43 research outputs found

    Cross-sectional and longitudinal voxel-based grey matter asymmetries in Huntington's disease

    Get PDF
    Huntington's disease (HD) is a progressive neurodegenerative disorder that can be genetically confirmed with certainty decades before clinical onset. This allows the investigation of functional and structural changes in HD many years prior to disease onset, which may reveal important mechanistic insights into brain function, structure and organization in general. While regional atrophy is present at early stages of HD, it is still unclear if both hemispheres are equally affected by neurodegeneration and how the extent of asymmetry affects domain-specific functional decline. Here, we used whole-brain voxel-based analysis to investigate cross-sectional and longitudinal hemispheric asymmetries in grey matter (GM) volume in 56 manifest HD (mHD), 83 pre-manifest HD (preHD), and 80 healthy controls (HC). Furthermore, a regression analysis was used to assess the relationship between neuroanatomical asymmetries and decline in motor and cognitive measures across the disease spectrum. The cross-sectional analysis showed striatal leftward-biased GM atrophy in mHD, but not in preHD, relative to HC. Longitudinally, no net 36-month change in GM asymmetries was found in any of the groups. In the regression analysis, HD-related decline in quantitative-motor (Q-Motor) performance was linked to lower GM volume in the left superior parietal cortex. These findings suggest a stronger disease effect targeting the left hemisphere, especially in those with declining motor performance. This effect did not change over a period of three years and may indicate a compensatory role of the right hemisphere in line with recent functional imaging studies

    Apathy predicts rate of cognitive decline over 24 months in premanifest Huntington's disease

    Get PDF
    Background Cognitive impairment is a core feature of Huntington's disease (HD), however, the onset and rate of cognitive decline is highly variable. Apathy is the most common neuropsychiatric symptom of HD, and is associated with cognitive impairment. The aim of this study was to investigate apathy as a predictor of subsequent cognitive decline over 2 years in premanifest and early HD, using a prospective, longitudinal design. Methods A total of 118 premanifest HD gene carriers, 111 early HD and 118 healthy control participants from the multi-centre TRACK-HD study were included. Apathy symptoms were assessed at baseline using the apathy severity rating from the Short Problem Behaviours Assessment. A composite of 12 outcome measures from nine cognitive tasks was used to assess cognitive function at baseline and after 24 months. Results In the premanifest group, after controlling for age, depression and motor signs, more apathy symptoms predicted faster cognitive decline over 2 years. In contrast, in the early HD group, more motor signs, but not apathy, predicted faster subsequent cognitive decline. In the control group, only older age predicted cognitive decline. Conclusions Our findings indicate that in premanifest HD, apathy is a harbinger for cognitive decline. In contrast, after motor onset, in early diagnosed HD, motor symptom severity more strongly predicts the rate of cognitive decline.Neurological Motor Disorder

    A genetic association study of glutamine-encoding DNA sequence structures, somatic CAG expansion, and DNA repair gene variants, with Huntington disease clinical outcomes

    Get PDF
    Background: Huntington disease (HD) is caused by an unstable CAG/CAA repeat expansion encoding a toxic polyglutamine tract. Here, we tested the hypotheses that HD outcomes are impacted by somatic expansion of, and polymorphisms within, the HTT CAG/CAA glutamine-encoding repeat, and DNA repair genes. Methods: The sequence of the glutamine-encoding repeat and the proportion of somatic CAG expansions in blood DNA from participants inheriting 40 to 50 CAG repeats within the TRACK-HD and Enroll-HD cohorts were determined using high-throughput ultra-deep-sequencing. Candidate gene polymorphisms were genotyped using kompetitive allele-specific PCR (KASP). Genotypic associations were assessed using time-to-event and regression analyses. Findings: Using data from 203 TRACK-HD and 531 Enroll-HD participants, we show that individuals with higher blood DNA somatic CAG repeat expansion scores have worse HD outcomes: a one-unit increase in somatic expansion score was associated with a Cox hazard ratio for motor onset of 3·05 (95% CI = 1·94 to 4·80, p = 1·3 × 10−6). We also show that individual-specific somatic expansion scores are associated with variants in FAN1 (pFDR = 4·8 × 10-6), MLH3 (pFDR = 8·0 × 10−4), MLH1 (pFDR = 0·004) and MSH3 (pFDR = 0·009). We also show that HD outcomes are best predicted by the number of pure CAGs rather than total encoded-glutamines. Interpretation: These data establish pure CAG length, rather than encoded-glutamine, as the key inherited determinant of downstream pathophysiology. These findings have implications for HD diagnostics, and support somatic expansion as a mechanistic link for genetic modifiers of clinical outcomes, a driver of disease, and potential therapeutic target in HD and related repeat expansion disorders

