133 research outputs found

    Reliability and validity of ultrasound imaging of features of knee osteoarthritis in the community

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Radiographs are the main outcome measure in epidemiological studies of osteoarthritis (OA). Ultrasound imaging has unique advantages in that it involves no ionising radiation, is easy to use and visualises soft tissue structures. Our objective was to measure the inter-rater reliability and validity of ultrasound imaging in the detection of features of knee OA.</p> <p>Methods</p> <p>Eighteen participants from a community cohort, had both knees scanned by two trained musculoskeletal sonographers, up to six weeks apart. Inter-rater reliability for osteophytes, effusion size and cartilage thickness was calculated by estimating Kappa (ΞΊ) and Intraclass correlation coefficients (ICC), as appropriate. A measure of construct validity was determined by estimating ΞΊ between the two imaging modalities in the detection of osteophytes.</p> <p>Results</p> <p><it>Reliability: </it>ΞΊ for osteophyte presence was 0.77(right femur), 0.65(left femur) and 0.88 for both tibia. ICCs for effusion size were 0.70(right) and 0.85(left). Moderate to substantial agreement was found in cartilage thickness measurements. <it>Validity: </it>For osteophytes, ΞΊ was moderate to excellent at 0.52(right) and 0.75(left).</p> <p>Conclusion</p> <p>Substantial to excellent agreement was found between ultrasound observers for the presence of osteophytes and measurement of effusion size; it was moderate to substantial for femoral cartilage thickness. Moderate to substantial agreement was observed between ultrasound and radiographs for osteophyte presence.</p

    Avoidance behaviors and negative psychological responses in the general population in the initial stage of the H1N1 pandemic in Hong Kong

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>During the SARS pandemic in Hong Kong, panic and worry were prevalent in the community and the general public avoided staying in public areas. Such avoidance behaviors could greatly impact daily routines of the community and the local economy. This study examined the prevalence of the avoidance behaviors (i.e. avoiding going out, visiting crowded places and visiting hospitals) and negative psychological responses of the general population in Hong Kong at the initial stage of the H1N1 epidemic.</p> <p>Methods</p> <p>A sample of 999 respondents was recruited in a population-based survey. Using random telephone numbers, respondents completed a structured questionnaire by telephone interviews at the 'pre-community spread phase' of the H1N1 epidemic in Hong Kong.</p> <p>Results</p> <p>This study found that 76.5% of the respondents currently avoided going out or visiting crowded places or hospitals, whilst 15% felt much worried about contracting H1N1 and 6% showed signs of emotional distress. Females, older respondents, those having unconfirmed beliefs about modes of transmissions, and those feeling worried and emotionally distressed due to H1N1 outbreak were more likely than others to adopt some avoidance behaviors. Those who perceived high severity and susceptibility of getting H1N1 and doubted the adequacy of governmental preparedness were more likely than others to feel emotionally distressed.</p> <p>Conclusions</p> <p>The prevalence of avoidance behaviors was very high. Cognitions, including unconfirmed beliefs about modes of transmission, perceived severity and susceptibility were associated with some of the avoidance behaviors and emotional distress variables. Public health education should therefore provide clear messages to rectify relevant perceptions.</p

    Essential versus accessory aspects of cell death: recommendations of the NCCD 2015

    Get PDF
    Cells exposed to extreme physicochemical or mechanical stimuli die in an uncontrollable manner, as a result of their immediate structural breakdown. Such an unavoidable variant of cellular demise is generally referred to as β€˜accidental cell death’ (ACD). In most settings, however, cell death is initiated by a genetically encoded apparatus, correlating with the fact that its course can be altered by pharmacologic or genetic interventions. β€˜Regulated cell death’ (RCD) can occur as part of physiologic programs or can be activated once adaptive responses to perturbations of the extracellular or intracellular microenvironment fail. The biochemical phenomena that accompany RCD may be harnessed to classify it into a few subtypes, which often (but not always) exhibit stereotyped morphologic features. Nonetheless, efficiently inhibiting the processes that are commonly thought to cause RCD, such as the activation of executioner caspases in the course of apoptosis, does not exert true cytoprotective effects in the mammalian system, but simply alters the kinetics of cellular demise as it shifts its morphologic and biochemical correlates. Conversely, bona fide cytoprotection can be achieved by inhibiting the transduction of lethal signals in the early phases of the process, when adaptive responses are still operational. Thus, the mechanisms that truly execute RCD may be less understood, less inhibitable and perhaps more homogeneous than previously thought. Here, the Nomenclature Committee on Cell Death formulates a set of recommendations to help scientists and researchers to discriminate between essential and accessory aspects of cell death

    Mycobacterium tuberculosis Rv2419c, the missing glucosyl-3-phosphoglycerate phosphatase for the second step in methylglucose lipopolysaccharide biosynthesis

    Get PDF
    Mycobacteria synthesize intracellular methylglucose lipopolysaccharides (MGLP) proposed to regulate fatty acid synthesis. Although their structures have been elucidated, the identity of most biosynthetic genes remains unknown. The first step in MGLP biosynthesis is catalyzed by a glucosyl-3-phosphoglycerate synthase (GpgS, Rv1208 in Mycobacterium tuberculosis H37Rv). However, a typical glucosyl-3-phosphoglycerate phosphatase (GpgP, EC3.1.3.70) for dephosphorylation of glucosyl-3-phosphoglycerate to glucosylglycerate, was absent from mycobacterial genomes. We purified the native GpgP from Mycobacterium vanbaalenii and identified the corresponding gene deduced from amino acid sequences by mass spectrometry. The M. tuberculosis ortholog (Rv2419c), annotated as a putative phosphoglycerate mutase (PGM, EC5.4.2.1), was expressed and functionally characterized as a new GpgP. Regardless of the high specificity for glucosyl-3-phosphoglycerate, the mycobacterial GpgP is not a sequence homolog of known isofunctional GpgPs. The assignment of a new function in M. tuberculosis genome expands our understanding of this organism's genetic repertoire and of the early events in MGLP biosynthesis

