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Abstract. QUAGMIRE is a quasi-geostrophic numeri-
cal model for performing fast, high-resolution simulations
of multi-layer rotating annulus laboratory experiments on
a desktop personal computer. The model uses a hybrid
finite-difference/spectral approach to numerically integrate
the coupled nonlinear partial differential equations of mo-
tion in cylindrical geometry in each layer. Version 1.3 im-
plements the special case of two fluid layers of equal resting
depths. The flow is forced either by a differentially rotating
lid, or by relaxation to specified streamfunction or potential
vorticity fields, or both. Dissipation is achieved through Ek-
man layer pumping and suction at the horizontal boundaries,
including the internal interface. The effects of weak inter-
facial tension are included, as well as the linear topographic
beta-effect and the quadratic centripetal beta-effect. Stochas-
tic forcing may optionally be activated, to represent approxi-
mately the effects of random unresolved features. A leapfrog
time stepping scheme is used, with a Robert filter. Flows
simulated by the model agree well with those observed in the
corresponding laboratory experiments.

1 Introduction

For over a century, geoscientists have invoked the principles
of dynamical similarity (e.g.Douglas and Gasiorek, 2000)
and geometrical similarity in order to study planetary atmo-
spheres and oceans indirectly in the laboratory. For example,
the mid-latitude atmospheric flow on a rotating planet closely
resembles the flow in a rotating laboratory annulus, as sug-
gested by Fig.1. This statement holds despite typical length
and time scales for corresponding atmospheric and labo-
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ratory phenomena differing by many orders of magnitude.
What matters is equality of the relevant non-dimensional pa-
rameters, such as the Rossby number (for dynamical similar-
ity) and the horizontal-to-vertical aspect ratio (for geometri-
cal similarity).

Once a particular fluid flow problem has been solved by
making observations in the laboratory, an infinite number of
other fluid flow problems have also effectively been solved,
all of which are dynamically and geometrically similar. The
main benefits of laboratory experiments are that they are un-
der the complete control of the operator; that global high-
resolution measurements may be taken; and that controlled
experiments may be repeated as many times as required.
None of these statements holds when the atmosphere and
oceans are studied directly.

A review of the role of laboratory experiments in geophys-
ical fluid dynamics has been given byHide (1977). Lab-
oratory investigations of non-rotating fluids began in the
nineteenth century, and include the classic experiments of
Reynolds(1883). At around the same time,Vettin (1884) was
probably the first to exploit dynamical similarity by carrying
out rotating laboratory experiments as analogues of geophys-
ical flows. He studied the surface flow in a rotating dishpan
of fluid with a lump of ice near the centre, representing a po-
lar ice cap, and he drew meteorological conclusions from his
results (to the scorn of his contemporaries).

For the most direct resemblance between annulus and
planet, heating and cooling should be applied at the outer
and inner sidewalls, respectively, in order to mimic the
equator-to-pole temperature gradient. However, it follows
from thermal (and gradient) wind balance that a radial tem-
perature gradient will be accompanied by a vertical shear
in the zonal velocity. Therefore, analogous flows may be
obtained in an isothermal annulus by directly imposing a
shear using a differentially-rotating lid. The continuously-
stratified thermally-forced rotating annulus and the two-layer
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Fig. 1. Diagram showing the analogy between (a) the fluid in a ro-
tating annulus experiment in the laboratory, and (b) the mid-latitude
atmosphere bounded by two latitude circles on a rotating planet.
From Read et al. (1998).

The development of computer models for simulating the
general circulation of planetary atmospheres and oceans has
been accompanied by the development of computer models
for simulating rotating laboratory experiments. Because of
their relative simplicity, laboratory flows are generally eas-
ier to model than atmospheric and oceanic flows. Therefore,
the comparison between laboratory and model flows remains
an important testbed for investigating many fundamental dy-
namical phenomena. In this paper, we describe the develop-
ment of a numerical model for simulating fluid flows in the

multi-layer rotating annulus. The model is named QUAG-
MIRE, theQUAsi-Geostrophic Model for Investigating Ro-
tating fluids Experiments.