    Survival End Points for Huntington Disease Trials Prior to a Motor Diagnosis

    Get PDF
    IMPORTANCE: Predictive genetic testing in Huntington disease (HD) enables therapeutic trials in HTT gene expansion mutation carriers prior to a motor diagnosis. Progression-free survival (PFS) is the composite of a motor diagnosis or a progression event, whichever comes first. OBJECTIVE: To determine if PFS provides feasible sample sizes for trials with mutation carriers who have not yet received a motor diagnosis. DESIGN, SETTING AND PARTICIPANTS: This study uses data from the 2-phase, longitudinal cohort studies called Track and from a longitudinal cohort study called the Cooperative Huntington Observational Research Trial (COHORT). Track had 167 prediagnosis mutation carriers and 156 noncarriers, whereas COHORT had 366 prediagnosis mutation carriers and noncarriers. Track studies were conducted at 4 sites in 4 countries (Canada, France, England, and the Netherlands) from which data were collected from January 17, 2008, through November 17, 2014. The COHORT was conducted at 38 sites in 3 countries (Australia, Canada, and the United States) from which data were collected from February 14, 2006, through December 31, 2009. Results from the Track data were externally validated with data from the COHORT. The required sample size was estimated for a 2-arm prediagnosis clinical trial. Data analysis took place from May 1, 2016, to June 10, 2017. MAIN OUTCOMES AND MEASURES: The primary end point is PFS. Huntington disease progression events are defined for the Unified Huntington's Disease Rating Scale total motor score, total functional capacity, symbol digit modalities test, and Stroop word test. RESULTS: Of Track’s 167 prediagnosis mutation carriers, 93 (55.6%) were women, and the mean (SD) age was 40.06 (8.92) years; of the 156 noncarriers, 87 (55.7%) were women, and the mean (SD) age was 45.58 (10.30) years. Of the 366 COHORT participants, 229 (62.5%) were women and the mean (SD) age was 42.21 (12.48) years. The PFS curves of the Track mutation carriers showed good external validity with the COHORT mutation carriers after adjusting for initial progression. For required sample size, PFS with a motor diagnosis or total motor score progression required about 4 times fewer participants than a motor diagnosis alone. Including additional cognitive progression events further reduced the number. For example, a 3-year trial with 10% attrition and a treatment effect of 50% requires a total of 661 with motor diagnosis as the survival end point but only 177 with a total motor score PFS. CONCLUSIONS AND RELEVANCE: Reasonably sized prediagnosis Huntington disease trials can be planned with PFS, and there is evidence of generalizability of this approach

    Design optimization for clinical trials in early-stage manifest Huntington's disease.

    Get PDF
    The purpose of this study was to inform the design of randomized clinical trials in early-stage manifest Huntington's disease through analysis of longitudinal data from TRACK-Huntington's Disease (TRACK-HD), a multicenter observational study. We compute sample sizes required for trials with candidate clinical, functional, and imaging outcomes, whose aims are to reduce rates of change. The calculations use a 2-stage approach: first using linear mixed models to estimate mean rates of change and components of variability from TRACK-HD data and second using these to predict sample sizes for a range of trial designs. For each outcome, the primary drivers of the required sample size were the anticipated treatment effect and the duration of treatment. Extending durations from 1 to 2 years yielded large sample size reductions. Including interim visits and incorporating stratified randomization on predictors of outcome together with covariate adjustment gave more modest, but nontrivial, benefits. Caudate atrophy, expressed as a percentage of its baseline, was the outcome that gave smallest required sample sizes. Here we consider potential required sample sizes for clinical trials estimated from naturalistic observation of longitudinal change. Choice among outcome measures for a trial must additionally consider their relevance to patients and the expected effect of the treatment under study. For all outcomes considered, our results provide compelling arguments for 2-year trials, and we also demonstrate the benefits of incorporating stratified randomization coupled with covariate adjustment, particularly for trials with caudate atrophy as the primary outcome. The benefits of enrichment are more debatable, with statistical benefits offset by potential recruitment difficulties and reduced generalizability. © 2017 International Parkinson and Movement Disorder Society

    Identification of genetic variants associated with Huntington's disease progression: a genome-wide association study.