    The production and reproduction of inequality in the UK in times of austerity

    Get PDF
    Inequality appears to be back on the intellectual and political agenda. This paper provides a commentary on this renewed interest, drawing on an empirical discussion of inequality in the UK. The paper argues that inequality should be seen as produced in the inherently unequal social relations of production, drawing attention to the role of social struggle in shaping dynamics of inequality. However, inequality is not just produced in dynamic class struggle in the formal economy, but also through the social reproduction of labour power on a day-to-day and inter-generational basis. As such, inequalities of household resources at any point in time may be reproductive of greater future inequality. It is argued that inequality has risen in the UK over recent decades because of changes in the social relations of production in the formal economy and social reproduction in the domestic sector, both of which have witnessed significant state interventions that have increased structural inequalities. It is argued that, absent of significant change, the underpinning structural dynamics in the UK will lead to further increases in inequality over the short and longer-term. Given this, we might expect to see an already emergent β€˜New Politics of Inequality’ intensifying in the coming decades.n/

    A higher activation threshold of memory CD8+ T cells has a fitness cost that is modified by TCR affinity during Tuberculosis

    Get PDF
    All relevant data are within the paper and its Supporting Information files except for the primary TCR sequences. The data files for the primary TCR sequences are publicly deposited in the University of Massachusetts Medical School’s institutional repository, eScholarship@UMMS. The permanent link to the data is http://dx.doi.org/10.13028/M2CC70T cell vaccines against Mycobacterium tuberculosis (Mtb) and other pathogens are based on the principle that memory T cells rapidly generate effector responses upon challenge, leading to pathogen clearance. Despite eliciting a robust memory CD8+ T cell response to the immunodominant Mtb antigen TB10.4 (EsxH), we find the increased frequency of TB10.4-specific CD8+ T cells conferred by vaccination to be short-lived after Mtb challenge. To compare memory and naΓ―ve CD8+ T cell function during their response to Mtb, we track their expansions using TB10.4-specific retrogenic CD8+ T cells. We find that the primary (naΓ―ve) response outnumbers the secondary (memory) response during Mtb challenge, an effect moderated by increased TCR affinity. To determine whether the expansion of polyclonal memory T cells is restrained following Mtb challenge, we used TCRΞ² deep sequencing to track TB10.4-specific CD8+ T cells after vaccination and subsequent challenge in intact mice. Successful memory T cells, defined by their clonal expansion after Mtb challenge, express similar CDR3Ξ² sequences suggesting TCR selection by antigen. Thus, both TCR-dependent and -independent factors affect the fitness of memory CD8+ responses. The impaired expansion of the majority of memory T cell clonotypes may explain why some TB vaccines have not provided better protection.This work was supported by NIH R01 AI106725 as well as fellowship funding to SC from NIH AI T32 007061 and the UMass GSBS Millennium Program. The Small Animal Biocontainment Suite was supported in part by Center for AIDS Research Grant P30 AI 060354. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.info:eu-repo/semantics/publishedVersio

    Transcription Factors Mat2 and Znf2 Operate Cellular Circuits Orchestrating Opposite- and Same-Sex Mating in Cryptococcus neoformans

    Get PDF
    Cryptococcus neoformans is a human fungal pathogen that undergoes a dimorphic transition from a unicellular yeast to multicellular hyphae during opposite sex (mating) and unisexual reproduction (same-sex mating). Opposite- and same-sex mating are induced by similar environmental conditions and involve many shared components, including the conserved pheromone sensing Cpk1 MAPK signal transduction cascade that governs the dimorphic switch in C. neoformans. However, the homeodomain cell identity proteins Sxi1Ξ±/Sxi2a encoded by the mating type locus that are essential for completion of sexual reproduction following cell–cell fusion during opposite-sex mating are dispensable for same-sex mating. Therefore, identification of downstream targets of the Cpk1 MAPK pathway holds the key to understanding molecular mechanisms governing the two distinct developmental fates. Thus far, homology-based approaches failed to identify downstream transcription factors which may therefore be species-specific. Here, we applied insertional mutagenesis via Agrobacterium-mediated transformation and transcription analysis using whole genome microarrays to identify factors involved in C. neoformans differentiation. Two transcription factors, Mat2 and Znf2, were identified as key regulators of hyphal growth during same- and opposite-sex mating. Mat2 is an HMG domain factor, and Znf2 is a zinc finger protein; neither is encoded by the mating type locus. Genetic, phenotypic, and transcriptional analyses of Mat2 and Znf2 provide evidence that Mat2 is a downstream transcription factor of the Cpk1 MAPK pathway whereas Znf2 functions as a more terminal hyphal morphogenesis determinant. Although the components of the MAPK pathway including Mat2 are not required for virulence in animal models, Znf2, as a hyphal morphology determinant, is a negative regulator of virulence. Further characterization of these elements and their target circuits will reveal genes controlling biological processes central to fungal development and virulence
    • …
    corecore