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Abstract

A notorious open problem in the field of rendezvous search is

to decide the rendezvous value of the symmetric rendezvous

search problem on the line, when the initial distance apart

between the two players is 2. We show that the symmet-

ric rendezvous value is within the interval (4.1520, 4.2574),

which considerably improves the previous best known re-

sult (3.9546, 4.3931). To achieve the improved bounds,

we call upon results from absorbing markov chain theory

and mathematical programming theory—particularly frac-

tional quadratic programming and semidefinite program-

ming. Moreover, we also establish some important prop-

erties of this problem, which may be of independent interest

and useful for resolving this problem completely. Finally, we

conjecture that the symmetric rendezvous value is asymptot-

ically equal to 4.25 based on our numerical calculations.

1 Introduction

Consider two players situated on an (undirected) line
who know their initial distance apart at time 0, but not
the direction to the other player. Assume they move
at a maximum speed of one. They obviously have no
common sense of direction along the line because of the
undirectness of the line. So we assume that Nature
(or chance) assigns each player independently a random
direction to call ‘forward’. A pure strategy for a player
is simply a continuous path that describes her position
relative to her starting point, in the direction she calls
‘forward’. The rendezvous search problem on the line
involves prescribing strategies for both players to meet
in least expected time, called the rendezvous value. We
say that two players meet, or rendezvous occurs, if they
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occupy the same location on the line.
There are two versions of the problem depending

on whether the same strategy must be employed by
both players or not. In the asymmetric rendezvous
search problem, they could use distinct mixed or pure
strategies. In the symmetric rendezvous search problem,
they must choose the same mixed strategy. Note that no
pure strategy can achieve a finite meeting time for the
symmetric problem because of the lack of direction for
both players—for example, if they both adopt the same
pure strategy and initially face in the same direction,
they will move in the same direction forever and never
meet. Therefore mixed strategies must be employed
in the symmetric problem. We consider here only the
symmetric problem.

Throughout this paper, we assume that the two
players’ initial distance apart is 2 unless stated oth-
erwise. Let Rs and Ra be the rendezvous values for
the symmetric and asymmetric problems, respectively.
Evidently Rs ≥ Ra because both players could al-
ways choose to adopt the same mixed strategy. Alpern
and Gal [8] show that the asymmetric rendezvous value
Ra = 3.25, and hence completely settle the asymmet-
ric case. On the other hand, a notorious open problem,
initially posed by Alpern [1] in 1995, is to decide the
symmetric rendezvous value Rs. This open question
is arguably the most important open one in rendezvous
search theory [2, 9]. The symmetric rendezvous problem
itself subjectively belongs to the category of Pólya: “the
simplest problem one cannot solve” [17]. Besides its
theoretical significance, such kind of rendezvous search
problem also has practical applications in communica-
tion synchronization, operating system design, opera-
tions research, search and rescue operations planning,
military, radio, and media press. For example, the mil-
itary has always had protocols for rendezvous in un-
familiar territory, and the same goes for explorers. A
particular example which could lead to the rendezvous
search problem considered here is the situation where
two parachutists landing in an unknown field want to
meet as soon as possible. For detailed discussion of ren-
dezvous search problems and their applications, please
refer to the survey paper by Alpern [2] and the book by
Alpern and Gal [9].

Alpern [1] introduces the symmetric rendezvous
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search problem on the line and proposes a strategy with
expected meeting time of 5. The idea is to repeat the
following moving pattern every 3 time units until ren-
dezvous occurs: pick a random direction and move one
time unit in this direction and two time units in the
opposite direction, all at speed one. Note that this kind
of strategy is very special in that both players adopt
the same moving pattern. Anderson and Essegaier [7]
improve the upper bound to 4.5678 by repeating, every
6 time units, a mixed movement over four moving pat-
terns with prespecified probabilities. Anderson and Es-
segaier’s idea is innovative because mixed movements
provide the opportunity for the two players to actually
follow different moving patterns. This philosophy will
be pushed further in this work to derive our bounds—
both upper and lower bounds. Baston [11] further im-
proves the upper bound to 4.4182 by repeating, every 7
time units, a mixed movement over four patterns. This
improvement is a result of the new observation that ac-
cumulated information before rendezvous should be uti-
lized in Anderson and Essegaier’s strategy. Uthaisom-
but1 [19] recently presented a new mixed strategy with
the previous best known upper bound of 4.3931. This
strategy goes further to allow the mixture of patterns
with different time units, namely 6 and 7.

Note that all the previous strategies share the same
spirit; namely that the same movement or mixed move-
ment is repeated over and over again until rendezvous
occurs. This kind of strategy naturally induces a
Markov chain if we define its state space as half of the
distance apart after each repetition. Our upper bounds
will be also achieved by such Markovian type strategies,
but in a more systematic way.

In terms of lower bounds, there are fewer results.
Besides the obvious lower bound Ra, the previous best
known lower bound of 3.9546 is recently given also
by Uthaisombut [19]. The lower bound scheme of
Uthaisombut is based on the simple observation that
if two players are a distance d apart, then the expected
extra time to meet is at least d/2.

