111 research outputs found
Climate variability as reflected in a regional atmospheric CO2 record
This paper analyses a 15-year long atmospheric CO2 mixing ratio
record measured at a mid-continental, low-elevation station
(Hegyhatsal, Hungary) to reveal the effect of regional climate
variability. While the long-term trend and the temporal
fluctuation of the growth rate of CO2 mixing ratio follow the
global tendencies to a large extent, the shorter-term variations
show special features. We present the distorted seasonal cycle
caused by the seasonality in the atmospheric vertical mixing and
the tendentious change in its shape, which can be attributed to
the gradual warming and to the resulted prolongation of the
growing season. The decreasing summer diurnal amplitude and the
decreasing seasonal amplitude in the mixing ratio, furthermore
the higher than average summer CO2 mixing ratio growth rate in
the first period of the measurements (1994-2003) with generally
rising temperature and decreasing precipitation are explained as
the consequence of the reduced activity of the biosphere in the
influence area of the station and that of the reduced biomass
under environmental conditions getting increasingly
unfavourable. The explanation is supported by the co-located
tall tower surface-atmosphere CO2 exchange measurements and by
the crop yield statistics of the dominantly agricultural region
around the station
Inverse Modelling of European N2O Emissions: Assimilating Observations from Different Networks
We describe the setup and first results of an inverse modelling system for atmospheric N2O, based on a four-dimensional variational (4DVAR) technique and the atmospheric transport zoom model TM5. We focus in this study on the European domain, utilizing a comprehensive set of quasi-continuous measurements over Europe, complemented by N2O measurements from the NOAA/ESRL cooperative global air sampling network. Despite ongoing measurement comparisons among networks parallel measurements at a limited number of stations show that significant offsets exist among the different laboratories. Since the spatial gradients of N2O mixing ratios are of the same order of magnitude as these biases, the direct use of these biased datasets would lead to significant errors in the derived emissions. Therefore, in order to also use measurements with unknown offsets, a new bias correction scheme has been implemented within the TM5-4DVAR inverse modelling system, thus allowing the simultaneous assimilation of observations from different networks. The N2O bias corrections determined in the TM5-4DVAR system agree within 0.1 ppb with the bias derived from the measurements at monitoring stations where parallel NOAA discrete air samples are available. The N2O emissions derived for the northwest European countries for 2006 show good agreement with the bottom-up emission inventories reported to UNFCCC. Moreover, the inverse model can significantly narrow the uncertainty range reported in N2O emission inventories, while the lack of measurements does not allow for better emission estimates in southern Europe.
Several sensitivity experiments were performed to test the robustness of the results. It is shown that also inversions without detailed a priori spatio-temporal emission distributions are capable to reproduce major regional emission patterns within the footprint of the existing atmospheric network, demonstrating the strong constraints of the atmospheric observations on the derived emissions.JRC.DDG.H.2 - Climate change and air qualit
Carbon exchange of grass in Hungary
Continuous measurement of net biosphere-atmosphere carbon exchange was
performed in western Hungary over a managed semi-natural grassland
field using the eddy covariance technique to estimate Net Ecosystem
Exchange (NEE). The paper presents the measuring site and
instrumentation, as well as the data processing methods applied. The
measurements covered the period March 1999 to December 2000 during
which, on an annual time scale, the region acted as a net CO2 sink,
where NEE was -54 g C m(-2) in 1999 (data for January and February were
estimated) and -232 g C m(-2) in 2000 (negative NEE represents CO2
uptake by the vegetation). The remarkable inter-annual difference may
be the result of the significant climate difference between 1999 and
2000
Regional inversion of CO2 ecosystem fluxes from atmospheric measurements: reliability of the uncertainty estimates
Inverse modelling of European CH4 emissions during 2006-2012 using different inverse models and reassessed atmospheric observations
We present inverse modelling (top down) estimates of European methane (CH4) emissions for 2006-2012 based on a new quality-controlled and harmonised in situ data set from 18 European atmospheric monitoring stations. We applied an ensemble of seven inverse models and performed four inversion experiments, investigating the impact of different sets of stations and the use of a priori information on emissions.The inverse models infer total CH4 emissions of 26.8 (20.2-29.7) TgCH(4) yr(-1) (mean, 10th and 90th percentiles from all inversions) for the EU-28 for 2006-2012 from the four inversion experiments. For comparison, total anthropogenic CH4 emissions reported to UNFCCC (bottom up, based on statistical data and emissions factors) amount to only 21.3 TgCH(4) yr(-1) (2006) to 18.8 TgCH(4) yr(-1) (2012). A potential explanation for the higher range of top-down estimates compared to bottom-up inventories could be the contribution from natural sources, such as peatlands, wetlands, and wet soils. Based on seven different wetland inventories from the Wetland and Wetland CH4 Inter-comparison of Models Project (WETCHIMP), total wetland emissions of 4.3 (2.3-8.2) TgCH(4) yr(-1) from the EU-28 are estimated. The hypothesis of significant natural emissions is supported by the finding that several inverse models yield significant seasonal cycles of derived CH4 emissions with maxima in summer, while anthropogenic CH4 emissions are assumed to have much lower seasonal variability. Taking into account the wetland emissions from the WETCHIMP ensemble, the top-down estimates are broadly consistent with the sum of anthropogenic and natural bottom-up inventories. However, the contribution of natural sources and their regional distribution remain rather uncertain.Furthermore, we investigate potential biases in the inverse models by comparison with regular aircraft profiles at four European sites and with vertical profiles obtained during the Infrastructure for Measurement of the European Carbon Cycle (IMECC) aircraft campaign. We present a novel approach to estimate the biases in the derived emissions, based on the comparison of simulated and measured enhancements of CH4 compared to the background, integrated over the entire boundary layer and over the lower troposphere. The estimated average regional biases range between -40 and 20% at the aircraft profile sites in France, Hungary and Poland.</p
Identification of potential methane source regions in Europe using δ13 CCH4 measurements and trajectory modeling
The methane emissions from the Hungarian Pannonian Basin are not well qualified, due to a lack of measurements of CH4 mole fraction and δ13CCH4 in the air. This study reports methane measurements in air samples from Hungary, placing them in the context of regional and global background data, to investigate the inputs to the methane burden in Central Europe. CH4 mole fraction and δ13CCH4 from the Hungarian tall tower station, Hegyhátsál, and additional data from Mace Head (Ireland) and Zeppelin (Svalbard) are used with back-trajectory modeling to identify central European source areas and their seasonal variation between the summer vegetation and winter heating periods.
