43 research outputs found
Uncoupling the functions of CALM in VAMP sorting and clathrin-coated pit formation.
CALM (clathrin assembly lymphoid myeloid leukemia protein) is a cargo-selective adaptor for the post-Golgi R-SNAREs VAMPs 2, 3, and 8, and it also regulates the size of clathrin-coated pits and vesicles at the plasma membrane. The present study has two objectives: to determine whether CALM can sort additional VAMPs, and to investigate whether VAMP sorting contributes to CALM-dependent vesicle size regulation. Using a flow cytometry-based endocytosis efficiency assay, we demonstrate that CALM is also able to sort VAMPs 4 and 7, even though they have sorting signals for other clathrin adaptors. CALM homologues are present in nearly every eukaryote, suggesting that the CALM family may have evolved as adaptors for retrieving all post-Golgi VAMPs from the plasma membrane. Using a knockdown/rescue system, we show that wild-type CALM restores normal VAMP sorting in CALM-depleted cells, but that two non-VAMP-binding mutants do not. However, when we assayed the effect of CALM depletion on coated pit morphology, using a fluorescence microscopy-based assay, we found that the two mutants were as effective as wild-type CALM. Thus, we can uncouple the sorting function of CALM from its structural role
An Abp1-Dependent Route of Endocytosis Functions when the Classical Endocytic Pathway in Yeast Is Inhibited
Clathrin-mediated endocytosis (CME) is a well characterized pathway in both yeast and mammalian cells. An increasing number of alternative endocytic pathways have now been described in mammalian cells that can be both clathrin, actin, and Arf6- dependent or independent. In yeast, a single clathrin-mediated pathway has been characterized in detail. However, disruption of this pathway in many mutant strains indicates that other uptake pathways might exist, at least for bulk lipid and fluid internalization. Using a combination of genetics and live cell imaging, here we show evidence for a novel endocytic pathway in S. cerevisiae that does not involve several of the proteins previously shown to be associated with the ‘classic’ pathway of endocytosis. This alternative pathway functions in the presence of low levels of the actin-disrupting drug latrunculin-A which inhibits movement of the proteins Sla1, Sla2, and Sac6, and is independent of dynamin function. We reveal that in the absence of the ‘classic’ pathway, the actin binding protein Abp1 is now essential for bulk endocytosis. This novel pathway appears to be distinct from another described alternative endocytic route in S. cerevisiae as it involves at least some proteins known to be associated with cortical actin patches rather than being mediated at formin-dependent endocytic sites. These data indicate that cells have the capacity to use overlapping sets of components to facilitate endocytosis under a range of conditions
Quantitative differential proteomics of yeast extracellular matrix: there is more to it than meets the eye
Background: Saccharomyces cerevisiae multicellular communities are sustained by a scaffolding extracellular matrix, which provides spatial organization, and nutrient and water availability, and ensures group survival. According to this tissue-like biology, the yeast extracellular matrix (yECM) is analogous to the higher Eukaryotes counterpart for its polysaccharide and proteinaceous nature. Few works focused on yeast biofilms, identifying the flocculin Flo11 and several members of the HSP70 in the extracellular space. Molecular composition of the yECM, is therefore mostly unknown. The homologue of yeast Gup1 protein in high Eukaryotes (HHATL) acts as a regulator of Hedgehog signal secretion, therefore interfering in morphogenesis and cell-cell communication through the ECM, which mediates but is also regulated by this signalling pathway. In yeast, the deletion of GUP1 was associated with a vast number of diverse phenotypes including the cellular differentiation that accompanies biofilm formation.
Methods: S. cerevisiae W303-1A wt strain and gup1Δ mutant were used as previously described to generate biofilmlike mats in YPDa from which the yECM proteome was extracted. The proteome from extracellular medium from batch liquid growing cultures was used as control for yECM-only secreted proteins. Proteins were separated by SDS-PAGE and 2DE. Identification was performed by HPLC, LC-MS/MS and MALDI-TOF/TOF. The protein expression comparison between the two strains was done by DIGE, and analysed by DeCyder Extended Data Analysis that included Principal Component Analysis and Hierarchical Cluster Analysis.