Previous existing lower and upper bounds on Rs are
summarized in Table 1 below.

1This recent work was brought to our attention after the

current work was almost done.

Upper Lower
bound bound

Alpern [1] 5.0000 -
Alpern and Gal [8] - 3.25

Anderson and Essegaier [7] 4.5678 -
Baston [11] 4.4182 -

Uthaisombut [19] 4.3931 3.9546

Table 1: Previous upper and lower bounds for Rs

In the following, we summarize the main contribu-
tions of this work and also briefly explain the main ideas
and steps that lead to them.

1. We show, in Theorem 2.1, that strategies that al-
ways move at maximum speed one and switch di-
rection only at integer times (called grid strategies
in this paper) dominate among all possible strate-
gies. To the best knowledge of the authors, this
seems to be unknown in the literature—but see a
similar result by Lim et al. [15] in a different con-
text. This greatly reduces the searching strategy
space of the problem.

2. To obtain better upper bounds, we investigate the
aforementioned Markovian type strategies; that
is, the same mixed moving patterns are repeated
every fixed time units before rendezvous occurs.
For Markovian type strategies to perform well,
there are two opposite driving forces involved. On
the one hand, adding more moving patterns in
every repetition should reduce the symmetry of the
problem (or equivalently increase the asymmetry,
namely, increase the chance for two players to adopt
different pure strategies), and hence increase the
meeting opportunity. This necessitates increasing
the length of the moving patterns. On the other
hand, with longer length, the expected time to
meet also increases, mainly because there is at
least 1/2 probability for the two players to move in
the same direction whenever they adopt the same
moving pattern and hence will never meet within
one repetition. Therefore, the main challenge is
how to balance these two forces. We manage to
quantify this balance; that is, the expected time
of any strategy can be expressed as the product of
two inversely related expectations: one local and
one global. See Section 3.1 for more details.

(a) First, in Theorem 2.2, we show that distance-

preserving Markovian type strategies domi-
nate, which implies the aforementioned bal-
ancing relationship and further reduces the
searching space. The essential idea behind
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this result is that when using a non-distance-
preserving Markovian type strategy, once the
distance of the two players increase to certain
point it will follow a symmetric random walk
and therefore the expected time to reduce such
distance is infinite—a well-know result in ran-
dom walk theory.

(b) Next, we reduce the performance analysis of
Markovian type strategies to solving a frac-
tional quadratic program whose value for any
feasible solution provides an upper bound for
Rs. This allows us to utilize the Mathemat-
ical Programming (MP) toolkit, particularly
Quadratic Programming (QP) and Semidefi-
nite Programming (SDP).

3. To obtain better lower bounds, we consider a re-
lated problem first introduced by Alpern and Gal
[10], the symmetric rendezvous search on a directed
line, whose only difference with the original prob-
lem is that both players are given the direction of
the line and hence the rendezvous value RU for the
new problem provides a lower bound for the original
one because of the new information given. In the
new problem, we employ the observation that if two
players have been following the same strategy (and
hence in the same direction for certain time), then
no information has been acquired and both players
are facing exactly the same situation as started ini-
tially. Therefore the expected extra time to meet
is still RU . The new insight leads to solving a dif-
ferent fractional quadratic program whose optimal
value provides a lower bound for Rs ≥ RU . See
Section 3.2 for more details.

4. Based on the ideas above, we show that the
symmetric rendezvous value is within the interval
(4.1520, 4.2574).

5. Finally, based on our numerical calculations, we
conjecture that the symmetric rendezvous value is
equal to 4.25, which can only be achieved asymptot-
ically by the procedure n-Markovian, introduced
in Section 2.2. This value is only asymptotically
achievable because our calculation indicates that
increasing the length of the moving patterns is the
dominating force among the two discussed in (2).
See Section 4 for more details.

The rest of the paper is organized as follows. We
first prove the two domination results in Sections 2.1
and 2.2. We then present the improved upper and lower
bounds in Sections 3.1 and 3.2, respectively. Finally we
give some concluding remarks in Section 4.

2 Strategies

In the symmetric rendezvous search problem on the
(undirected) line, two players, I and II, are situated ini-
tially at a known distance 2 apart on a line and wish to
meet in least expected time, given that they both move
at a maximum speed of 1. They are told the initial dis-
tance apart, but neither the direction to the other player
nor the direction along the line. So we assume that
Nature (or chance) assigns each player independently a
random direction to call ’forward’. A pure strategy for
a player is simply a Lipshitz continuous path with max-
imum speed one that describes her position relative to
her starting point, in the direction she calls ’forward’.
Therefore the set of all pure strategies is given by

S = {s : R+ → R, s(0) = 0, |s(t1) − s(t2)| ≤ |t1 − t2|,
∀t1, t2 ∈ R+}.

A mixed strategy x over the pure strategy space S is a
Borel probability measure over S. The set of all mixed
strategies over S will be denoted as S∗.

