317 research outputs found

    Is the Multiverse Hypothesis capable of explaining the Fine Tuning of Nature Laws and Constants? The Case of Cellular Automata

    Full text link
    The objective of this paper is analyzing to which extent the multiverse hypothesis provides a real explanation of the peculiarities of the laws and constants in our universe. First we argue in favor of the thesis that all multiverses except Tegmark's > are too small to explain the fine tuning, so that they merely shift the problem up one level. But the > is surely too large. To prove this assessment, we have performed a number of experiments with cellular automata of complex behavior, which can be considered as universes in the mathematical multiverse. The analogy between what happens in some automata (in particular Conway's >) and the real world is very strong. But if the results of our experiments can be extrapolated to our universe, we should expect to inhabit -- in the context of the multiverse -- a world in which at least some of the laws and constants of nature should show a certain time dependence. Actually, the probability of our existence in a world such as ours would be mathematically equal to zero. In consequence, the results presented in this paper can be considered as an inkling that the hypothesis of the multiverse, whatever its type, does not offer an adequate explanation for the peculiarities of the physical laws in our world. A slightly reduced version of this paper has been published in the Journal for General Philosophy of Science, Springer, March 2013, DOI: 10.1007/s10838-013-9215-7.Comment: 30 pages, 16 figures, 5 tables. Slightly reduced version published in Journal for General Philosophy of Scienc

    Mirror Symmetry and Other Miracles in Superstring Theory

    Get PDF
    The dominance of string theory in the research landscape of quantum gravity physics (despite any direct experimental evidence) can, I think, be justified in a variety of ways. Here I focus on an argument from mathematical fertility, broadly similar to Hilary Putnam's 'no miracles argument' that, I argue, many string theorists in fact espouse. String theory leads to many surprising, useful, and well-confirmed mathematical 'predictions' - here I focus on mirror symmetry. These predictions are made on the basis of general physical principles entering into string theory. The success of the mathematical predictions are then seen as evidence for framework that generated them. I attempt to defend this argument, but there are nonetheless some serious objections to be faced. These objections can only be evaded at a high (philosophical) price.Comment: For submission to a Foundations of Physics special issue on "Forty Years Of String Theory: Reflecting On the Foundations" (edited by G. `t Hooft, E. Verlinde, D. Dieks and S. de Haro)

    A Mutation in Myo15 Leads to Usher-Like Symptoms in LEW/Ztm-ci2 Rats

    Get PDF
    The LEW/Ztm-ci2 rat is an animal model for syndromal deafness that arose from a spontaneous mutation. Homozygous animals show locomotor abnormalities like lateralized circling behavior. Additionally, an impaired vision can be observed in some animals through behavioral studies. Syndromal deafness as well as retinal degeneration are features of the Usher syndrome in humans. In the present study, the mutation was identified as a base substitution (T->C) in exon 56 of Myo15, leading to an amino acid exchange from leucine (Leu) to proline (Pro) within the carboxy-terminal MyTH4 domain in the proteins' tail region. Myo15 mRNA was expressed in the retina as demonstrated for the first time with the help of in-situ hybridization and PCR. To characterize the visual phenotype, rats were examined by scotopic and photopic electroretinography and, additionally, histological analyses of the retinas were conducted. The complete loss of sight was detected along with a severe degeneration of photoreceptor cells. Interestingly, the manifestation of the disease does not solely depend on the mutation, but also on environmental factors. Since the LEW/Ztm-ci2 rat features the entire range of symptoms of the human Usher syndrome we think that this strain is an appropriate model for this disease. Our findings display that mutations in binding domains of myosin XV do not only cause non-syndromic hearing loss but can also lead to syndromic disorders including retinal dysfunction

    Defining remission in childhood-onset lupus:PReS-endorsed consensus definitions by an international task force