Results: The proteome of S. cerevisiae yECM from biofilm-like mats was purified and analysed by Nano LC-MS/MS, 2D Difference Gel Electrophoresis (DIGE), and MALDI-TOF/TOF. Two strains were compared, wild type and the mutant defective in GUP1. As controls for the identification of the yECM-only proteins, the proteome from liquid batch cultures was also identified. Proteins were grouped into distinct functional classes, mostly Metabolism, Protein Fate/Remodelling and Cell Rescue and Defence mechanisms, standing out the presence of heat shock chaperones, metalloproteinases, broad signalling cross-talkers and other putative signalling proteins. The data has been deposited to the ProteomeXchange with identifier PXD001133.Conclusions: yECM, as the mammalian counterpart, emerges as highly proteinaceous. As in higher Eukaryotes ECM, numerous proteins that could allow dynamic remodelling, and signalling events to occur in/and via yECM were identified. Importantly, large sets of enzymes encompassing full antagonistic metabolic pathways, suggest that mats develop into two metabolically distinct populations, suggesting that either extensive moonlighting or actual metabolism occurs extracellularly. The gup1Δ showed abnormally loose ECM texture. Accordingly, the correspondent differences in proteome unveiled acetic and citric acid producing enzymes as putative players in structural integrity maintenance.This work was funded by the Marie Curie Initial Training Network
GLYCOPHARM (PITN-GA-2012-317297), and by national funds from FCT I.P.
through the strategic funding UID/BIA/04050/2013. Fábio Faria-Oliveira was supported
by a PhD scholarship (SFRH/BD/45368/2008) from FCT (Fundação para a
Ciência e a Tecnologia). We thank David Caceres and Montserrat MartinezGomariz
from the Unidad de Proteómica, Universidad Complutense de Madrid
– Parque Científico de Madrid, Spain for excellent technical assistance in the
successful implementation of all proteomics procedures including peptide
identification, and Joana Tulha from the CBMA, Universidade do Minho,
Portugal, for helping with the SDS-PAGE experiments, and the tedious and
laborious ECM extraction procedures. The mass spectrometry proteomics
data have been deposited to the ProteomeXchange Consortium, via the
PRIDE partner repository, with the dataset identifier PXD001133. We would
like to thank the PRIDE team for all the help and support during the submission
process.info:eu-repo/semantics/publishedVersio
Structural Insights into Bortezomib-Induced Activation of the Caseinolytic Chaperone-Protease System in Mycobacterium tuberculosis
The caseinolytic protease (Clp) system has recently emerged as a promising anti-tuberculosis target. The anti-cancer drug bortezomib exhibits potent anti-mycobacterial activity and binds to Mycobacterium tuberculosis (Mtb) Clp protease complexes. We determine cryo-EM structures of Mtb ClpP1P2, ClpC1P1P2 and ClpXP1P2 complexes bound to bortezomib in different conformations. Structural and biochemical data indicate that sub-stoichiometric binding by bortezomib to the protease active sites orthosterically activates the MtbClpP1P2 complex. Bortezomib activation of MtbClpP1P2 induces structural changes promoting the recruitment of the chaperone-unfoldases, MtbClpC1 or MtbClpX, facilitating holoenzyme formation. The structures of the MtbClpC1P1P2 holoenzyme indicate that MtbClpC1 motion, induced by ATP rebinding at the MtbClpC1 spiral seam, translocates the substrate. In the MtbClpXP1P2 holoenzyme structure, we identify a specialized substrate channel gating mechanism involving the MtbClpX pore-2 loop and MtbClpP2 N-terminal domains. Our results provide insights into the intricate regulation of the Mtb Clp system and suggest that bortezomib can disrupt this regulation by sub-stoichiometric binding at the Mtb Clp protease sites
Concordance between nurse-reported quality of care and quality of care as publicly reported by nurse-sensitive indicators
Haploinsufficiency of RREB1 causes a Noonan-like RASopathy via epigenetic reprogramming of RAS-MAPK pathway genes