Given two pure strategies s1, s2 ∈ S, there are four
equally likely meeting times, depending on the four sit-
uations in which Nature initially faces the players and
the relative positions of the players, namely: towards
or away from each other, same direction with player I
or II in front. Let T (s1, s2) denote the meting time of
the players whenever they adopt pure strategies s1 and
s2, respectively. Consequently, T (s1, s2) is a (discrete)
random variable whose probability distribution can be
identified by considering all four equally likely possibil-
ities above.

For computational purposes, assume that player I
is placed at point 0 and player II at point 2 at time 0.
Then:

1. Player I follows path 0+s1(t) and Player II follows
path 2+s2(t). The probability is 1/4 with meeting
time

t++(s1, s2) = min{t : s1(t) = 2 + s2(t)}.

2. Player I follows path 0− s1(t) and Player II moves
toward 2 − s2(t). The probability is 1/4 with
meeting time

t−−(s1, s2) = min{t : 0 − s1(t) = 2 − s2(t)}.

3. Player I follows path 0+s1(t) and Player II follows
path 2−s2(t). The probability is 1/4 with meeting
time

t+−(s1, s2) = min{t : 0 + s1(t) = 2 − s2(t)}.
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4. Player I follows path 0−s1(t) and Player II follows
path 2+s2(t). The probability is 1/4 with meeting
time

t−+(s1, s2) = min{t : 0 − s1(t) = 2 + s2(t)}.

So the expected meeting time t(s1, s2) is given by

t(s1, s2) = E[T (s1, s2)] =
1

4

∑

δ1,δ2

tδ1δ2(s1, s2),

where δ1, δ2 ∈ {+,−}. Similarly for any two mixed
strategies x1, x2 ∈ S∗, we define their expected meeting
time, or rendezvous time, by

t(x1, x2) = Ex1,x2
[t(s1, s2)].

The asymmetric and symmetric rendezvous values Ra

and Rs are defined respectively as

Ra = min
x1,x2

t(x1, x2);

Rs = min
x

t(x, x).(2.1)

The symmetric rendezvous problem therefore is to find
an optimal strategy for both players with minimum Rs,
that is, to solve the optimization problem (2.1).

As a convention throughout this paper, any set ⋆
with an asterisk (∗) attached—that is ⋆∗—is the set of
mixed strategies over the given set. For example, S∗ is
the set of mixed strategies over S.

2.1 Grid Strategies A strategy s ∈ S is grid if the
speed at every instant is one and direction can only
be switched at integer times. Denote SG to be the
set of all grid strategies, and hence S∗

G is the set of all
mixed strategies over SG according to our convention.
We want to prove that we can reduce the problem to
searching only mixed grid strategies S∗

G. This result
follows evidently from the result below.

Theorem 2.1. There is ·̂ : S → SG such that for every
pair of pure strategies s1, s2 ∈ S

t(s1, s2) ≥ t(ŝ1, ŝ2).

Proof. First we define ·̂ : S → SG. Fix s ∈ S. Consider
the curve C(t) = (s(t), t) ∈ IR× IR+ and the ”diagonal”
grid with side length

√
2 (Figure 1a). Shadow every

square that C crosses. In case the curve C goes through
a corner from one square to a diagonally adjacent one
above, shadow also the left one of the two squares
adjacent to both squares (Figure 1b). Mark the lowest

corner of each shadowed square (Figure 1c). Let Ĉ be

Figure 1a: Proof of Theorem 2.1

Figure 1b: Proof of Theorem 2.1

Figure 1c: Proof of Theorem 2.1

Figure 1d: Proof of Theorem 2.1

the piecewise linear curve obtained by joining adjacent
marked corners and let ŝ such that Ĉ(t) = (ŝ(t), t)
(Figure 1d).

Now given s1, s2 ∈ S we need to show t(s1, s2) ≥
t(ŝ1, ŝ2). It suffices to show that tδ1δ2(s1, s2) ≥
tδ1δ2(ŝ1, ŝ2) for every δ1, δ2 ∈ {+,−}. If tδ1δ2(s1, s2) =
∞ there is nothing to prove. So let t0 = tδ1δ2(s1, s2),
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Figure 1e: Proof of Theorem 2.1

and let x0 := δ1s1(t0) = δ2s2(t0) + 2. The paths δ1s1

and δ2s2 + 2 meet at the point (x0, t0). Let S0 be the
grid square containing (x0, t0) and let (x1, t1) be the
lowest corner of S. By construction the two curves

(δ1ŝ1, t) = (δ̂1s1, t) and (δ2ŝ2 +2, t) = ( ̂δ2s2 + 2, t) meet
at (x1, t1). Thus δ1ŝ1(t1) = δ2ŝ2(t1) + 2 and therefore
t(δ1ŝ1, δ2ŝ2) ≤ t1 ≤ t (Figure 1e).