    Get PDF
    BACKGROUND: Huntington's disease is caused by a CAG repeat expansion in the huntingtin gene, HTT. Age at onset has been used as a quantitative phenotype in genetic analysis looking for Huntington's disease modifiers, but is hard to define and not always available. Therefore, we aimed to generate a novel measure of disease progression and to identify genetic markers associated with this progression measure. METHODS: We generated a progression score on the basis of principal component analysis of prospectively acquired longitudinal changes in motor, cognitive, and imaging measures in the 218 indivduals in the TRACK-HD cohort of Huntington's disease gene mutation carriers (data collected 2008-11). We generated a parallel progression score using data from 1773 previously genotyped participants from the European Huntington's Disease Network REGISTRY study of Huntington's disease mutation carriers (data collected 2003-13). We did a genome-wide association analyses in terms of progression for 216 TRACK-HD participants and 1773 REGISTRY participants, then a meta-analysis of these results was undertaken. FINDINGS: Longitudinal motor, cognitive, and imaging scores were correlated with each other in TRACK-HD participants, justifying use of a single, cross-domain measure of disease progression in both studies. The TRACK-HD and REGISTRY progression measures were correlated with each other (r=0·674), and with age at onset (TRACK-HD, r=0·315; REGISTRY, r=0·234). The meta-analysis of progression in TRACK-HD and REGISTRY gave a genome-wide significant signal (p=1·12 × 10-10) on chromosome 5 spanning three genes: MSH3, DHFR, and MTRNR2L2. The genes in this locus were associated with progression in TRACK-HD (MSH3 p=2·94 × 10-8DHFR p=8·37 × 10-7 MTRNR2L2 p=2·15 × 10-9) and to a lesser extent in REGISTRY (MSH3 p=9·36 × 10-4DHFR p=8·45 × 10-4MTRNR2L2 p=1·20 × 10-3). The lead single nucleotide polymorphism (SNP) in TRACK-HD (rs557874766) was genome-wide significant in the meta-analysis (p=1·58 × 10-8), and encodes an aminoacid change (Pro67Ala) in MSH3. In TRACK-HD, each copy of the minor allele at this SNP was associated with a 0·4 units per year (95% CI 0·16-0·66) reduction in the rate of change of the Unified Huntington's Disease Rating Scale (UHDRS) Total Motor Score, and a reduction of 0·12 units per year (95% CI 0·06-0·18) in the rate of change of UHDRS Total Functional Capacity score. These associations remained significant after adjusting for age of onset. INTERPRETATION: The multidomain progression measure in TRACK-HD was associated with a functional variant that was genome-wide significant in our meta-analysis. The association in only 216 participants implies that the progression measure is a sensitive reflection of disease burden, that the effect size at this locus is large, or both. Knockout of Msh3 reduces somatic expansion in Huntington's disease mouse models, suggesting this mechanism as an area for future therapeutic investigation. FUNDING: The European Commission FP7 NeurOmics project; CHDI Foundation; the Medical Research Council UK; the Brain Research Trust; and the Guarantors of Brain

    Excess maternal salt intake produces sex-specific hypertension in offspring: putative roles for kidney and gastrointestinal sodium handling.

    Get PDF
    Hypertension is common and contributes, via cardiovascular disease, towards a large proportion of adult deaths in the Western World. High salt intake leads to high blood pressure, even when occurring prior to birth - a mechanism purported to reside in altered kidney development and later function. Using a combination of in vitro and in vivo approaches we tested whether increased maternal salt intake influences fetal kidney development to render the adult individual more susceptible to salt retention and hypertension. We found that salt-loaded pregnant rat dams were hypernatraemic at day 20 gestation (147±5 vs. 128±5 mmoles/L). Increased extracellular salt impeded murine kidney development in vitro, but had little effect in vivo. Kidneys of the adult offspring had few structural or functional abnormalities, but male and female offspring were hypernatraemic (166±4 vs. 149±2 mmoles/L), with a marked increase in plasma corticosterone (e.g. male offspring; 11.9 [9.3-14.8] vs. 2.8 [2.0-8.3] nmol/L median [IQR]). Furthermore, adult male, but not female, offspring had higher mean arterial blood pressure (effect size, +16 [9-21] mm Hg; mean [95% C.I.]. With no clear indication that the kidneys of salt-exposed offspring retained more sodium per se, we conducted a preliminary investigation of their gastrointestinal electrolyte handling and found increased expression of proximal colon solute carrier family 9 (sodium/hydrogen exchanger), member 3 (SLC9A3) together with altered faecal characteristics and electrolyte handling, relative to control offspring. On the basis of these data we suggest that excess salt exposure, via maternal diet, at a vulnerable period of brain and gut development in the rat neonate lays the foundation for sustained increases in blood pressure later in life. Hence, our evidence further supports the argument that excess dietary salt should be avoided per se, particularly in the range of foods consumed by physiologically immature young

