60 research outputs found

    Macrophage Subset Sensitivity to Endotoxin Tolerisation by Porphyromonas gingivalis

    Get PDF
    Macrophages (MΦs) determine oral mucosal responses; mediating tolerance to commensal microbes and food whilst maintaining the capacity to activate immune defences to pathogens. MΦ responses are determined by both differentiation and activation stimuli, giving rise to two distinct subsets; pro-inflammatory M1- and anti-inflammatory/regulatory M2- MΦs. M2-like subsets predominate tolerance induction whereas M1 MΦs predominate in inflammatory pathologies, mediating destructive inflammatory mechanisms, such as those in chronic P.gingivalis (PG) periodontal infection. MΦ responses can be suppressed to benefit either the host or the pathogen. Chronic stimulation by bacterial pathogen associated molecular patterns (PAMPs), such as LPS, is well established to induce tolerance. The aim of this study was to investigate the susceptibility of MΦ subsets to suppression by P. gingivalis. CD14hi and CD14lo M1- and M2-like MΦs were generated in vitro from the THP-1 monocyte cell line by differentiation with PMA and vitamin D3, respectively. MΦ subsets were pre-treated with heat-killed PG (HKPG) and PG-LPS prior to stimulation by bacterial PAMPs. Modulation of inflammation was measured by TNFα, IL-1β, IL-6, IL-10 ELISA and NFκB activation by reporter gene assay. HKPG and PG-LPS differentially suppress PAMP-induced TNFα, IL-6 and IL-10 but fail to suppress IL-1β expression in M1 and M2 MΦs. In addition, P.gingivalis suppressed NFκB activation in CD14lo and CD14hi M2 regulatory MΦs and CD14lo M1 MΦs whereas CD14hi M1 pro-inflammatory MΦs were refractory to suppression. In conclusion, P.gingivalis selectively tolerises regulatory M2 MΦs with little effect on pro-inflammatory CD14hi M1 MΦs; differential suppression facilitating immunopathology at the expense of immunity

    IL1RN genetic variations and risk of IPF: a meta-analysis and mRNA expression study

    Get PDF
    Idiopathic pulmonary fibrosis (IPF) is a rare and devastating lung disease of unknown aetiology. Genetic variations in the IL1RN gene, encoding the interleukin-1 receptor antagonist (IL-1Ra), have been associated with IPF susceptibility. Several studies investigated the variable number tandem repeat (VNTR) or single nucleotide polymorphisms rs408392, rs419598 and rs2637988, with variable results. The aim of this study was to elucidate the influence of polymorphisms in IL1RN on IPF susceptibility and mRNA expression. We performed a meta-analysis of the five case–control studies that investigated an IL1RN polymorphism in IPF in a Caucasian population. In addition, we investigated whether IL1RN mRNA expression was influenced by IL1RN polymorphisms. The VNTR, rs408392 and rs419598 were in tight linkage disequilibrium, with D′ > 0.99. Furthermore, rs2637988 was in linkage disequilibrium with the VNTR (D′ = 0.90). A haploblock of VNTR*2 and the minor alleles of rs408392and rs419598 was constructed. Meta-analysis revealed that this VNTR*2 haploblock is associated with IPF susceptibility both with an allelic model (odds ratio = 1.42, p = 0.002) and a carriership model (odds ratio = 1.60, p = 0.002). IL1RN mRNA expression was significantly influenced by rs2637988, with lower levels found in carriers of the (minor) GG genotype (p < 0.001). From this meta-analysis, we conclude that the VNTR*2 haploblock is associated with susceptibility to IPF. In addition, polymorphisms in IL1RN influence IL-1Ra mRNA expression, suggesting that lower levels of IL-1Ra predispose to developing IPF. Together these findings demonstrate that the cytokine IL-1Ra plays a role in IPF pathogenesis

    Recent evolution of the NF-κB and inflammasome regulating protein POP2 in primates

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Pyrin-only protein 2 (POP2) is a small human protein comprised solely of a pyrin domain that inhibits NF-κB p65/RelA and blocks the formation of functional IL-1β processing inflammasomes. Pyrin proteins are abundant in mammals and several, like POP2, have been linked to activation or regulation of inflammatory processes. Because <it>POP2 </it>knockout mice would help probe the biological role of inflammatory regulation, we thus considered whether <it>POP2 </it>is common in the mammalian lineage.</p> <p>Results</p> <p>BLAST searches revealed that <it>POP2 </it>is absent from the available genomes of not only mice and rats, but those of other domestic mammals and New World monkeys as well. <it>POP2 </it>is however present in the genome of the primate species most closely related to humans including <it>Pan troglodytes </it>(chimpanzees), <it>Macaca mulatta </it>(rhesus macaques) and others. Interestingly, chimpanzee POP2 is identical to human POP2 (huPOP2) at both the DNA and protein level. Macaque POP2 (mqPOP2), although highly conserved is not identical to the human sequence; however, both functions of the human protein are retained. Further, <it>POP2 </it>appears to have arisen in the mammalian genome relatively recently (~25 mya) and likely derived from retrogene insertion of <it>NLRP2</it>.</p> <p>Conclusion</p> <p>Our findings support the hypothesis that the NLR loci of mammals, encoding proteins involved in innate and adaptive immunity as well as mammalian development, have been subject to recent and strong selective pressures. Since POP2 is capable of regulating signaling events and processes linked to innate immunity and inflammation, its presence in the genomes of hominids and Old World primates further suggests that additional regulation of these signals is important in these species.</p