Section 2 reviews a variety of possible modelling ap-
proaches, each making different dynamical and geometrical
assumptions. A balanced model with a full representation
of the cylindrical geometry is the preferred approach, for a
number of important reasons which are discussed. The two-
layer quasi-geostrophic coupled partial differential equations
in cylindrical coordinates are derived in Section 3, and thedi-
agnostic relations between streamfunction and potential vor-
ticity are decomposed into vertical and azimuthal normal
mode form in order to simplify their solution. Suitable side-
wall boundary conditions are derived by considering integral
properties of the governing equations. Then, the continu-
ous equations are carefully discretized in Section 4, in such a
way as to preserve discrete analogues of the integral proper-
ties. Suitable initial conditions and numerical parameterval-
ues are given. In Section 5, the calculations are partitioned
into model subroutines, the technical details of how to run
the model are described, and the code is tested. The paper
concludes with a summary in Section 6.

2 Models of the rotating annulus

In this section, the relative merits of different possible dy-
namical (Section 2.1) and geometrical (Section 2.2) choices
will be summarised.

2.1 Possible dynamical choices

For numerically modelling the laboratory annulus, one possi-
ble approach would be a direct numerical simulation (DNS)
of the Navier-Stokes equations or shallow-water equations,
which are both referred to as primitive equations because
both vortical and divergent eigenmodes are retained. DNS
codes have been developed for the continuously-stratified
thermally-forced rotating annulus (e.g. Hignett et al., 1985;
White, 1986) but they are computationally expensive and
generally can be used to examine a small number of case-
study flows only.

As an alternative to the existing DNS models, in this paper
we develop a balanced model in which the divergent eigen-
modes are filtered out by construction. The filtering is jus-
tified because the interaction between vortical and divergent
eigenmodes is thought to be weak. Balanced models have
fewer dynamical degrees of freedom than primitive equa-
tion models, and therefore run much more quickly, allowing
larger numbers of simulations to be performed.

Three possible balanced models for multi-layer flows are
those based on thequasi-geostrophic equations, thebalance
equationsand theslow equations. These three equation sets
are each derived from the shallow-water equations, which in
turn are derived from the Navier-Stokes equations by assum-

Fig. 1. Diagram showing the analogy between(a) the fluid in a ro-
tating annulus experiment in the laboratory, and(b) the mid-latitude
atmosphere bounded by two latitude circles on a rotating planet.
FromRead et al.(1998).

mechanically-forced rotating annulus have both been stud-
ied extensively (e.g.Hide et al., 1977; Carrigan, 1978; King,
1979; Appleby, 1982; Lovegrove, 1997; Williams, 2003).

The development of computer models for simulating the
general circulation of planetary atmospheres and oceans has
been accompanied by the development of computer models
for simulating rotating laboratory experiments. Because of
their relative simplicity, laboratory flows are generally eas-
ier to model than atmospheric and oceanic flows. Therefore,
the comparison between laboratory and model flows remains
an important testbed for investigating many fundamental dy-
namical phenomena. In this paper, we describe the develop-
ment of a numerical model for simulating fluid flows in the
multi-layer rotating annulus. The model is named QUAG-
MIRE, theQUAsi-Geostrophic Model for Investigating Ro-
tating fluids Experiments.

Section 2 reviews a variety of possible modelling ap-
proaches, each making different dynamical and geometrical
assumptions. A balanced model with a full representation

of the cylindrical geometry is the preferred approach, for a
number of important reasons that are discussed. The two-
layer quasi-geostrophic coupled partial differential equations
in cylindrical coordinates are derived in Sect.3, and the di-
agnostic relations between streamfunction and potential vor-
ticity are decomposed into vertical and azimuthal normal
mode form in order to simplify their solution. Suitable side-
wall boundary conditions are derived by considering integral
properties of the governing equations. Then, the continu-
ous equations are carefully discretized in Sect.4, in such a
way as to preserve discrete analogues of the integral prop-
erties. Suitable initial conditions and numerical parameter
values are given. In Sect.5, the calculations are partitioned
into model subroutines, the technical details of how to run
the model are described, and the code is tested. The paper
concludes with a summary in Sect.6.

2 Models of the rotating annulus

In this section, the relative merits of different possible dy-
namical (Sect.2.1) and geometrical (Sect.2.2) choices will
be summarised.

