2,824 research outputs found

    Modelling collective foraging by means of individual behaviour rules in honey-bees

    Get PDF
    An individual-oriented model is constructed which simulates the collective foraging behaviour of a colony of honey-bees, Apis mellifera. Each bee follows the same set of behavioural rules. Each rule consists of a set of conditions followed by the behavioural act to be performed if the conditions are fulfilled. The set of conditions comprises the state of external information available to the bee (e.g. the dancing of other bees) and internal information variables (like memorised location of a food source and homing motivation). The rules are partly observational (i.e. they capture the observable regularities between the present external information and the individual bee's behaviour), and partly involve hypothesised internal-state variables (e.g. abandoning tendency and homing motivation), because no observ- able (physiological) aspect has as yet been detected in the bee which correlates with changes in the internal moti- vation. Our aim is to obtain a set of rules that is nec- essary and sufficient for the generation of the collective foraging behaviour observed in real bees. We simulated an experiment performed by Seeley et al. in which a colony of honey-bees chooses between two nectar sources of different profitabilities which are switched at intervals. A good fit between observed and simulated collective forager patterns was obtained when the model included rules in which the bees (1) relied on the infor- mation acquired from previous fiights to a source (e.g. profitability and time of day when the source was found), (2) used positional information obtained by at- tending recruitment dances and (3) did not abandon a (temporarily) deteriorated source too fast or too slowly. The significance of the following issues is discussed: the role of internal and external information, source prof- itability, the spatial precision of the dance communica- tion, the ability to search for a source after the source position has been transmitted, the tendency to abandon a deteriorated source, and the concepts of scout, recruit, (un)employed forager, and foraging history

    Symmetry breaking in collective honeybee foraging: a simulation study

    Get PDF
    Symmetry breaking is the phenomenon that the numbers of foragers exploiting two equally profitable food sources will diverge. This phenomenon has been investigated in ants [1,4,5], but hardly in honeybees. It is even not clear whether in honeybees symmetry breaking can occur [3, p.190]. We present results of an individual-oriented simulation model showing that under specific circumstances symmetry breaking in the numbers of honeybee workers exploiting two or four identical nectar sources can occur. We studied factors that influence the occurrence of symmetry breaking, which include: size of the forager pool, number of bees initially exploiting the sources, and size of the flower patch. This study is part of an ongoing study which aims at developing an individual-oriented simulation model capturing the necessary and sufficient behavioural rules to generate the collective foraging patterns observed in bee

    Exploration and exploitation of food sources by social insect colonies: a revision of the scout-recruit concept

    Get PDF
    Social insect colonies need to explore and exploit multiple food sources simultaneously and efficiently. At the individual level, this colony-level behaviour has been thought to be taken care of by two types of individual: scouts that independently search for food, and recruits that are directed by nest mates to a food source. However, recent analyses show that this strict division of labour between scouts and recruits is untenable. Therefore, a modified concept is presented here that comprises the possible behavioural states of an individual forager (novice forager, scout, recruit, employed forager, unemployed experienced forager, inspector and reactivated forager) and the transitions between them. The available empirical data are reviewed in the light of both the old and the new concept, and probabilities for the different transitions are derived for the case of the honey-bee. The modified concept distinguishes three types of foragers that may be involved in the exploration behaviour of the colony: novice bees that become scouts, unemployed experienced bees that scout, and lost recruits, i.e. bees that discover a food source other than the one to which they were directed to by their nest mates. An advantage of the modified concept is that it allows for a better comparison of studies investigating the different roles performed by social insect foragers during their individual foraging histories

    Extracting Muon Momentum Scale Corrections for Hadron Collider Experiments

    Full text link
    We present a simple method for the extraction of corrections for bias in the measurement of the momentum of muons in hadron collider experiments. Such bias can originate from a variety of sources such as detector misalignment, software reconstruction bias, and uncertainties in the magnetic field. The two step method uses the mean for muons from $Z\to \mu\mu$ decays to determine the momentum scale corrections in bins of charge, $\eta$ and $\phi$. In the second step, the corrections are tuned by using the average invariant mass of ZμμZ\to \mu\mu events in the same bins of charge η\eta and ϕ\phi. The forward-backward asymmetry of Z/γμμZ/\gamma^{*} \to \mu\mu pairs as a function of μ+μ\mu^+\mu^- mass, and the ϕ\phi distribution of ZZ bosons in the Collins-Soper frame are used to ascertain that the corrections remove the bias in the momentum measurements for positive versus negatively charged muons. By taking the sum and difference of the momentum scale corrections for positive and negative muons, we isolate additive corrections to 1/pTμ1/p^\mu_T that may originate from misalignments and multiplicative corrections that may originate from mis-modeling of the magnetic field (BdL)(\int \vec{B} \cdot d\vec{L}). This method has recently been used in the CDF experiment at Fermilab and in the CMS experiment at the Large Hadron Collider at CERNComment: 6 pages, 3 figures, to be published in EPJC 201