    Get PDF
    Objective: To derive childhood-onset SLE (cSLE) specific remission definitions for future treat-to-target (T2T) trials, observational studies, and clinical practice. Methods: The cSLE International T2T Task Force conducted Delphi surveys exploring paediatric perspectives on adult-onset SLE remission targets. A modified nominal group technique was used to discuss, refine, and agree on the cSLE remission target criteria.Results: The Task Force proposed two definitions of remission: ‘cSLE clinical remission on steroids (cCR)’ and ‘cSLE clinical remission off steroids (cCR-0)’. The common criteria are: (1) Clinical-SLEDAI-2 K = 0; (2) PGA score &lt; 0.5 (0–3 scale); (4) stable antimalarials, immunosuppressive, and biologic therapy (changes due to side-effects, adherence, weight, or when building up to target dose allowed). Criterion (3) in cCR is the prednisolone dose ≤0.1 mg/kg/day (maximum 5 mg/day), whereas in cCR-0 it is zero. Conclusions: cSLE definitions of remission have been proposed, maintaining sufficient alignment with the adult-SLE definition to facilitate life-course research.</p

    Breakpoint mapping of 13 large parkin deletions/duplications reveals an exon 4 deletion and an exon 7 duplication as founder mutations

    Get PDF
    Early-onset Parkinson’s disease (EOPD) has been associated with recessive mutations in parkin (PARK2). About half of the mutations found in parkin are genomic rearrangements, i.e., large deletions or duplications. Although many different rearrangements have been found in parkin before, the exact breakpoints involving these rearrangements are rarely mapped. In the present study, the exact breakpoints of 13 different parkin deletions/duplications, detected in 13 patients out of a total screened sample of 116 EOPD patients using Multiple Ligation Probe Amplification (MLPA) analysis, were mapped using real time quantitative polymerase chain reaction (PCR), long-range PCR and sequence analysis. Deletion/duplication-specific PCR tests were developed as a rapid and low cost tool to confirm MLPA results and to test family members or patients with similar parkin deletions/duplications. Besides several different deletions, an exon 3 deletion, an exon 4 deletion and an exon 7 duplication were found in multiple families. Haplotype analysis in four families showed that a common haplotype of 1.2 Mb could be distinguished for the exon 7 duplication and a common haplotype of 6.3 Mb for the deletion of exon 4. These findings suggest common founder effects for distinct large rearrangements in parkin

    Spectrum of Phenotypic, Genetic, and Functional Characteristics in Patients With Epilepsy With KCNC2 Pathogenic Variants

    Get PDF
    Background and ObjectivesKCNC2 encodes Kv3.2, a member of the Shaw-related (Kv3) voltage-gated potassium channel subfamily, which is important for sustained high-frequency firing and optimized energy efficiency of action potentials in the brain. The objective of this study was to analyze the clinical phenotype, genetic background, and biophysical function of disease-associated Kv3.2 variants.MethodsIndividuals with KCNC2 variants detected by exome sequencing were selected for clinical, further genetic, and functional analysis. Cases were referred through clinical and research collaborations. Selected de novo variants were examined electrophysiologically in Xenopus laevis oocytes.ResultsWe identified novel KCNC2 variants in 18 patients with various forms of epilepsy, including genetic generalized epilepsy (GGE), developmental and epileptic encephalopathy (DEE) including early-onset absence epilepsy, focal epilepsy, and myoclonic-atonic epilepsy. Of the 18 variants, 10 were de novo and 8 were classified as modifying variants. Eight drug-responsive patients became seizure-free using valproic acid as monotherapy or in combination, including severe DEE cases. Functional analysis of 4 variants demonstrated gain of function in 3 severely affected DEE cases and loss of function in 1 case with a milder phenotype (GGE) as the underlying pathomechanisms.DiscussionThese findings implicate KCNC2 as a novel causative gene for epilepsy and emphasize the critical role of KV3.2 in the regulation of brain excitability

    A role for the cell-wall protein silacidin in cell size of the diatom Thalassiosira pseudonana