2.2 Distance-preserving strategies From now on
we will only consider the grid strategy space SG. We
introduce the notion of string over the alphabet set
{−1, 1} such that the first element of any string is
1, referring to a ’forward’ movement of one time unit
chosen by the Nature initially; and each other element
1 corresponds to the same ’forward’ movement of one
time unit and each -1 corresponds to the ’backward’
movement of one time unit, all at speed one.

Obviously any grid strategy can be equivalently
viewed as such a string of infinite length. To facilitate
our analysis, we call a string of finite length n, a positive
integer, an n-generator. For example, the 3-generator
g = {1,−1,−1} means moving 1 time unit in the
’forward’ direction and 2 time units in the other, all at
speed one. The set of all n-generators will be denoted
as Gn. Evidently the cardinality of Gn is 2n−1. A mixed
n-generator x ∈ G∗

n is a Borel probability measure x
over the set Gn.

Denote Ik = {1, 2, · · · , k} as an index set for any
given positive integer k. Any vector will be a column
vector. A vector x = (xi)i∈Ik

is a probability vector if
it satisfies xi ≥ 0, ∀i ∈ Ik and eT x = 1, where e is the
vector of all ones.

Fix a positive integer n. Given a mixed n-generator
x ∈ G∗

n, we prescribe the following (mixed) strategy
followed by both players, which will be used to derive
our upper bound:

n-Markovian: Repeat the mixed n-generator x every
n time units until rendezvous occurs.

Two n-generators g1, g2 ∈ Gn are distance-
preserving, denoted as g1 ∼ g2, if their distance apart ei-

ther becomes zero or remains unchanged after one player
follows g1 and another player follows g2 for n time units.
A mixed n-generator x ∈ S∗

G is distance-preserving if
xixj = 0 whenever gi ≁ gj for all i, j ∈ I2n−1 .

We shall show in this section that distance-
preserving mixed generators dominate among all mixed
strategies in G∗

n for strategy n-Markovian. Actually
we shall prove a stronger result that no non-distance-
preserving mixed n-generator used in n-Markovian

can guarantee finite expected meeting time.

Theorem 2.2. For any given positive integer n, the
expected meeting time of strategy n-Markovian is
infinite whenever the mixed n-generator used in strategy
n-Markovian is non-distance-preserving.

Proof. Let dt be the distance of the two players after t
repetitions (of n time units each) of the n-Markovian

strategy. Let x ∈ G∗
n be a non-distance preserving mixed

n-generator. Let p = Prg1,g2∈Gn
[g1 6∼ g2], i.e. p is the

probability that the distance will actually increase when
starting at distance 2 and using x as the mixed generator
for the n-Markovian strategy, and by assumption p > 0.
Given g1, g2 ∈ Gn and δ1, δ2 ∈ {+,−} assume that
dt > 2n and that at time t the two players follow gδ1

1

and gδ2

2 , respectively. As dt > 2n the two paths cannot
cross and therefore

dt+1 = dt + δ1s(g1) − δ2s(g2),

where for every g ∈ Gn we define s(g) =
∑n

i=1 gi. For
i = −n, . . . , n, let pi = Pr [dt+1 − dt = 2i|dt > 2n]. We
have

∑n
i=−n pi = 1 and by the symmetry of the strategy

p−i = pi.
Now let X0 = 0 and let Xt be defined for every

t = 0, 1, 2, . . . by

Xt+1 = Xt + i with probability pi, i = −n, . . . , n.

Let T be the first t when Xt < 0. Conditional in
dn > 2n we can couple the construction of Xt and the
process n-Markovian such that dt+n > 2Xt + 2n for all
t = 0, 1, . . . , T . As Pr [dn > 2n] ≥ pn and to get dt = 0,
we must first get dt ≤ 2n implying Xt < 0. We have
then the expected meeting time for n-Markovian is at
least pn(n+E[T ]). But Xt is a symmetric random walk
starting at 0 and therefore E[T ] = ∞, a well-known
result of the random walk theory [13].

3 Bounding the symmetric rendezvous value Rs

3.1 Upper bound We will analyze the performance
of the mixed strategy n-Markovian. Because of The-
orem 2.2, we only need to focus on distance-preserving
mixed generators in n-Markovian.
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Let x ∈ G∗
n be a distance-preserving mixed n-

generator used in n-Markovian such that Gn =
{g1, · · · , g2n−1} and x = (x1, · · · , x2n−1).

Remark 3.1. We note that computational efficacy can
be achieved if we reduce the cardinality of Gn by ex-
cluding any generator that is non-distance-preserving
with itself. For example we can exclude the generator
{1, 1, · · · , 1} because it does not preserve distance with
itself. This proves to be extremely beneficial in calcu-
lating upper bounds for Rs numerically. This is im-
plemented in our numerical calculation. However, this
reduction is equivalent to setting zeros to the probabil-
ities of those excluded generators when computational
efficacy is not an issue. Therefore we will assume the
cardinality of Gn is still 2n−1 for simplicity of presenta-
tion.

Consider two n-generator gi, gj ∈ Gn such that one
player follows gi and another follows gj for n time units.

• Let pij be the probability that their distance apart
at time n remains unchanged, given that they have
not met by then.

