152 research outputs found

    Generating controllable atom-light entanglement with a Raman atom laser system

    Full text link
    We introduce a scheme for creating continuous variable entanglement between an atomic beam and an optical field, by using squeezed light to outcouple atoms from a BEC via a Raman transition. We model the full multimode dynamics of the atom laser beam and the squeezed optical field, and show that with appropriate two-photon detuning and two-photon Rabi frequency, the transmitted light is entangled in amplitude and phase with the outcoupled atom laser beam. The degree of entanglement is controllable via changes in the two-photon Rabi frequency of the outcoupling process.Comment: 4 pages, 4 figure

    QUAGMIRE v1.3: a quasi-geostrophic model for investigating rotating fluids experiments

    Get PDF
    QUAGMIRE is a quasi-geostrophic numerical model for performing fast, high-resolution simulations of multi-layer rotating annulus laboratory experiments on a desktop personal computer. The model uses a hybrid finite-difference/spectral approach to numerically integrate the coupled nonlinear partial differential equations of motion in cylindrical geometry in each layer. Version 1.3 implements the special case of two fluid layers of equal resting depths. The flow is forced either by a differentially rotating lid, or by relaxation to specified streamfunction or potential vorticity fields, or both. Dissipation is achieved through Ekman layer pumping and suction at the horizontal boundaries, including the internal interface. The effects of weak interfacial tension are included, as well as the linear topographic beta-effect and the quadratic centripetal beta-effect. Stochastic forcing may optionally be activated, to represent approximately the effects of random unresolved features. A leapfrog time stepping scheme is used, with a Robert filter. Flows simulated by the model agree well with those observed in the corresponding laboratory experiments

    Heisenberg-limited metrology with a squeezed vacuum state, three-mode mixing, and information recycling

    Get PDF
    We have previously shown that quantum-enhanced atom interferometry can be achieved by mapping the quantum state of squeezed optical vacuum to one of the atomic inputs via a beamsplitter-like process [Phys. Rev. A 90, 063630 (2014)]. Here we ask the question: is a better phase sensitivity possible if the quantum state transfer (QST) is described by a three-mode-mixing model, rather than a beamsplitter? The answer is yes, but only if the portion of the optical state not transferred to the atoms is incorporated via information recycling. Surprisingly, our scheme gives a better sensitivity for lower QST efficiencies and with a sufficiently large degree of squeezing can attain near-Heisenberg-limited sensitivities for arbitrarily small QST efficiencies. Furthermore, we use the quantum Fisher information to demonstrate the near optimality of our scheme

    Lagrangian perspective on the origins of Denmark Strait Overflow

    Get PDF
    Author Posting. © American Meteorological Society, 2020. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 50(8), (2020): 2393-2414, doi:10.1175/JPO-D-19-0210.1.The Denmark Strait Overflow (DSO) is an important contributor to the lower limb of the Atlantic meridional overturning circulation (AMOC). Determining DSO formation and its pathways is not only important for local oceanography but also critical to estimating the state and variability of the AMOC. Despite prior attempts to understand the DSO sources, its upstream pathways and circulation remain uncertain due to short-term (3–5 days) variability. This makes it challenging to study the DSO from observations. Given this complexity, this study maps the upstream pathways and along-pathway changes in its water properties, using Lagrangian backtracking of the DSO sources in a realistic numerical ocean simulation. The Lagrangian pathways confirm that several branches contribute to the DSO from the north such as the East Greenland Current (EGC), the separated EGC (sEGC), and the North Icelandic Jet (NIJ). Moreover, the model results reveal additional pathways from south of Iceland, which supplied over 16% of the DSO annually and over 25% of the DSO during winter of 2008, when the NAO index was positive. The southern contribution is about 34% by the end of March. The southern pathways mark a more direct route from the near-surface subpolar North Atlantic to the North Atlantic Deep Water (NADW), and needs to be explored further, with in situ observations.This work was financially supported by the U.S. National Science Foundation under Grant Numbers OAC-1835640, OCE-1633124, OCE-1433448, and OCE-1259210

    Pumped-Up SU(1,1) interferometry

    Get PDF
    Although SU(1,1) interferometry achieves Heisenberg-limited sensitivities, it suffers from one major drawback: Only those particles outcoupled from the pump mode contribute to the phase measurement. Since the number of particles outcoupled to these “side modes” is typically small, this limits the interferometer’s absolute sensitivity. We propose an alternative “pumped-up” approach where all the input particles participate in the phase measurement and show how this can be implemented in spinor Bose-Einstein condensates and hybrid atom-light systems—both of which have experimentally realized SU(1,1) interferometry. We demonstrate that pumped-up schemes are capable of surpassing the shot-noise limit with respect to the total number of input particles and are never worse than conventional SU(1,1) interferometry. Finally, we show that pumped-up schemes continue to excel—both absolutely and in comparison to conventional SU(1,1) interferometry—in the presence of particle losses, poor particle-resolution detection, and noise on the relative phase difference between the two side modes. Pumped-up SU(1,1) interferometry therefore pushes the advantages of conventional SU(1,1) interferometry into the regime of high absolute sensitivity, which is a necessary condition for useful quantum-enhanced devices

    On the nature and variability of the east Greenland Spill Jet : a case study in Summer 2003