2.1 Possible dynamical choices

For numerically modelling the laboratory annulus, one possi-
ble approach would be a direct numerical simulation (DNS)
of the Navier-Stokes equations or shallow-water equations,
which are both referred to as primitive equations because
both vortical and divergent eigenmodes are retained. DNS
codes have been developed for the continuously-stratified
thermally-forced rotating annulus (e.g.Hignett et al., 1985;
White, 1986) but they are computationally expensive and
generally can be used to examine a small number of case-
study flows only.

As an alternative to the existing DNS models, in this paper
we develop a balanced model in which the divergent eigen-
modes are filtered out by construction. The filtering is jus-
tified because the interaction between vortical and divergent
eigenmodes is thought to be weak. Balanced models have
fewer dynamical degrees of freedom than primitive equa-
tion models, and therefore run much more quickly, allowing
larger numbers of simulations to be performed.

Three possible balanced models for multi-layer flows are
those based on thequasi-geostrophic equations, thebalance
equationsand theslow equations. These three equation sets
are each derived from the shallow-water equations, which in
turn are derived from the Navier-Stokes equations by assum-
ing hydrostatic balance and columnar flow. Discussions of
these and other filtered models are given byMcWilliams and
Gent(1980) andMcIntyre and Norton(2000).

The quasi-geostrophic equations (Charney et al., 1950) are
derived by assuming that the potential vorticity is advected
only by the geostrophic component of the flow, and that
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interface perturbations are much smaller than the mean layer
depths.

The balance equations (Charney, 1955) are derived by per-
forming a horizontal velocity decomposition into vortical and
divergent components, and then truncating with respect to the
divergent component. The balance described is more compli-
cated, but also more accurate, than geostrophic balance. Effi-
cient procedures have been developed for integrating the bal-
ance equations (Daley, 1982). However, in their most gen-
eral form the balance equations have spurious non-physical
wave solutions with phase speeds much larger than those of
inertia-gravity waves (Moura, 1976).

The slow equations (Lynch, 1989) are derived in a similar
manner to the balance equations, except that the truncation is
performed more systematically (based on normal mode ini-
tialization) and the spurious solutions vanish. Numerical in-
tegrations of the slow equations show excellent agreement
with initialized numerical integrations of the shallow-water
equations.

Of the above three possible dynamical choices, the quasi-
geostrophic (Q-G) equations are used for the QUAGMIRE
model developed in this paper. This is because only one
scalar function of horizontal position per layer (the stream-
function) is needed to uniquely define the state of the sys-
tem in a Q-G model, whereas three per layer (the stream-
function, velocity potential and geopotential) are needed in
a balance equations or slow equations model. With three
times fewer dependent variables, the computational advan-
tages gained from using a Q-G model arguably outweigh the
disadvantages of its slightly lower formal accuracy.

2.2 Possible geometrical choices

Brugge et al.(1987) have developed a numerical Q-G model
for simulating multi-layer flows in a rectangular channel.
However, their model is not particularly suitable for simu-
lating the flow in the laboratory annulus, for the following
reasons.

First, the channel equations with periodic azimuthal
boundary conditions are a good approximation to the annu-
lus equations only if the width of the annular gap is much
smaller than the mean radius (King, 1979). With this condi-
tion satisfied, the curvature becomes negligible and it would
be possible to justify the use of a channel model to simulate
the flow in an annulus. For typical laboratory annulus exper-
iments, however, the condition is not satisfied.

Second, channel models have additional shift-reflect sym-
metries not present in annulus models (Cattaneo and Hart,
1990). This is because, although the annulus and peri-
odic channel are topologically similar, the geometry of their
boundaries is fundamentally different. For example, there is
a reflect symmetry in the channel, in the plane that is equidis-
tant from the sidewalls, but there is no analogous symmetry
in the annulus.Kwon and Mak(1988) show that the exis-
tence of such additional symmetries in the periodic channel

leads to certain vortical wave-wave interaction coefficients
being identically zero. Only models in cylindrical geometry
admit the complete set of wave-wave interactions.

Third, the channel and the annulus both contain back-
ground potential vorticity gradients, due to the sloping of
equilibrium geopotential height surfaces in the presence of
a vertical shear in horizontal velocity. In the channel, these
geopotential height and potential vorticity variations are lin-
ear in the across-channel direction, but in the annulus they
are quadratic because of the parabolic equilibrium interface
height shape produced by centripetal effects. This is known
as thequadraticβ-effectand is captured only by using cylin-
drical geometry.