• Let Tij be their meeting time. Let T
(n)
ij =

min{Tij , n}, whose probability distribution follows

from that of Tij . Let mij = E[T
(n)
ij ].

Denote matrix Pn = (pij) ∈ R2n−1
×2n−1

and matrix

Mn = (mij) ∈ R2n−1
×2n−1

. Let T (x) be the expected
meeting time of the mixed strategy n-Markovian,
using x as the mixed n-generator. Then it is easy to
verify the following:

T (x) = xT Mnx + T (x)xT Pnx,

where xixj = 0 whenever gi ≁ gj , , i, j ∈ I2n−1 . Or
equivalently,

(3.2) T (x) =
xT Mnx

1 − xT Pnx
.

Remark 3.2. The n-Markovian strategy can also be
interpreted via absorbing Markovian chain theory. For
mixed strategy n-Markovian, we associate an absorb-
ing Markov chain with state space M = {0, 1, 2, · · · }
and transition probability matrix Q = (qij). Each state
i ∈ M corresponds to half of the distance apart after
every n time units. Therefore each qij gives the condi-
tional probability that half of the distance apart switches
from i to j, for i, j ∈ M. State 0 is absorbing, and
the rest is transient. Theorem 2.2 basically says that
the expected absorbing time starting from state 1 is in-
finite whenever a non-distancing-preserving mixed gen-
erator is used in n-Markovian. Therefore the formula

(3.2) can also be derived based on results from absorb-
ing Markovian chain theory where the state space con-
sists of only states 0 and 1 when restricted to distance-
preserving strategies. Note that the numerator above can
be viewed as the expected ”effective” meeting time, the
time they spend within each state of the aforementioned
Markov chain (the local factor), and the denominator
is the probability that the two players will meet after
time n, whose reciprocal is the expected absorbing time
of the Markov chain (the global factor). Therefore the
last equation is actually equal to the product of two in-
versely related expectations: one local and one global.
This quantifies the balancing idea mentioned in the in-
troduction.

So the objective value of any feasible solution to
the following fractional quadratic programming problem
provides an upper bound for the symmetric rendezvous
value Rs:

Rs
n = min

{
xT Mnx

1 − xT Pnx
: xixj = 0,(3.3)

∀gi ≁ gj , i, j ∈ I2n−1 , eT x = 1, x ≥ 0
}

.

For any fixed n, the tightest upper bound is the optimal
value Rs

n. However, finding Rs
n for this particular

fractional quadratic program is hard when n is large.
We obtain the following upper bounds of Rs for n ≤ 15.

n Rs
n Achieved No. of Strategies

1 ∞∗ 1
2 7.0000∗ 1
3 5.0000∗ 1
4 4.9441∗ 2
5 4.8827∗ 4
6 4.4634∗ 5
7 4.3490∗ 5
8 4.3209∗ 8
9 4.3044∗ 11
10 4.2866 18
11 4.2739 29
12 4.2678 38
13 4.2630 58
14 4.2595 89
15 4.2574 128
...

...
...

∞ 4.25? ∞?

Table 2: Upper bounds for Rs

Remark 3.3. The Matlab code for solv-
ing (3.3) can be downloaded from our
website,”http://www.unb.ca/∼ddu”. However we
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note that the codes therein do not directly solve (3.3).
To be more computationally efficient, we reduce the
search space using the idea introduced in Remark
3.1. Moreover, to obtain the bounds listed in Table 2
using nonlinear optimization solvers, one may need to
choose an appropriate initial feasible solution to start
with (a notorious feature of nonlinear programming).
More details on the implementation are included in
the self-contained explanation within the Matlab code
files on our website. Finally, we only retain four digits
after the decimal point for the upper bounds in Table
2. More digits can be obtained by running the Matlab
code under long format environment (up to 10−16 with
double precision).

Some of the bounds given in Table 2 are actually
best possible (indicated with an *) for fixed n up to
computation precision. Note that, although the entries
in matrices Mn and Pn are calculated exactly, we can
only prove a solution is best possible up to computation
precision.

Fact 3.1. The Rs
n listed in Table 2 is the optimal value

of the fractional quadratic program (3.3) (hence the best
rendezvous value) for any fixed integer n ≤ 9.

We prove this fact by considering each fixed n ≤ 9.
It suffices to show that each value is indeed the optimal
one for the fractional quadratic program (3.3). We need
the following result that relates fractional quadratic
program to regular quadratic program. For any r > 0,
define

f(r) = min
{
xT (Mn + rPn) x : xixj = 0,(3.4)

∀gi ≁ gj , i, j ∈ I2n−1 , eT x = 1, x ≥ 0
}

.

Lemma 3.1. If f(r∗) = r∗ in (3.4), then Rs
n = r∗ in

(3.3).