AbstractRAS-MAPK signaling mediates processes critical to normal development including cell proliferation, survival, and differentiation. Germline mutation of RAS-MAPK genes lead to the Noonan-spectrum of syndromes. Here, we present a patient affected by a 6p-interstitial microdeletion with unknown underlying molecular etiology. Examination of 6p-interstitial microdeletion cases reveals shared clinical features consistent with Noonan-spectrum disorders including short stature, facial dysmorphia and cardiovascular abnormalities. We find the RAS-responsive element binding protein-1 (RREB1) is the common deleted gene in multiple 6p-interstitial microdeletion cases. Rreb1 hemizygous mice display orbital hypertelorism and cardiac hypertrophy phenocopying the human syndrome. Rreb1 haploinsufficiency leads to sensitization of MAPK signaling. Rreb1 recruits Sin3a and Kdm1a to control H3K4 methylation at MAPK pathway gene promoters. Haploinsufficiency of SIN3A and mutations in KDM1A cause syndromes similar to RREB1 haploinsufficiency suggesting genetic perturbation of the RREB1-SIN3A-KDM1A complex represents a new category of RASopathy-like syndromes arising through epigenetic reprogramming of MAPK pathway genes.</jats:p
The alternate AP-1 adaptor subunit Apm2 interacts with the Mil1 regulatory protein and confers differential cargo sorting
Sex-specific alterations in hippocampal cannabinoid 1 receptor expression following adolescent delta-9-tetrahydrocannabinol treatment in the rat
Marijuana use by adolescents has been on the rise since the early 1990’s. With recent legalization and decriminalization acts passed, cannabinoid exposure in adolescents will undoubtedly increase. Human studies are limited in their ability to examine underlying changes in brain biochemistry making rodent models valuable. Studies in adult and adolescent animals show region and sex specific downregulation of the cannabinoid 1 (CB1) receptor following chronic cannabinoid treatment. However, although sex-dependent changes in behavior have been observed during the drug abstinence period following adolescent cannabinoid exposure, little is known about CB1 receptor expression during this critical time. In order to characterize CB1 receptor expression following chronic adolescent Δ-9-tetrahydrocannabinol (THC) exposure, we used [(3)H]CP55,940 binding to assess CB1 receptor expression in the dentate gyrus and areas CA1, CA2, and CA3 of the hippocampus in both male and female adolescent rats at both 24 hours and 2 weeks post chronic THC treatment. Consistent with other reported findings, we found downregulation of the CB1 receptor in the hippocampal formation at 24 hours post treatment. While this downregulation persisted in both sexes following two weeks of abstinence in the CA2 region, in females, this downregulation also persisted in areas CA1 and CA3. Expression in the dentate gyrus returned to the normal range by two weeks. These data suggest that selective regions of the hippocampus show persistent reductions in CB1 receptor expression and that these reductions are more widespread in female compared to male adolescents
The synaptobrevin homologue Snc2p recruits the exocyst to secretory vesicles by binding to Sec6p
A screen for mutations that affect the recruitment of the exocyst to secretory vesicles identified genes encoding clathrin and proteins that associate or colocalize with clathrin at sites of endocytosis. However, no significant colocalization of the exocyst with clathrin was seen, arguing against a direct role in exocyst recruitment. Rather, these components are needed to recycle the exocytic vesicle SNAREs Snc1p and Snc2p from the plasma membrane into new secretory vesicles where they act to recruit the exocyst. We observe a direct interaction between the exocyst subunit Sec6p and the latter half of the SNARE motif of Snc2p. An snc2 mutation that specifically disrupts this interaction led to exocyst mislocalization and a block in exocytosis in vivo without affecting liposome fusion in vitro. Overexpression of Sec4p partially suppressed the exocyst localization defects of mutations in clathrin and clathrin-associated components. We propose that the exocyst is recruited to secretory vesicles by the combinatorial signals of Sec4-GTP and the Snc proteins. This could help to confer both specificity and directionality to vesicular traffic