    Numerical investigation of conjugated heat transfer in a channel with a moving depositing front

    Get PDF
    This article presents numerical simulations of conjugated heat transfer in a fouled channel with a moving depositing front. The depositing front separating the fluid and the deposit layer is captured using the level-set method. Fluid flow is modeled by the incompressible Navier–Stokes equations. Numerical solution is performed on a fixed mesh using the finite volume method. The effects of Reynolds number and thermal conductivity ratio between the deposit layer and the fluid on local Nusselt number as well as length-averaged Nusselt number are investigated. It is found that heat transfer performance, represented by the local and length-averaged Nusselt number reduces significantly in a fouled channel compared with that in a clean channel. Heat transfer performance decreases with the growth of the deposit layer. Increases in Reynolds, Prandtl numbers both enhance heat transfer. Besides, heat transfer is enhanced when the thermal conductivity ratio between the deposit layer and the fluid is lower than 20 but it decreases when the thermal conductivity ratio is larger than 2

    Angular momentum spatial distribution symmetry breaking in Rb by an external magnetic field

    Get PDF
    Excited state angular momentum alignment -- orientation conversion for atoms with hyperfine structure in presence of an external magnetic field is investigated. Transversal orientation in these conditions is reported for the first time. This phenomenon occurs under Paschen Back conditions at intermediate magnetic field strength. Weak radiation from a linearly polarized diode laser is used to excite Rb atoms in a cell. The laser beam is polarized at an angle of pi/4 with respect to the external magnetic field direction. Ground state hyperfine levels of the 5S_1/2 state are resolved using laser-induced fluorescence spectroscopy under conditions for which all excited 5P_3/2 state hyperfine components are excited simultaneously. Circularly polarized fluorescence is observed to be emitted in the direction perpendicular to both to the direction of the magnetic field B and direction of the light polarization E. The obtained circularity is shown to be in quantitative agreement with theoretical predictions.Comment: Accepted for publication in Phys. Rev.

    Constraining models of the large scale Galactic magnetic field with WMAP5 polarization data and extragalactic Rotation Measure sources

    Full text link
    We introduce a method to quantify the quality-of-fit between data and observables depending on the large scale Galactic magnetic field. We combine WMAP5 polarized synchrotron data and Rotation Measures of extragalactic sources in a joint analysis to obtain best fit parameters and confidence levels for GMF models common in the literature. None of the existing models provide a good fit in both the disk and halo regions, and in many instances best-fit parameters are quite different than the original values. We note that probing a very large parameter space is necessary to avoid false likelihood maxima. The thermal and relativistic electron densities are critical for determining the GMF from the observables but they are not well constrained. We show that some characteristics of the electron densities can already be constrained using our method and with future data it may be possible to carry out a self-consistent analysis in which models of the GMF and electron densities are simultaneously optimized.Comment: 27 pages, 13 figures. Accepted for publication in JCAP; arXiv version updated to include minor revision

    Nanolithography and manipulation of graphene using an atomic force microscope

    Get PDF
    We use an atomic force microscope (AFM) to manipulate graphene films on a nanoscopic length scale. By means of local anodic oxidation with an AFM we are able to structure isolating trenches into single-layer and few-layer graphene flakes, opening the possibility of tabletop graphene based device fabrication. Trench sizes of less than 30 nm in width are attainable with this technique. Besides oxidation we also show the influence of mechanical peeling and scratching with an AFM of few layer graphene sheets placed on different substrates.Comment: 11 pages text, 5 figure

    The seesaw mechanism at TeV scale in the 3-3-1 model with right-handed neutrinos

    Full text link
    We implement the seesaw mechanism in the 3-3-1 model with right-handed neutrinos. This is accomplished by the introduction of a scalar sextet into the model and the spontaneous violation of the lepton number. We identify the Majoron as a singlet under SUL(2)UY(1)SU_L(2)\otimes U_Y(1) symmetry, which makes it safe under the current bounds imposed by electroweak data. The main result of this work is that the seesaw mechanism works already at TeV scale with the outcome that the right-handed neutrino masses lie in the electroweak scale, in the range from MeV to tens of GeV. This window provides a great opportunity to test their appearance at current detectors, though when we contrast our results with some previous analysis concerning detection sensitivity at LHC, we conclude that further work is needed in order to validate this search.Comment: about 13 pages, no figure
    corecore