cover and biodiversity changes over the last 150 years in a traditional farming landscape of outstanding species diversity in Transylvania. We used the Regional Estimates of Vegetation Abundance from Large Sites model applied to a pollen record from the Transylvanian Plain and a suite of historical and satellite-based maps. We documented widespread changes in the extent and location of grassland and cropland, a loss of wood pastures as well as a gradual increase in forest extent. Land management in the socialist period (1947–1989) led to grassland expansion, but grassland diversity decreased due to intensive production. Land-use intensity has declined since the collapse of socialism in 1989, resulting in widespread cropland abandonment and conversion to grassland. However, these trends may be temporary due to both ongoing woody encroachment as well as grassland management intensification in productive areas. Remarkably, only 8% of all grasslands existed throughout the entire time period (1860–2010), highlighting the importance of land-use history when identifying target areas for conservation, given that old-growth grasslands are most valuable in terms of biodiversity. Combining datasets from different disciplines can yield important additional insights into dynamic landscape and biodiversity changes, informing conservation actions to maintain these species-rich landscapes in the longer term

    Modern non-pollen palynomorphs sedimentation along an elevational gradient in the south-central Pyrenees (southwestern Europe) as a tool for Holocene paleoecological reconstruction

    Get PDF
    Non-pollen palynomorphs (NPPs) are microfossils other than pollen and spores from plants found within samples prepared for pollen analyses. Their utility as paleoecological indicators is rapidly growing because of their potential to complement palynological reconstructions of past communities and environments. The study of modern NPP sedimentation patterns using surface samples from different substrates, vegetation types, and environmental conditions is needed to characterize the main environmental and anthropogenic factors involved in establishing ecological gradients. Here, we analyze modern NPP distribution along an elevational transect from the south-central Pyrenees. We use these data to test the potential influence of elevation, vegetation type, sampling sites, and human disturbance on modern NPP distribution and to obtain a NPP modern-analog model, which will enhance further paleoecological interpretations. Our study used the same surface samples obtained in a previous modern-analog palynological study, along an elevational transect from 870 to 2600 m a.s.l. We identified 55 NPPs, including 13 unidentified morphotypes that were described and depicted. Individual NPP analysis and multivariate statistical methods showed that altitude plays a significant role in the NPP distribution along the transect, but other factors such as soil moisture, landscape openness, and grazing intensity also influenced the composition of NPP assemblages. Our results also recognized some characteristic NPP assemblages linked to elevational vegetation belts and individual NPP morphotypes related with specific microhabitats, both with potential paleoecological indicator capacity. This work is a first step to improve the knowledge of the NPP’s indicator value in the study area

    The Palaeoenvironmental Impact of Prehistoric Settlement and Proto-Historic Urbanism: Tracing the Emergence of the Oppidum of Corent, Auvergne, France

    Get PDF
    International audienceEarly human societies and their interactions with the natural world have been extensively explored in palaeoenvironmental studies across Central and Western Europe. Yet, despite an extensive body of scholarship, there is little consideration of the environmental impacts of proto-historic urbanisation. Typically palaeoenvironmental studies of Bronze and Iron Age societies discuss human impact in terms of woodland clearance, landscape openness and evidence for agriculture. Although these features are clearly key indicators of human settlement, and characterise Neolithic and early to Middle Bronze Age impacts at Corent, they do not appear to represent defining features of a protohistoric urban environment. The Late Iron Age Gallic Oppidum of Corent is remarkable for the paucity of evidence for agriculture and strong representation of apophytes associated with disturbance. Increased floristic diversity-a phenomenon also observed in more recent urban environments-was also noted. The same, although somewhat more pronounced, patterns are noted for the Late Bronze Age and hint at the possibility of a nascent urban area. High percentages of pollen from non-native trees such as Platanus, Castanea and Juglans in the late Bronze Age and Gallic period also suggest trade and cultural exchange, notably with the Mediterranean world. Indeed, these findings question the validity of applying Castanea and Juglans as absolute chronological markers of Romanisation. These results clearly indicate the value of local-scale palaeoecological studies and their potential for tracing the phases in the emergence of a proto-historic urban environment

    Effects of land use on the fungal spore richness in small crater-lake basins of western Uganda

    No full text
    Mycological tools to estimate the effects of diverse land-use practices on fungal diversity are scarce, because of poor knowledge of the taxonomic diversity of tropical fungi and their response to anthropogenic habitat change. Here, we investigate assemblages of fungal spores, recently deposited in the bottom sediments of 24 small crater lakes in western Uganda, to assess the relationship between the local richness of fungi and environmental variation in the crater basin along regional gradients of natural vegetation and land use. We recovered similar to 9500 fungal spore specimens, which could be attributed to 216 morphotypes. Using an information-theoretic approach based on the corrected Akaike Information Criterion (AICc), we determined the environmental factors which best explained variation in the diversity of fungal spores among three datasets: (i) the full set of 24 crater basins, (ii) the subset of 22 basins with freshwater lakes, and (iii) the subset of 17 basins partly or completely in agricultural use (cropland, fallow land, pasture and plantation). In these 17 human-impacted crater basins our results revealed a negative relationship between fungal spore richness and the areal fraction of basins in agricultural use. However, this detrimental effect of land use on fungal spore richness was not apparent across the full set of both disturbed and (presently) undisturbed basins. This was due to large variation in fungal spore richness among the undisturbed basins covered either with forest or savannah vegetation, probably resulting from site-specific controls on fungal habitat diversity, such as climatic moisture balance and the composition of natural and/or secondary vegetation. The land-use effects on fungal spore diversity, as documented in this study, suggest that communities of tropical fungi progressively exposed to land-use practices are threatened by species loss. Hence, our study demonstrates the need to develop conservation strategies mitigating the impacts of agriculture on the biodiversity of tropical fungi
    corecore