Finally, the model ofBrugge et al.(1987) does not include
the effects of interfacial tension, which can be significant in
the laboratory. Interfacial tension is scale-selective, affecting
small scales much more strongly than large scales. There-
fore, although interfacial tension effects are almost always
negligible in real geophysical flows, they can be important in
the analogous laboratory flows.

For the above reasons, the existing multi-layer Q-G mod-
els are not particularly suitable for simulating the flow in the
laboratory annulus. Therefore, the remainder of this paper
describes the construction of a new model that takes into ac-
count cylindrical geometry and interfacial tension.

3 Continuous equations

In this section, the governing continuous equations are de-
rived (Sect.3.1) and decomposed into normal mode form
(Sect. 3.2), and suitable boundary conditions are derived
(Sect.3.3).

3.1 Derivation from first principles

The annulus to be modelled is shown schematically in Fig.2.
We use cylindrical polar coordinates,r=(r, θ, z). Thez-axis
is coincident with the rotation axis. The fluid is bounded by
a base of mean vertical positionz=0, a lid of mean vertical
positionz=2H>0 and cylindrical walls atr=a andr=b>a.
The base and lid linearly deviate from their mean vertical
positions bydbot(r) and dtop(r). We define the constants
sbot=ddbot/dr and stop=ddtop/dr. The two homogeneous,
immiscible layers have constant densities,ρi , kinematic vis-
cosities,νi and mutual interfacial tension,S. We use the
oceanographic convention thati=1 refers to the upper layer
andi=2 to the lower layer. The undisturbed fluid interface is
at z=H and the disturbed fluid interface is atz=H+η(r, t).
The acceleration due to gravity isg. The base and sidewalls
rotate about the axis of symmetry with angular velocity�,
and the lid rotates about the axis of symmetry with angular
velocity�+1�.

In the frame that rotates with the base, the four funda-
mental equations for the pressure,pi(r, t), and the velocity,

www.geosci-model-dev.net/2/13/2009/ Geosci. Model Dev., 2, 13–32, 2009
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Fig. 2. Schematic diagram showing a vertical cross-section through
the two-layer annulus. The dashed line shows the resting interface
height. See text for definitions.

fluid interface is atz = H + η(r, t). The acceleration due to
gravity isg. The base and sidewalls rotate about the axis of
symmetry with angular velocityΩ, and the lid rotates about
the axis of symmetry with angular velocityΩ + ∆Ω.

In the frame which rotates with the base, the four funda-
mental equations for the pressure,pi(r, t), and the velocity,
ui(r, t), are the Navier-Stokes equations,

∂ui

∂t
+ (ui ·∇)ui + 2Ω× ui + Ω× (Ω× r)

= − 1

ρi
∇pi + νi∇2

ui + g , (1)

and the equation of volume conservation for the incompress-
ible liquids,

∇ · ui = 0 . (2)

Defining the vorticity byωi = ∇ × ui, we take the curl of
equation (1) and use vector identities to obtain

∂ωi

∂t
+ (ui ·∇)ωi = [(2Ω + ωi) ·∇]ui + νi∇2

ωi , (3)

the z-component of which, in the fluid interiors (i.e. away
from the boundary layers) where the flow is assumed to be
columnar and inviscid, is

∂ξi
∂t

+ (ui ·∇)ξi = (f + ξi)
∂ui, z

∂z
, (4)

whereξi is thez-component ofωi, f = 2Ω is the Coriolis
parameter andui, z is the vertical velocity.

We next vertically integrate equation (4) over the fluid in-
teriors, parameterizing vertical Ekman pumping and suction
velocities (Gill, 1982) at the lid, base and interface, which
are all assumed to have small slopes. Assuming that the
Ekman layer depths are much smaller than the total layer
depths, and making the usual quasi-geostrophic assumptions
(i.e. η ≪ H , dbot ≪ H , dtop ≪ H andξi ≪ f ), after
rearrangement we obtain
(

∂

∂t
+ u1 ·∇

)

q1 = −
√

Ων1
H

[ξ1 + χ2(ξ1 − ξ2)]

+2∆Ω

√
Ων1
H

(5)

and
(

∂

∂t
+ u2 ·∇

)

q2 = −
√

Ων2
H

[ξ2 + χ1(ξ2 − ξ1)] , (6)

whereχi =
√
νi/(
√
ν1 +

√
ν2) and whereqi(r, θ, t)/H are

the perturbation potential vorticities (PPVs) given by

q1(r, θ, t) = ξ1 +
f(η − dtop)