So solving (3.3) reduces to searching for a fixed
point of f , which involves solving a series of regular
quadratic programs (3.4). Unfortunately, (3.4) in gen-
eral is non-convex. To show that the solution obtained
for (3.4) is indeed global, we also solve its SDP relax-
ation with SDP solvers SEDUMI [18] and DSDP5 [12].

min
{
(Mn + rPn) • X : X • eeT = 1, Xij = 0,

∀gi ≁ gj , Xij ≥ 0, i, j ∈ I2n−1 , X º 0} ,

where X ∈ R2n−1
×2n−1

and the operation • is the inner
product of matrices by taking matrix as vectors.

If there exists a feasible solution to (3.4) that
achieves the optimal value of the SDP relaxation, then
it must be a global optimal solution of (3.4). In the
following, we adopt this idea to (numerically up to

precision 10−5) prove the fact above except for the
simple cases of n = 1, 2 and 3, whose optimality can be
showed easily by first-hand analysis.

• Rs
1 = ∞: In this case there is just one generator

g = {1}, which is non-distance-preserving and
hence Rs

1 = ∞ based on Theorem 2.2.

• Rs
2 = 7: In this case, there are two generators:

g1 = {1,−1}, g2 = {1, 1}. But g1 is the only
distance-preserving generator with Rs

2 = 7. This
can be easily verified by substituting M2 = 1(1/4)+
2(3/4) = 7/4 and P2 = 3/4 into (3.3).

• Rs
3 = 5: In this case, there are four generators:

g1 = {1, 1, 1}, g2 = {1, 1,−1}, g3 = {1,−1, 1}, g4 =
{1,−1,−1}. But g4 is the only distance-preserving
generator with Rs

3 = 5. This can be easily verified
by substituting M3 = 1(1/4) + 3(1/4) + 3(1/2) =
5/2 and P3 = 1/2 into (3.3). This is Alpern’s
strategy [1].

In the following, we only retain four digits after the
decimal point for each value. Again, more digits can be
obtained by running the Matlab code under long format
environment as explained in Remark 3.3.

• Rs
4 ≈ 4.9441: The optimal mixed 4-generator is

given below.

g1 = {1,1,-1,-1}, x1 ≈ 0.1118
g2 = {1,-1,-1,1}, x2 ≈ 0.8882

• Rs
5 ≈ 4.8827: The optimal 5-mixed generator is

given below.

g1 = {1,-1,-1,-1, 1}, x1 ≈ 0.3227
g2 = {1,-1,-1, 1,-1}, x2 ≈ 0.2500
g3 = {1,-1, 1,-1,-1}, x3 ≈ 0.1773
g4 = {1, 1,-1,-1,-1}, x4 ≈ 0.2500

• Rs
6 ≈ 4.4634: The optimal 6-mixed generator is

given below.

g1 = {1,-1,-1,-1,1,1}, x1 ≈ 0.2482
g2 = {1,-1,-1,1,-1,1}, x2 ≈ 0.1561
g3 = {1,-1,-1,1,1,-1}, x3 ≈ 0.1561
g4 = {1,-1,1,-1,-1,-1}, x4 ≈ 0.1867
g5 = {1,1,-1,-1,-1,-1}, ,x5 ≈ 0.2529

This result is a little bit better than the upper
bound 4.5678 of Anderson and Essegaier [7], whose
mixed 6-generator is given below.

g1 = {1,-1,-1,-1,1,1}, x1 ≈ 0.4040
g2 = {1,-1,-1,1,-1,-1}, x2 ≈ 0.2120
g3 = {1,-1,1,-1,-1,-1}, x3 ≈ 0.1561
g4 = {1,1,-1,-1,-1,-1}, x4 ≈ 0.2279

75



• Rs
7 ≈ 4.3489: The optimal mixed 7-generator is

given below.

g1 = {1,-1,-1,-1,1,1,1}, x1 ≈ 0.2617
g2 = {1,-1,-1,1,-1,1,-1}, x2 ≈ 0.1544
g3 = {1,-1,-1,1,1,-1,-1}, x3 ≈ 0.1544
g4 = {1,-1,1,-1,-1,-1,1}, x4 ≈ 0.1940
g5 = {1,1,-1,-1,-1,-1,-1}, x5 ≈ 0.2355

This is better than the upper bound 4.4182 of
Baston [11], whose mixed 7-generator is given
below.

g1 = {1,-1,-1,-1,1,1,1}, x1 ≈ 0.2865
g2 = {1,-1,-1,1,1,-1,-1}, x2 ≈ 0.2471
g3 = {1,-1,1,-1,-1,-1,1}, x3 ≈ 0.2139
g4 = {1,1,-1,-1,-1,-1,-1}, x4 ≈ 0.2524

This is also better than the previous best upper
bound 4.3931 of Uthaisombut[19], who mixes one
6-generator and four 7-generator’s.

g1 = {1,1,-1,-1,-1,-1,-1},
g2 = {1,-1,1,-1,-1,-1,1},
g3 = {1,-1,-1,1,-1,1,-1},
g4 = {1,-1,-1,1,-1,-1,1},
g5 = {1,-1,-1,-1,1,1}.