    Get PDF
    Author Posting. © American Meteorological Society, 2011. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 41 (2011): 2307–2327, doi:10.1175/JPO-D-10-05004.1.Results from a high-resolution (~2 km) numerical simulation of the Irminger Basin during summer 2003 are presented. The focus is on the East Greenland Spill Jet, a recently discovered component of the circulation in the basin. The simulation compares well with observations of surface fields, the Denmark Strait overflow (DSO), and the hydrographic structure of typical sections in the basin. The model reveals new aspects of the circulation on scales of O(0.1–10) days and O(1–100) km. The model Spill Jet results from the cascade of dense waters over the East Greenland shelf. Spilling can occur in various locations southwest of the strait, and it is present throughout the simulation but exhibits large variations on periods of O(0.1–10) days. The Spill Jet sometimes cannot be distinguished in the velocity field from surface eddies or from the DSO. The vorticity structure of the jet confirms its unstable nature with peak relative and tilting vorticity terms reaching twice the planetary vorticity term. The average model Spill Jet transport is 4.9 ±1.7 Sv (1 Sv ≡ 106 m3 s−1) equatorward, about 2½ times larger than has been previously reported from a single ship transect in August 2001. Kinematic analysis of the model results suggests two different types of spilling events. In the first case (type I), a local perturbation results in dense waters descending over the shelf break into the Irminger Basin. In the second case (type II), surface cyclones associated with DSO deep domes initiate the spilling process. During summer 2003, more than half of the largest Spill Jet transport values are of type II.The research is supported by the National Science Foundation Grants OCE-0726393 and OCI-0904640 (MGM and TWNH) and OCE-0726640 (RSP).2012-06-0

    Northern Bering Sea tip jets

    Get PDF
    Author Posting. © American Geophysical Union, 2012. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geophysical Research Letters 39 (2012): L08807, doi:10.1029/2012GL051537.Low-level regions of high wind speed known as tip jets have been identified near Cape Farewell, Greenland's southernmost point. These wind systems contribute to this area being the windiest location on the ocean's surface and play an important role in the regional weather and climate. Here we present the first analysis of the wind systems that make the Siberian coast of the northern Bering Sea the windiest location in the North Pacific Ocean during the boreal winter. In particular we show that tips jets characterized by enhanced northeasterly winds occur in the vicinity of the two prominent headlands along the coast, Cape Navarin and Cape Olyutorsky. The advance of sea ice in the region is shown to impact the frequency and location of the high speed winds in the vicinity of these two capes. Furthermore, we show that these jets are associated with the interaction of extra-tropical cyclones with the high topography of the Koryak Mountain range, situated just inland of the capes. The windstress imparted to the ocean via the tip jets is argued to help drive the formation of dense water in winter in the northern Bering Sea, thus playing an important role in the regional oceanic circulation.GWKM was supported by the Natural Science and Engineering Research Council of Canada. RSP was funded by grant NA08OAR43200895 from the National Oceanic and Atmospheric Administration.2012-10-2

    The impact of resolution on the representation of Greenland barrier winds and katabatic flows

    Get PDF
    Author Posting. © American Geophysical Union, 2015. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geophysical Research Letters 42 (2015): 3011–3018, doi:10.1002/2015GL063550.Southern Greenland is characterized by a number of low-level high wind speed weather systems that are the result of topographic flow distortion. These systems include barrier winds and katabatic flow that occur along its southeast coast. Global atmospheric reanalyses have proven to be important tools in furthering our understanding of these orographic winds and their role in the climate system. However, there is evidence that the mesoscale characteristics of these systems may be missed in these global products. Here we show that the Arctic System Reanalysis, a higher-resolution regional reanalysis, is able to capture mesoscale features of barrier winds and katabatic flow that are missed or underrepresented in ERA-I, a leading modern global reanalysis. This suggests that our understanding of the impact of these wind systems on the coupled-climate system can be enhanced through the use of higher-resolution regional reanalyses or model data.2015-10-1

    Molecular Approaches to Identify Cryptic Species and Polymorphic Species within a Complex Community of Fig Wasps

    Get PDF
    Cryptic and polymorphic species can complicate traditional taxonomic research and both of these concerns are common in fig wasp communities. Species identification is very difficult, despite great effort and the ecological importance of fig wasps. Herein, we try to identify all chalcidoid wasp species hosted by one species of fig, using both morphological and molecular methods. We compare the efficiency of four different DNA regions and find that ITS2 is highly effective for species identification, while mitochondrial COI and Cytb regions appear less reliable, possibly due to the interference signals from either nuclear copies of mtDNA, i.e. NUMTs, or the effects of Wolbachia infections. The analyses suggest that combining multiple markers is the best choice for inferring species identifications as any one marker may be unsuitable in a given case

    Seasonality of Leaf and Fig Production in Ficus squamosa, a Fig Tree with Seeds Dispersed by Water

    Get PDF
    The phenology of plants reflects selection generated by seasonal climatic factors and interactions with other plants and animals, within constraints imposed by their phylogenetic history. Fig trees (Ficus) need to produce figs year-round to support their short-lived fig wasp pollinators, but this requirement is partially de-coupled in dioecious species, where female trees only develop seeds, not pollinator offspring. This allows female trees to concentrate seed production at more favorable times of the year. Ficus squamosa is a riparian species whose dispersal is mainly by water, rather than animals. Seeds can float and travel in long distances. We recorded the leaf and reproductive phenology of 174 individuals for three years in Chiang Mai, Northern Thailand. New leaves were produced throughout the year. Fig production occurred year-round, but with large seasonal variations that correlated with temperature and rainfall. Female and male trees initiated maximal fig crops at different times, with production in female trees confined mainly to the rainy season and male figs concentrating fig production in the preceding months, but also often bearing figs continually. Ficus squamosa concentrates seed production by female plants at times when water levels are high, favouring dispersal by water, and asynchronous flowering within male trees allow fig wasps to cycle there, providing them with potential benefits by maintaining pollinators for times when female figs become available to pollinate
    corecore