22 research outputs found

    The Role of Sialyl Glycan Recognition in Host Tissue Tropism of the Avian Parasite Eimeria tenella

    Get PDF
    Eimeria spp. are a highly successful group of intracellular protozoan parasites that develop within intestinal epithelial cells of poultry, causing coccidiosis. As a result of resistance against anticoccidial drugs and the expense of manufacturing live vaccines, it is necessary to understand the relationship between Eimeria and its host more deeply, with a view to developing recombinant vaccines. Eimeria possesses a family of microneme lectins (MICs) that contain microneme adhesive repeat regions (MARR). We show that the major MARR protein from Eimeria tenella, EtMIC3, is deployed at the parasite-host interface during the early stages of invasion. EtMIC3 consists of seven tandem MAR1-type domains, which possess a high specificity for sialylated glycans as shown by cell-based assays and carbohydrate microarray analyses. The restricted tissue staining pattern observed for EtMIC3 in the chicken caecal epithelium indicates that EtMIC3 contributes to guiding the parasite to the site of invasion in the chicken gut. The microarray analyses also reveal a lack of recognition of glycan sequences terminating in the N-glycolyl form of sialic acid by EtMIC3. Thus the parasite is well adapted to the avian host which lacks N-glycolyl neuraminic acid. We provide new structural insight into the MAR1 family of domains and reveal the atomic resolution basis for the sialic acid-based carbohydrate recognition. Finally, a preliminary chicken immunization trial provides evidence that recombinant EtMIC3 protein and EtMIC3 DNA are effective vaccine candidates

    Genomic diversity of bacteriophages infecting Microbacterium spp

    Get PDF
    The bacteriophage population is vast, dynamic, old, and genetically diverse. The genomics of phages that infect bacterial hosts in the phylum Actinobacteria show them to not only be diverse but also pervasively mosaic, and replete with genes of unknown function. To further explore this broad group of bacteriophages, we describe here the isolation and genomic characterization of 116 phages that infect Microbacterium spp. Most of the phages are lytic, and can be grouped into twelve clusters according to their overall relatedness; seven of the phages are singletons with no close relatives. Genome sizes vary from 17.3 kbp to 97.7 kbp, and their G+C% content ranges from 51.4% to 71.4%, compared to ~67% for their Microbacterium hosts. The phages were isolated on five different Microbacterium species, but typically do not efficiently infect strains beyond the one on which they were isolated. These Microbacterium phages contain many novel features, including very large viral genes (13.5 kbp) and unusual fusions of structural proteins, including a fusion of VIP2 toxin and a MuF-like protein into a single gene. These phages and their genetic components such as integration systems, recombineering tools, and phage-mediated delivery systems, will be useful resources for advancing Microbacterium genetics

    Malaria parasite cGMP-dependent protein kinase regulates blood stage merozoite secretory organelle discharge and egress.

    Get PDF
    The malaria parasite replicates within an intraerythrocytic parasitophorous vacuole (PV). Eventually, in a tightly regulated process called egress, proteins of the PV and intracellular merozoite surface are modified by an essential parasite serine protease called PfSUB1, whilst the enclosing PV and erythrocyte membranes rupture, releasing merozoites to invade fresh erythrocytes. Inhibition of the Plasmodium falciparum cGMP-dependent protein kinase (PfPKG) prevents egress, but the underlying mechanism is unknown. Here we show that PfPKG activity is required for PfSUB1 discharge into the PV, as well as for release of distinct merozoite organelles called micronemes. Stimulation of PfPKG by inhibiting parasite phosphodiesterase activity induces premature PfSUB1 discharge and egress of developmentally immature, non-invasive parasites. Our findings identify the signalling pathway that regulates PfSUB1 function and egress, and raise the possibility of targeting PfPKG or parasite phosphodiesterases in therapeutic approaches to dysregulate critical protease-mediated steps in the parasite life cycle

    A cyclic GMP signalling module that regulates gliding motility in a malaria parasite.

    Get PDF
    The ookinete is a motile stage in the malaria life cycle which forms in the mosquito blood meal from the zygote. Ookinetes use an acto-myosin motor to glide towards and penetrate the midgut wall to establish infection in the vector. The regulation of gliding motility is poorly understood. Through genetic interaction studies we here describe a signalling module that identifies guanosine 3', 5'-cyclic monophosphate (cGMP) as an important second messenger regulating ookinete differentiation and motility. In ookinetes lacking the cyclic nucleotide degrading phosphodiesterase delta (PDEdelta), unregulated signalling through cGMP results in rounding up of the normally banana-shaped cells. This phenotype is suppressed in a double mutant additionally lacking guanylyl cyclase beta (GCbeta), showing that in ookinetes GCbeta is an important source for cGMP, and that PDEdelta is the relevant cGMP degrading enzyme. Inhibition of the cGMP-dependent protein kinase, PKG, blocks gliding, whereas enhanced signalling through cGMP restores normal gliding speed in a mutant lacking calcium dependent protein kinase 3, suggesting at least a partial overlap between calcium and cGMP dependent pathways. These data demonstrate an important function for signalling through cGMP, and most likely PKG, in dynamically regulating ookinete gliding during the transmission of malaria to the mosquito

    Phosphoinositide metabolism links cGMP-dependent protein kinase G to essential Ca²⁺ signals at key decision points in the life cycle of malaria parasites