    Anti-Arthritic Effects of Magnolol in Human Interleukin 1β-Stimulated Fibroblast-Like Synoviocytes and in a Rat Arthritis Model

    Get PDF
    Fibroblast-like synoviocytes (FLS) play an important role in the pathologic processes of destructive arthritis by producing a number of catabolic cytokines and metalloproteinases (MMPs). The expression of these mediators is controlled at the transcriptional level. The purposes of this study were to evaluate the anti-arthritic effects of magnolol (5,5′-Diallyl-biphenyl-2,2′-diol), the major bioactive component of the bark of Magnolia officinalis, by examining its inhibitory effects on inflammatory mediator secretion and the NF-κB and AP-1 activation pathways and to investigate its therapeutic effects on the development of arthritis in a rat model. The in vitro anti-arthritic activity of magnolol was tested on interleukin (IL)-1β-stimulated FLS by measuring levels of IL-6, cyclooxygenase-2, prostaglandin E2, and matrix metalloproteinases (MMPs) by ELISA and RT-PCR. Further studies on how magnolol inhibits IL-1β-stimulated cytokine expression were performed using Western blots, reporter gene assay, electrophoretic mobility shift assay, and confocal microscope analysis. The in vivo anti-arthritic effects of magnolol were evaluated in a Mycobacterium butyricum-induced arthritis model in rats. Magnolol markedly inhibited IL-1β (10 ng/mL)-induced cytokine expression in a concentration-dependent manner (2.5–25 µg/mL). In clarifying the mechanisms involved, magnolol was found to inhibit the IL-1β-induced activation of the IKK/IκB/NF-κB and MAPKs pathways by suppressing the nuclear translocation and DNA binding activity of both transcription factors. In the animal model, magnolol (100 mg/kg) significantly inhibited paw swelling and reduced serum cytokine levels. Our results demonstrate that magnolol inhibits the development of arthritis, suggesting that it might provide a new therapeutic approach to inflammatory arthritis diseases

    Quantitative and Qualitative Urinary Cellular Patterns Correlate with Progression of Murine Glomerulonephritis

    Get PDF
    The kidney is a nonregenerative organ composed of numerous functional nephrons and collecting ducts (CDs). Glomerular and tubulointerstitial damages decrease the number of functional nephrons and cause anatomical and physiological alterations resulting in renal dysfunction. It has recently been reported that nephron constituent cells are dropped into the urine in several pathological conditions associated with renal functional deterioration. We investigated the quantitative and qualitative urinary cellular patterns in a murine glomerulonephritis model and elucidated the correlation between cellular patterns and renal pathology

    Effects of Aging on Endotoxin Tolerance Induced by Lipopolysaccharides Derived from Porphyromonas gingivalis and Escherichia coli

    Get PDF
    Background: Periodontitis is a bacterially induced chronic inflammatory disease. Exposure of the host to periodontal pathogens and their virulence factors induces a state of hyporesponsiveness to subsequent stimulations, termed endotoxin tolerance. Aging has a profound effect on immune response to bacteria challenge. The aim of this study was to explore the effects of aging on endotoxin tolerance induced by Porphyromonas gingivalis (P. gingivalis) lipopolysaccharide (LPS) and Escherichia coli (E. coli) LPS in murine peritoneal macrophages. Methodology/Principal Findings: We studied the cytokine production (TNF-aand IL-10) and Toll-like receptor 2, 4 (TLR2, 4) gene and protein expressions in peritoneal macrophages from young (2-month-old) and middle-aged (12-month-old) ICR mice following single or repeated P. gingivalis LPS or E. coli LPS stimulation. Pretreatment of peritoneal macrophages with P. gingivalis LPS or E. coli LPS resulted in a reduction in TNF-a production and an increase in IL-10 production upon secondary stimulation (p,0.05), and the markedly lower levels of TNF-a and higher levels of IL-10 were observed in macrophages from young mice compared with those from middle-aged mice (p,0.05). In addition, LPS restimulations also led to the significantly lower expression levels of TLR2, 4 mRNA and protein in macrophages from young mice (p,0.05). Conclusions/Significance: Repeated LPS stimulations triggered endotoxin tolerance in peritoneal macrophages and the ability to develop tolerance in young mice was more excellent. The impaired ability to develop endotoxin tolerance resulte

    Inflammatory Cytokine Expression Is Associated with Chikungunya Virus Resolution and Symptom Severity

    Get PDF
    The Chikungunya virus infection zones have now quickly spread from Africa to parts of Asia, North America and Europe. Originally thought to trigger a disease of only mild symptoms, recently Chikungunya virus caused large-scale fatalities and widespread economic loss that was linked to recent virus genetic mutation and evolution. Due to the paucity of information on Chikungunya immunological progression, we investigated the serum levels of 13 cytokines/chemokines during the acute phase of Chikungunya disease and 6- and 12-month post-infection follow-up from patients of the Italian outbreak. We found that CXCL9/MIG, CCL2/MCP-1, IL-6 and CXCL10/IP-10 were significantly raised in the acute phase compared to follow-up samples. Furthermore, IL-1β, TNF-α, Il-12, IL-10, IFN-γ and IL-5 had low initial acute phase levels that significantly increased at later time points. Analysis of symptom severity showed association with CXCL9/MIG, CXCL10/IP-10 and IgG levels. These data give insight into Chikungunya disease establishment and subsequent convalescence, which is imperative to the treatment and containment of this quickly evolving and frequently re-emerging disease
    corecore