• Rs
8 ≈ 4.3208: The optimal mixed 8-generator is

given below.

g1 = {1,-1,-1,-1,1,1,1,1}, x1 ≈ 0.2038
g2 = {1,-1,-1,1,-1,1,-1,1}, x2 ≈ 0.0881
g3 = {1,-1,-1,1,-1,1,1,-1}, x3 ≈ 0.0977
g4 = {1,-1,-1,1,1,-1,-1,-1}, x4 ≈ 0.1577
g5 = {1,-1,1,-1,-1,-1,1,1}, x5 ≈ 0.1220
g6 = {1,-1,1,-1,-1,1,-1,-1}, x6 ≈ 0.0945
g7 = {1,1,-1,-1,-1,-1,-1,1}, x7 ≈ 0.1296
g8 = {1,1,-1,-1,-1,-1,1,-1}, x8 ≈ 0.1066

• Rs
9 ≈ 4.3044: The optimal mixed 9-generator is

given below.

g1 = {1,-1,-1,-1, 1, 1,-1, 1, 1}, x1 ≈ 0.1150
g2 = {1,-1,-1,-1, 1, 1, 1,-1,-1}, x2 ≈ 0.1485
g3 = {1,-1,-1, 1,-1,-1, 1, 1, 1}, x3 ≈ 0.0831
g4 = {1,-1,-1, 1,-1, 1,-1,-1, 1}, x4 ≈ 0.0613
g5 = {1,-1,-1, 1,-1, 1,-1, 1,-1}, x5 ≈ 0.0577
g6 = {1,-1,-1, 1, 1,-1,-1,-1,-1}, x6 ≈ 0.1160
g7 = {1,-1, 1,-1,-1,-1, 1,-1, 1}, x7 ≈ 0.0507
g8 = {1,-1, 1,-1,-1,-1, 1, 1,-1}, x8 ≈ 0.0672
g9 = {1,-1, 1,-1,-1, 1,-1,-1,-1}, x9 ≈ 0.0634
g10 = {1, 1,-1,-1,-1,-1,-1, 1, 1}, x10 ≈ 0.1304
g11 = {1, 1,-1,-1,-1,-1, 1,-1,-1}, x11 ≈ 0.1067

All other cases up to n = 15 can be downloaded
from our website ”http://www.unb.ca/∼ddu”.

3.2 Lower bound We give a general framework for
generating lower bounds. We need a new problem called
the symmetric rendezvous problem on a directed line,
first introduced by Alpern and Gal [10]. The difference
between this problem and the original symmetric ren-
dezvous problem on a (undirected) line is that in the new
problem the players have a common sense of direction.
Along a similar proof line to Theorem 2.1, we can show
that grid strategies still dominates in the new problem.
So we will focus only on grid strategies. But the num-
ber of grid strategies is doubled compared to the original
problem and it consists of all grid strategies, denoted as
SU , generated by strings over the alphabet set {1,−1},
not just those starting with 1. We denote RU to be the
symmetric rendezvous value of the new problem. Evi-
dently, Rs ≥ RU because more information is available
(common direction) in the new problem. So any lower
bound on RU will be a valid lower bound for Rs also.

Let x ∈ S∗
U be a given mixed strategy over SU . Fix

a positive integer n. Assume that Gn = {g1, g2, · · · , g2n}
is the set of n-generator’s. For any n-generator gi ∈ Gn

(i ∈ I2n), let Gn(gi) ⊂ SG be the subset of strategies
of SG that have the same first n elements as gi. Define
further x̂i =

∫
Gn(gi)

dx. Then x̂ = (x̂1, · · · , x̂2n)T is a

probability vector. So x̂(Gn) is a mixed n-generator over
Gn.

Let H(x) be the expected meeting time of the mixed
strategy x when the initial distance is 2. The following
scheme is an improvement over that of Uthaisombut
[19]. Below we adopt some notations from [19]. For
any given positive integer n, we construct the following
pseudo-strategy with expected meeting time at least as
good as, H(x), that of x when the initial distance apart
is 2.

Pseudo-strategyn: Follow x̂ first, and, if rendezvous
has not occurred yet, then

Case 1. the two players move toward each other,
if they have not been following the same basic
grid strategy, or they have been following the
same basic grid strategy and in the opposite
direction up to n;

Case 2. the two players adopt the optimal mixed
strategy for the symmetric rendezvous search
problem, if they have been following the same
grid strategy and in the same direction up to
n.

We need two simple facts before we can show that
the expected meeting time of the pseudo-strategy is no
more than that of x.

Fact 3.2. In Pseudo-strategyn, if two players are
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d distance apart after following the mixed strategy x̂ for
n time units, then

1. the minimum expected extra time for them to meet
is at least d/2;

2. moreover, if they have been following the same grid
strategy (and hence in the same direction up to n
implying d = 2), then the minimum expected extra
time for them to meet is RU .

Proof. The first claim is obvious [19]. We only prove the
second. Suppose the two players have been following the
same strategy and hence in the same direction up to n.
Therefore they arrive at exactly the same situation as
started initially. So the minimum expected extra time
for them to meet is RU .