    Osteochondral defects in the ankle: why painful?

    Get PDF
    Osteochondral defects of the ankle can either heal and remain asymptomatic or progress to deep ankle pain on weight bearing and formation of subchondral bone cysts. The development of a symptomatic OD depends on various factors, including the damage and insufficient repair of the subchondral bone plate. The ankle joint has a high congruency. During loading, compressed cartilage forces its water into the microfractured subchondral bone, leading to a localized high increased flow and pressure of fluid in the subchondral bone. This will result in local osteolysis and can explain the slow development of a subchondral cyst. The pain does not arise from the cartilage lesion, but is most probably caused by repetitive high fluid pressure during walking, which results in stimulation of the highly innervated subchondral bone underneath the cartilage defect. Understanding the natural history of osteochondral defects could lead to the development of strategies for preventing progressive joint damage

    Identification of genetic variants associated with Huntington's disease progression: a genome-wide association study

    Get PDF
    Background Huntington's disease is caused by a CAG repeat expansion in the huntingtin gene, HTT. Age at onset has been used as a quantitative phenotype in genetic analysis looking for Huntington's disease modifiers, but is hard to define and not always available. Therefore, we aimed to generate a novel measure of disease progression and to identify genetic markers associated with this progression measure. Methods We generated a progression score on the basis of principal component analysis of prospectively acquired longitudinal changes in motor, cognitive, and imaging measures in the 218 indivduals in the TRACK-HD cohort of Huntington's disease gene mutation carriers (data collected 2008–11). We generated a parallel progression score using data from 1773 previously genotyped participants from the European Huntington's Disease Network REGISTRY study of Huntington's disease mutation carriers (data collected 2003–13). We did a genome-wide association analyses in terms of progression for 216 TRACK-HD participants and 1773 REGISTRY participants, then a meta-analysis of these results was undertaken. Findings Longitudinal motor, cognitive, and imaging scores were correlated with each other in TRACK-HD participants, justifying use of a single, cross-domain measure of disease progression in both studies. The TRACK-HD and REGISTRY progression measures were correlated with each other (r=0·674), and with age at onset (TRACK-HD, r=0·315; REGISTRY, r=0·234). The meta-analysis of progression in TRACK-HD and REGISTRY gave a genome-wide significant signal (p=1·12 × 10−10) on chromosome 5 spanning three genes: MSH3, DHFR, and MTRNR2L2. The genes in this locus were associated with progression in TRACK-HD (MSH3 p=2·94 × 10−8 DHFR p=8·37 × 10−7 MTRNR2L2 p=2·15 × 10−9) and to a lesser extent in REGISTRY (MSH3 p=9·36 × 10−4 DHFR p=8·45 × 10−4 MTRNR2L2 p=1·20 × 10−3). The lead single nucleotide polymorphism (SNP) in TRACK-HD (rs557874766) was genome-wide significant in the meta-analysis (p=1·58 × 10−8), and encodes an aminoacid change (Pro67Ala) in MSH3. In TRACK-HD, each copy of the minor allele at this SNP was associated with a 0·4 units per year (95% CI 0·16–0·66) reduction in the rate of change of the Unified Huntington's Disease Rating Scale (UHDRS) Total Motor Score, and a reduction of 0·12 units per year (95% CI 0·06–0·18) in the rate of change of UHDRS Total Functional Capacity score. These associations remained significant after adjusting for age of onset. Interpretation The multidomain progression measure in TRACK-HD was associated with a functional variant that was genome-wide significant in our meta-analysis. The association in only 216 participants implies that the progression measure is a sensitive reflection of disease burden, that the effect size at this locus is large, or both. Knockout of Msh3 reduces somatic expansion in Huntington's disease mouse models, suggesting this mechanism as an area for future therapeutic investigation
    corecore