    Get PDF
    Diatoms contribute 20% of global primary production and form the basis of many marine food webs. Although their species diversity correlates with broad diversity in cell size, there is also an intraspecific cell-size plasticity due to sexual reproduction and varying environmental conditions. However, despite the ecological significance of the diatom cell size for food-web structure and global biogeochemical cycles, our knowledge about genes underpinning the size of diatom cells remains elusive. Here, a combination of reverse genetics, experimental evolution and comparative RNA8 sequencing analyses enabled us to identify a previously unknown genetic control of cell size in the diatom Thalassiosira pseudonana. In particular, the targeted deregulation of the expression of the cell-wall protein silacidin caused a significant increase in valve diameter. Remarkably, the natural downregulation of the silacidin gene transcript due to experimental evolution under low temperature also correlated with cell-size increase. Our data give first evidence for a genetically controlled regulation of cell size in Thalassiosira pseudonana and possibly other centric diatoms as they also encode the silacidin gene in their genomes

    Defining consensus opinion to develop randomised controlled trials in rare diseases using Bayesian design:An example of a proposed trial of adalimumab versus pamidronate for children with CNO/CRMO

    Get PDF
    Introduction Chronic nonbacterial osteomyelitis (CNO) is a rare autoinflammatory bone disorder primarily affecting children and adolescents. It can lead to chronic pain, bony deformities and fractures. The pathophysiology of CNO is incompletely understood. Scientific evidence suggests dysregu-lated expression of pro- and anti-inflammatory cytokines to be centrally involved. Currently, treatment is largely based on retrospective observational studies and expert opinion. Treatment usually includes nonsteroidal anti-inflammatory drugs and/or glucocorticoids, followed by a range of drugs in unresponsive cases. While randomised clinical trials are lacking, retrospective and prospective non-controlled studies suggest effectiveness of TNF inhibitors and bisphosphonates. The objective of the Bayesian consensus meeting was to quantify prior expert opinion. Methods Twelve international CNO experts were randomly chosen to be invited to a Bayesian prior elicitation meeting. Results Results showed that a typical new patient treated with pamidronate would have an 84% chance of improvement in their pain score relative to baseline at 26 weeks and an 83% chance on adalimumab. Experts thought there was a 50% chance that a new typical patient would record a pain score of 28mm (pamidronate) to 30mm (adalimumab) or better at 26 weeks. There was a modest trend in prior opinion to indicate an advantage of pamidronate vs adalimumab, with a 68% prior chance that pamidronate is superior to adalimumab by some margin. However, it is clear that there is considerable uncertainty about the precise relative merits of the two treatments. Conclusions The rarity of CNO leads to challenges in conducting randomised controlled trials with sufficient power to provide a definitive outcome. We address this using a Bayesian design, and here describe the process and outcome of the elicitation exercise to establish expert prior opinion. This opinion will be tested in the planned prospective CNO study. The process for establishing expert consensus opinion in CNO will be helpful for developing studies in other rare paediatric diseases

    The ter Mutation in the Rat Dnd1 Gene Initiates Gonadal Teratomas and Infertility in Both Genders

    Get PDF
    A spontaneous mutation leading to the formation of congenital ovarian and testicular tumors was detected in the WKY/Ztm rat strain. The histological evaluation revealed derivatives from all three germ layers, thereby identifying these tumors as teratomas. Teratocarcinogenesis was accompanied by infertility and the underlying mutation was termed ter. Linkage analysis of 58 (WKY-ter×SPRD-Cu3) F2 rats associated the ter mutation with RNO18 (LOD = 3.25). Sequencing of candidate genes detected a point mutation in exon 4 of the dead-end homolog 1 gene (Dnd1), which introduces a premature stop codon assumed to cause a truncation of the Dnd1 protein. Genotyping of the recessive ter mutation revealed a complete penetrance of teratocarcinogenesis and infertility in homozygous ter rats of both genders. Morphologically non-tumorous testes of homozygous ter males were reduced in both size and weight. This testicular malformation was linked to a lack of spermatogenesis using immunohistochemical and histological staining. Our WKY-Dnd1ter/Ztm rat is a novel animal model to investigate gonadal teratocarcinogenesis and the molecular mechanisms involved in germ cell development of both genders
    corecore