81 research outputs found

    A glial amino-acid transporter controls synapse strength and courtship in Drosophila

    Get PDF
    Mate choice is an evolutionarily critical decision that requires the detection of multiple sex-specific signals followed by central integration of these signals to direct appropriate behavior. The mechanisms controlling mate choice remain poorly understood. Here, we show that the glial amino-acid transporter genderblind controls whether Drosophila melanogaster males will attempt to mate with other males. Genderblind (gb) mutant males showed no alteration in heterosexual courtship or copulation, but were attracted to normally unappealing male species-specific chemosensory cues. As a result, genderblind mutant males courted and attempted to copulate with other Drosophila males. This homosexual behavior could be induced within hours using inducible RNAi, suggesting that genderblind controls nervous system function rather than its development. Consistent with this, and indicating that glial genderblind regulates ambient extracellular glutamate to suppress glutamatergic synapse strength in vivo, homosexual behavior could be turned on and off by altering glutamatergic transmission pharmacologically and/or genetically

    Maskless Plasmonic Lithography at 22 nm Resolution

    Get PDF
    Optical imaging and photolithography promise broad applications in nano-electronics, metrologies, and single-molecule biology. Light diffraction however sets a fundamental limit on optical resolution, and it poses a critical challenge to the down-scaling of nano-scale manufacturing. Surface plasmons have been used to circumvent the diffraction limit as they have shorter wavelengths. However, this approach has a trade-off between resolution and energy efficiency that arises from the substantial momentum mismatch. Here we report a novel multi-stage scheme that is capable of efficiently compressing the optical energy at deep sub-wavelength scales through the progressive coupling of propagating surface plasmons (PSPs) and localized surface plasmons (LSPs). Combining this with airbearing surface technology, we demonstrate a plasmonic lithography with 22 nm half-pitch resolution at scanning speeds up to 10 m/s. This low-cost scheme has the potential of higher throughput than current photolithography, and it opens a new approach towards the next generation semiconductor manufacturing

    Interaction Between Convection and Pulsation

    Get PDF
    This article reviews our current understanding of modelling convection dynamics in stars. Several semi-analytical time-dependent convection models have been proposed for pulsating one-dimensional stellar structures with different formulations for how the convective turbulent velocity field couples with the global stellar oscillations. In this review we put emphasis on two, widely used, time-dependent convection formulations for estimating pulsation properties in one-dimensional stellar models. Applications to pulsating stars are presented with results for oscillation properties, such as the effects of convection dynamics on the oscillation frequencies, or the stability of pulsation modes, in classical pulsators and in stars supporting solar-type oscillations.Comment: Invited review article for Living Reviews in Solar Physics. 88 pages, 14 figure

    Ir-LBP, an Ixodes ricinus Tick Salivary LTB4-Binding Lipocalin, Interferes with Host Neutrophil Function

    Get PDF
    BACKGROUND: During their blood meal, ticks secrete a wide variety of proteins that can interfere with their host's defense mechanisms. Among these proteins, lipocalins play a major role in the modulation of the inflammatory response. METHODOLOGY/PRINCIPAL FINDINGS: We previously identified 14 new lipocalin genes in the tick Ixodes ricinus. One of them codes for a protein that specifically binds leukotriene B4 with a very high affinity (Kd: +/-1 nM), similar to that of the neutrophil transmembrane receptor BLT1. By in silico approaches, we modeled the 3D structure of the protein and the binding of LTB4 into the ligand pocket. This protein, called Ir-LBP, inhibits neutrophil chemotaxis in vitro and delays LTB4-induced apoptosis. Ir-LBP also inhibits the host inflammatory response in vivo by decreasing the number and activation of neutrophils located at the tick bite site. Thus, Ir-LBP participates in the tick's ability to interfere with proper neutrophil function in inflammation. CONCLUSIONS/SIGNIFICANCE: These elements suggest that Ir-LBP is a "scavenger" of LTB4, which, in combination with other factors, such as histamine-binding proteins or proteins inhibiting the classical or alternative complement pathways, permits the tick to properly manage its blood meal. Moreover, with regard to its properties, Ir-LBP could possibly be used as a therapeutic tool for illnesses associated with an increased LTB4 production.Journal ArticleResearch Support, Non-U.S. Gov'tSCOPUS: ar.jinfo:eu-repo/semantics/publishe

    Preliminary safety and efficacy of first-line pertuzumab combined with trastuzumab and taxane therapy for HER2-positive locally recurrent or metastatic breast cancer (PERUSE).