    Get PDF
    This work was funded by grants from the Wellcome Trust (WT098051 and 079643/Z/06/Z) and the Medical Research Council (G0501670) to OB, a Wellcome Trust project grant to DB (WT094752), a Wellcome Trust Grant (WT093228) to TKS, a Marie Curie Fellowship (PIEF-GA-2008-220180) to SS, and a Marie Curie Fellowship (PIEF-GA-2009-253899) and an EMBO Long Term Fellowship (ALTF 45-2009) to MBr. C2 was synthesised and kindly provided by Katy Kettleborough and colleagues at MRC Technology through an MRC grant to DB (G10000779).Many critical events in the Plasmodium life cycle rely on the controlled release of Ca2+ from intracellular stores to activate stage-specific Ca2+-dependent protein kinases. Using the motility of Plasmodium berghei ookinetes as a signalling paradigm, we show that the cyclic guanosine monophosphate (cGMP)-dependent protein kinase, PKG, maintains the elevated level of cytosolic Ca2+ required for gliding motility. We find that the same PKG-dependent pathway operates upstream of the Ca2+ signals that mediate activation of P. berghei gametocytes in the mosquito and egress of Plasmodium falciparum merozoites from infected human erythrocytes. Perturbations of PKG signalling in gliding ookinetes have a marked impact on the phosphoproteome, with a significant enrichment of in vivo regulated sites in multiple pathways including vesicular trafficking and phosphoinositide metabolism. A global analysis of cellular phospholipids demonstrates that in gliding ookinetes PKG controls phosphoinositide biosynthesis, possibly through the subcellular localisation or activity of lipid kinases. Similarly, phosphoinositide metabolism links PKG to egress of P. falciparum merozoites, where inhibition of PKG blocks hydrolysis of phosphatidylinostitol (4,5)-bisphosphate. In the face of an increasing complexity of signalling through multiple Ca2+ effectors, PKG emerges as a unifying factor to control multiple cellular Ca2+ signals essential for malaria parasite development and transmission.Publisher PDFPeer reviewe

    The risk of perinatal hepatitis B virus transmission: hepatitis B e antigen (HBeAg) prevalence estimates for all world regions

    Get PDF
    <p><b>Abstract</b></p> <p>Background</p> <p>HBeAg presence in childbearing-age women is a major determinant of perinatal hepatitis B virus (HBV) transmission. The risk of developing chronic HBV infection and liver disease is highest at young age. Our aim was to assess perinatal HBV transmission risk by means of estimating age- and region-specific HBeAg prevalence.</p> <p>Methods</p> <p>Based on observed HBeAg seroprevalence data obtained from a systematic literature review, we modeled HBeAg prevalence using an empirical Bayesian hierarchical model. Age- and region-specific estimates were generated for 1990 and 2005.</p> <p>Results</p> <p>Globally, highest HBeAg prevalence of over 50 % was found in 0–9 years old girls. At reproductive age, HBeAg prevalence was 20-50 %. Prevalence was highest in young females in East Asia in 1990 (78 %), the infection was less common in Sub-Saharan and North Africa. Regional differences in prevalence were smaller in 2005. There was an overall decrease in HBeAg between 1990 and 2005, which was strongest among girls in Oceania (23.3 % decline), South and South-East Asia (14 % decline). However, in these regions, prevalence remained high at 67 % among young females in 2005. Smaller decreases were observed in women at reproductive age, at which 24-32 % of all HBsAg-positive women were HBeAg-positive in 2005, with lowest prevalence in Southern Sub-Saharan Africa and highest prevalence in Oceania and South-East Asia.</p> <p>Conclusions</p> <p>HBeAg estimates are crucial for understanding the epidemiology of HBV and for prioritizing implementation of WHO`s prevention recommendations for all infants to receive the first dose of hepatitis B vaccine within 24 hours of birth. Results will have importance as access to treatment for chronic HBV infection is expanded.</p

    Calcium-dependent protein kinase 1 is an essential regulator of exocytosis in Toxoplasma

    No full text
    Calcium-regulated exocytosis is a ubiquitous process in eukaryotes, whereby secretory vesicles fuse with the plasma membrane and release their contents in response to an intracellular calcium surge1. This process regulates diverse cellular functions like plasma membrane repair in plants and animals2,3, discharge of defensive spikes in Paramecium4, and secretion of insulin from pancreatic cells, immune modulators from lymphocytes, and chemical transmitters from neurons5. In animal cells, serine/threonine kinases including PKA, PKC and CaM-kinases have been implicated in calcium-signal transduction leading to regulated secretion1,6,7. Although plants and protozoa also regulate secretion via intracellular calcium, the means by which these signals are relayed have not been elucidated. Here we demonstrate that the Toxoplasma gondii calcium-dependent protein kinase 1 (TgCDPK1) is an essential regulator of calcium-dependent exocytosis in this opportunistic human pathogen. Conditional suppression of TgCDPK1 revealed that it controls calcium-dependent secretion of specialized organelles called micronemes, resulting in a block of essential phenotypes including parasite motility, host-cell invasion, and egress. This phenotype was recapitulated using a chemical biology approach, wherein pyrazolopyrimidine-derived compounds specifically inhibited TgCDPK1 and disrupted the parasite life cycle at stages dependent on microneme secretion. Inhibition was specific to TgCDPK1, since expression of a resistant kinase mutant reversed sensitivity to the inhibitor. TgCDPK1 is conserved among apicomplexans and belongs to a family of kinases shared with plants and ciliates8, suggesting that related CDPKs may play a role in calcium-regulated secretion in other organisms. Since this kinase family is absent from mammalian hosts, it represents a validated target that may be exploitable for chemotherapy against T. gondii and related apicomplexans
    corecore