H
(7)

and

q2(r, θ, t) = ξ2 −
f(η − dbot)

H
. (8)

To complete the derivation, we write all of the dependent
variables (i.e.ui, ξi andη) in equations (5)–(8) in terms of
the streamfunctions,ψi(r, θ, t), defined by

ui, θ =
∂ψi

∂r
(9)

and

ui, r = −1

r

∂ψi

∂θ
. (10)

The streamfunctions are defined here only to within arbitrary
additive constants, which will be discussed in Section 3.3.2.
The vorticities are given by

ξi = ∇2ψi . (11)

Assuming hydrostatic balance and nearly equal densities, the
interface height perturbation is given in terms of the stream-
functions (to within an additive constant) by

η − δ2m∇2η =
f

g′
(ψ2 − ψ1) +

r2Ω2

2g
, (12)

whereg′ = 2g(ρ2−ρ1)/(ρ2+ρ1) is the reduced gravity. The
Laplacian term involvingδm =

√

S/[g(ρ2 − ρ1)] represents
the effects of interfacial tension for an interface of smallcur-
vature.δm is the characteristic static meniscus width, as can
be seen by considering solutions to equation (12) when the
tank is at rest (i.e.Ω = 0) and the fluid velocities are zero
(i.e. ψi = constant). When given theψi, equation (12) is

Fig. 2. Schematic diagram showing a vertical cross-section through
the two-layer annulus. The dashed line shows the resting interface
height. See text for definitions.

ui(r, t), are the Navier-Stokes equations,

∂ui

∂t
+ (ui ·∇)ui + 2�× ui +�× (�× r)

= −
1

ρi
∇pi + νi∇

2ui + g , (1)

and the equation of volume conservation for the incompress-
ible liquids,

∇ · ui = 0 . (2)

Defining the vorticity byωi=∇×ui , we take the curl of
Eq. (1) and use vector identities to obtain

∂ωi

∂t
+ (ui ·∇)ωi = [(2�+ ωi) ·∇]ui + νi∇

2ωi , (3)

the z-component of which, in the fluid interiors (i.e. away
from the boundary layers) where the flow is assumed to be
columnar and inviscid, is

∂ξi

∂t
+ (ui ·∇)ξi = (f + ξi)

∂ui, z

∂z
, (4)

whereξi is the z-component ofωi , f=2� is the Coriolis
parameter andui, z is the vertical velocity.

We next vertically integrate Eq. (4) over the fluid interi-
ors, parameterizing vertical Ekman pumping and suction ve-
locities (Gill , 1982) at the lid, base and interface, which are
all assumed to have small slopes. Assuming that the Ekman
layer depths are much smaller than the total layer depths, and
making the usual quasi-geostrophic assumptions (i.e.η�H ,

dbot�H , dtop�H and ξi�f ), after rearrangement we ob-
tain(
∂

∂t
+ u1 ·∇

)
q1 = −

√
�ν1

H
[ξ1+ χ2(ξ1− ξ2)]

+21�

√
�ν1

H
(5)

and(
∂

∂t
+ u2 ·∇

)
q2 = −

√
�ν2

H
[ξ2+ χ1(ξ2− ξ1)] , (6)

whereχi=
√
νi/(
√
ν1+
√
ν2) and whereqi(r, θ, t)/H are the

perturbation potential vorticities (PPVs) given by

q1(r, θ, t) = ξ1+
f (η − dtop)

H
(7)

and

q2(r, θ, t) = ξ2−
f (η − dbot)

H
. (8)

To complete the derivation, we write all of the dependent
variables (i.e.ui , ξi andη) in Eqs. (5)–(8) in terms of the
streamfunctions,ψi(r, θ, t), defined by

ui, θ =
∂ψi

∂r
(9)

and

ui, r = −
1

r

∂ψi

∂θ
. (10)

The streamfunctions are defined here only to within arbitrary
additive constants, which will be discussed in Sect.3.3.2.
The vorticities are given by

ξi = ∇
2ψi . (11)

Assuming hydrostatic balance and nearly equal densities, the
interface height perturbation is given in terms of the stream-
functions (to within an additive constant) by