    Get PDF
    BACKGROUND: Pertuzumab combined with trastuzumab and docetaxel is the standard first-line therapy for HER2-positive metastatic breast cancer, based on results from the phase III CLEOPATRA trial. PERUSE was designed to assess the safety and efficacy of investigator-selected taxane with pertuzumab and trastuzumab in this setting. PATIENTS AND METHODS: In the ongoing multicentre single-arm phase IIIb PERUSE study, patients with inoperable HER2-positive advanced breast cancer (locally recurrent/metastatic) (LR/MBC) and no prior systemic therapy for LR/MBC (except endocrine therapy) received docetaxel, paclitaxel or nab-paclitaxel with trastuzumab [8\u2009mg/kg loading dose, then 6\u2009mg/kg every 3\u2009weeks (q3w)] and pertuzumab (840\u2009mg loading dose, then 420\u2009mg q3w) until disease progression or unacceptable toxicity. The primary end point was safety. Secondary end points included overall response rate (ORR) and progression-free survival (PFS). RESULTS: Overall, 1436 patients received at least one treatment dose (initially docetaxel in 775 patients, paclitaxel in 589, nab-paclitaxel in 65; 7 discontinued before starting taxane). Median age was 54\u2009years; 29% had received prior trastuzumab. Median treatment duration was 16\u2009months for pertuzumab and trastuzumab and 4\u2009months for taxane. Compared with docetaxel-containing therapy, paclitaxel-containing therapy was associated with more neuropathy (all-grade peripheral neuropathy 31% versus 16%) but less febrile neutropenia (1% versus 11%) and mucositis (14% versus 25%). At this preliminary analysis (52 months' median follow-up), median PFS was 20.6 [95% confidence interval (CI) 18.9-22.7] months overall (19.6, 23.0 and 18.1\u2009months with docetaxel, paclitaxel and nab-paclitaxel, respectively). ORR was 80% (95% CI 78%-82%) overall (docetaxel 79%, paclitaxel 83%, nab-paclitaxel 77%). CONCLUSIONS: Preliminary findings from PERUSE suggest that the safety and efficacy of first-line pertuzumab, trastuzumab and taxane for HER2-positive LR/MBC are consistent with results from CLEOPATRA. Paclitaxel appears to be a valid alternative taxane backbone to docetaxel, offering similar PFS and ORR with a predictable safety profile. CLINICALTRIALS.GOV: NCT01572038

    A Nutrient-Driven tRNA Modification Alters Translational Fidelity and Genome-wide Protein Coding across an Animal Genus

    Get PDF
    <div><p>Natural selection favors efficient expression of encoded proteins, but the causes, mechanisms, and fitness consequences of evolved coding changes remain an area of aggressive inquiry. We report a large-scale reversal in the relative translational accuracy of codons across 12 fly species in the <i>Drosophila</i>/<i>Sophophora</i> genus. Because the reversal involves pairs of codons that are read by the same genomically encoded tRNAs, we hypothesize, and show by direct measurement, that a tRNA anticodon modification from guanosine to queuosine has coevolved with these genomic changes. Queuosine modification is present in most organisms but its function remains unclear. Modification levels vary across developmental stages in <i>D. melanogaster</i>, and, consistent with a causal effect, genes maximally expressed at each stage display selection for codons that are most accurate given stage-specific queuosine modification levels. In a kinetic model, the known increased affinity of queuosine-modified tRNA for ribosomes increases the accuracy of cognate codons while reducing the accuracy of near-cognate codons. Levels of queuosine modification in <i>D. melanogaster</i> reflect bioavailability of the precursor queuine, which eukaryotes scavenge from the tRNAs of bacteria and absorb in the gut. These results reveal a strikingly direct mechanism by which recoding of entire genomes results from changes in utilization of a nutrient.</p></div

    Interaction Between Convection and Pulsation

    Get PDF

    Rewriting Natural Language Queries Using Patterns

    No full text
    International audienceIn this paper, a method based on pre-defined patterns, which rewrites natural language queries into a multi-layer, flexible, scalable and object-oriented query language, is presented. The method has been conceived to assist physicians in their search for clinical information in an Electronic Health Records system. Indeed, the query language of the system being difficult to handle for physicians, this method allows querying using natural language vs. using dedicated object-oriented query language. The information extraction method that has been developed can be seen as a named entity recognition system based on regular expressions that tags pieces of the query. The patterns are constructed recursively from the initial natural language query and from atomic patterns that correspond to the entities, the relationships and the constraints of the underlying model representing Electronic Health Records. Further evaluation is needed, but the preliminary results obtained by testing a set of natural language queries are very encouraging
    corecore