Methane measurements in air masses sampled in the European interior, have significantly higher maxima and seasonal amplitudes than at the Mace Head and Zeppelin European background sites. The mean CH4 mole fraction value is about 80 ppb higher than the comparable marine background, and values above 2000 ppb were frequently observed between February 2013 and December 2015. The mean δ13CCH4 value -47.5±0.3 ‰ (2σ) was comparable to values at all three monitoring sites, but specific pollution events were detected at Hegyhátsál. Concentration weighted trajectory modeling, meteorological parameters, stable carbon isotopic composition (δ13CCH4), and Miller-Tans analysis show that the main factors influencing CH4 at the Hegyhátsál, apart from diurnal and seasonal changes in the Planetary Boundary Layer, are emissions from residential heating and industrial CH4 emissions during the winter
CO2 surface fluxes at grid point scale estimated from a global 21 year reanalysis of atmospheric measurements
This paper documents a global Bayesian variational inversion of CO2 surface fluxes during the period 1988–2008. Weekly fluxes are estimated on a 3.75° × 2.5° (longitude-latitude) grid throughout the 21 years. The assimilated observations include 128 station records from three large data sets of surface CO2 mixing ratio measurements. A Monte Carlo approach rigorously quantifies the theoretical uncertainty of the inverted fluxes at various space and time scales, which is particularly important for proper interpretation of the inverted fluxes. Fluxes are evaluated indirectly against two independent CO2 vertical profile data sets constructed from aircraft measurements in the boundary layer and in the free troposphere. The skill of the inversion is evaluated by the improvement brought over a simple benchmark flux estimation based on the observed atmospheric growth rate. Our error analysis indicates that the carbon budget from the inversion should be more accurate than the a priori carbon budget by 20% to 60% for terrestrial fluxes aggregated at the scale of subcontinental regions in the Northern Hemisphere and over a year, but the inversion cannot clearly distinguish between the regional carbon budgets within a continent. On the basis of the independent observations, the inversion is seen to improve the fluxes compared to the benchmark: the atmospheric simulation of CO2 with the Bayesian inversion method is better by about 1 ppm than the benchmark in the free troposphere, despite possible systematic transport errors. The inversion achieves this improvement by changing the regional fluxes over land at the seasonal and at the interannual time scales.This work was performed using HPC resources from GENCI‐ (CCRT/CINES/IDRIS; grant 2009‐ t2009012201).
It was cofunded by the European Commission under the EU Seventh Research Framework Programme (grant agreements 212196, COCOS, and 218793, MACC)
Global CO2 fluxes inferred from surface air-sample measurements and from TCCON retrievals of the CO2 total column
We present the first estimate of the global distribution of CO2surface fluxes from 14 stations of the Total Carbon Column Observing Network (TCCON). The evaluation of this inversion is based on 1) comparison with the fluxes from a classical inversion of surface air-sample-measurements, and 2) comparison of CO2mixing ratios calculated from the inverted fluxes with independent aircraft measurements made during the two years analyzed here, 2009 and 2010. The former test shows similar seasonal cycles in the northern hemisphere and consistent regional carbon budgets between inversions from the two datasets, even though the TCCON inversion appears to be less precise than the classical inversion. The latter test confirms that the TCCON inversion has improved the quality (i.e., reduced the uncertainty) of the surface fluxes compared to the assumed or prior fluxes. The consistency between the surface-air-sample-based and the TCCON-based inversions despite remaining flaws in transport models opens the possibility of increased accuracy and robustness of flux inversions based on the combination of both data sources and confirms the usefulness of space-borne monitoring of the CO2 column.It was co-funded by the European Commission under the EU Seventh Research Framework Programme (grants agreements 218793, MACC, and 212196, COCOS
- …