We introduce more notations.

• If i 6= j, then let dij be the distance apart when
one player follows ŝi and the another follows ŝj

for n time units, assuming initial distance 2. If
i = j, then let dii be the distance apart when
both players follow ŝi in the opposite direction for n
time units, assuming initial distance 2. Obviously
dij is a discrete random variable whose support
set is D = {0, 2, · · · , 2(n + 1)} with corresponding

probabilities p
(0)
ij , p

(2)
ij , · · · , p

(2(n+1))
ij .

• Let Uij be their meeting time when one player
follows ŝi and the another follows ŝj for n time
units, assuming initial distance 2. Since both
players have a common direction, Nature’s only
choice is to place either I or II in front. So Uij

is a discrete random variable with only two equi-

probably supports. Let U
(n)
ij = min{Uij , n}, whose

probability distribution follows from that of Uij .

Let uij = E[U
(n)
ij ].

Denote the expected distance matrix Dn = (E[dij ]) ∈
R2n

×2n

. Denote matrix MU
n = (uij) ∈ R2n

×2n

. Let
In ∈ R2n

×2n

be the identity matrix.

Lemma 3.2. The expected meeting time of the
Pseudo-strategyn is no more than H(x), that of
x ∈ S∗

G, assuming initial distance 2.

Proof. Note that we have the following formula for H:

H(x) ≥ (x̂)T MU
n x̂ +

∑

i∈I2n

(RU ) (x̂i)
2

+
∑

i,j∈I2n

(∑

d∈D

p
(d)
ij

d

2

)
x̂ix̂j

= (x̂)T MU
n x̂ + RU (x̂)T x̂

+
∑

i,j∈I2n

(
1

2
E[dij ]

)
x̂ix̂j

= (x̂)T

(
MU

n + RUIn +
1

2
Dn

)
x̂.

The inequality above follows from Fact 3.2 and the
definition of dij ’s. This proves the lemma because the
last quantity is exactly the expected meeting time of the
Pseudo-strategyn.

Let x∗ ∈ S∗
G be an optimal mixed strategy for

the symmetric rendezvous search problem with initial
distance 2. So RU = H(x∗). Based on the lemma above,
we obtain the following relationship

RU = H(x∗) ≥
(
x̂∗

)T
(

MU
n + RUIn +

1

2
Dn

)
x̂∗.

So,

RU ≥

(
x̂∗

)T (
MU

n + 1
2Dn

)
x̂∗

1 −
(
x̂∗

)T

x̂∗

.

Note that x̂∗ is obviously a feasible solution of
the the following fractional quadratic program (3.5).
Therefore, the optimal value of this program is a valid
lower bound of RU for any fixed n. So Rs ≥ RU ≥ rs

n.
(3.5)

rs
n = min

{
xT (MU

n + 1
2Dn)x

1 − xT x
: eT x = 1, xi ≥ 0, i ∈ I2n

}
.

Similarly as the upper bound, solving this fractional
quadratic program is equivalent to solving a series
of regular quadratic programs, which are non-convex
in general. Again, to guarantee the global optimal-
ity, we also solve the SDP relaxations of the regu-
lar quadratic programs. We manage to obtain the
following lower bounds for n ≤ 7. The Matlab
code for solving (3.5) can be downloaded from our
website,”http://www.unb.ca/∼ddu”.
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n rs
n Uthaisombut [19]

1 3 2
2 3.2970 2.5
3 3.5869 3
4 3.8141 3.4375
5 3.9784 3.6458
6 4.0913 3.8326
7 4.1520 3.9546

Table 3: Lower bounds for Rs

We note that the lower bound scheme of Uthaisom-
but [19] does not distinguish the two cases in Pseudo-

strategyn. Instead only the idea in Case 1 of Fact
3.2 is applied. To see the advantage of adding Case 2,
we also quote the lower bounds obtained in [19] (last
column of Table 3).

4 Concluding remarks

First, we note that any result obtained in this work
can be extended to an arbitrary initial deterministic
distance d rather than just 2. For random d with
bounded support, the upper bound can be extended.
Moreover, we offer the following conjecture based on
our numerical calculations.

Conjecture: Rs = lim
n→∞

Rs
n = 4.25. That is, the

optimal mixed strategy is attained asymptotically
by letting n → ∞ in n-Markovian.

Finally, we address the computational limitations of
our lower- and upper-bounding techniques. Due to
computer memory limitation, we are able to find upper
bounds only for n ≤ 15 and lower bounds only for n ≤ 7.
The asymmetry here is because of two main reasons: (1)
only a global optimizer is a valid lower bound while any
local optimizer can serve as a valid upper bound; and (2)
in the upper bound calculation, we only need to consider
distance-preserving strategies, while in the lower bound
calculation, we have to consider all strategies. The
computational requirement becomes so extensive with
n increasing, and parallel computing techniques should
be adopted in order to get better numerical bounds for
large n. However, we believe that proving the conjecture
theoretically will be more desirable and challenging.
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