η − δ2
m∇

2η =
f

g′
(ψ2− ψ1)+

r2�2

2g
, (12)

whereg′=2g(ρ2−ρ1)/(ρ2+ρ1) is the reduced gravity. The
Laplacian term involvingδm=

√
S/[g(ρ2−ρ1)] represents

the effects of interfacial tension for an interface of small
curvature.δm is the characteristic static meniscus width, as
can be seen by considering solutions to Eq. (12) when the
tank is at rest (i.e.�=0) and the fluid velocities are zero
(i.e.ψi=constant). When given theψi , Eq. (12) is a forced
Helmholtz equation forη, where the boundary conditions are
the slopes,∂η/∂r, at the sidewalls, which are related to the
interface contact angle. We require an explicit formula forη,
and so we seek a first-order solution to the Helmholtz equa-
tion for weak interfacial tension, by estimating the∇2η term
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in Eq. (12) using the solution forη whenδm = 0. This ap-
proach gives

η =
f

g′
(1+ δ2

m∇
2)(ψ2− ψ1)+

r2�2

2g
, (13)

where 1 andδ2
m∇

2 are the first two terms in a power series
solution. On simple grounds, the series would be expected to
converge rapidly ifδ2

m∇
2η�η, which is the case ifδ2

m�λ
2

for waves of wavelengthλ. We expect waves to form on
the scale of the internal Rossby radius,

√
g′H/|f |, and so

the convergence criterion becomesδ2
mf

2/g′H�1. This is
equivalent toFI�1 whereF=f 2(b−a)2/g′H is the Froude
number andI=δ2

m/(b−a)
2 is the interfacial tension number

(Appleby, 1982).
We finally substitute Eqs. (9)–(11) into (5) and (6) to ob-

tain the two coupled partial differential equations governing
the evolution of quasi-geostrophic motions in the two-layer
annulus,(

D

Dt

)
1
q1 = −

√
�ν1

H

[
∇

2ψ1+ χ2∇
2(ψ1− ψ2)

]
+

21�
√
�ν1

H
(14)

and(
D

Dt

)
2
q2 = −

√
�ν2

H

[
∇

2ψ2+ χ1∇
2(ψ2− ψ1)

]
. (15)

The total derivative operators are given by(
D

Dt

)
i

=
∂

∂t
−

1

r

∂ψi

∂θ

∂

∂r
+

1

r

∂ψi

∂r

∂

∂θ
(16)

and the horizontal Laplacian operator is given by

∇
2
=

∂2

∂r2
+

1

r

∂

∂r
+

1

r2

∂2

∂θ2
. (17)

By substituting Eqs. (11) and (13) into Eqs. (7) and (8) we
obtain

q1 = ∇
2ψ1+

f 2

g′H
(1+ δ2

m∇
2)(ψ2− ψ1)

+
f

H

r2�2

2g
−
f dtop

H
(18)

and

q2 = ∇
2ψ2−

f 2

g′H
(1+ δ2

m∇
2)(ψ2− ψ1)

−
f

H

r2�2

2g
+
f dbot

H
. (19)

On the right side of Eq. (14), the term in square brackets
represents spin-up/down by the frictional Ekman layers at the
lid (∇2ψ1) and interface (∇2(ψ1−ψ2)). The remaining term
is the (constant) forcing term, and represents generation of

potential vorticity by the rotating lid, communicated to the
interior by the Ekman layer. The terms on the right side of
Eq. (15) have a similar interpretation, except that there is no
explicit forcing term in this case.

Equations (18) and (19) are similar to the relationships be-
tween potential vorticity and streamfunction in the channel
model ofBrugge et al.(1987), except that our equations in-
clude interfacial tension, and theirβy term has been replaced
with ourβ∗r2 term. Theβ∗r2 term is the quadraticβ-effect.
It is equal and opposite in the upper and lower layers, cor-
responding to the fact that depth increases in one layer are
accompanied by equal decreases in the other layer.

Upon non-dimensionalization of Eqs. (14), (15), (18) and
(19), using time scale(1�)−1 and horizontal length scale
(b−a), definitions of Froude number, dissipation parameter,
Rossby number, Reynolds number, Ekman number and inter-
facial tension number appear naturally. We choose to code
QUAGMIRE using dimensional units, however, and there-
fore do not carry out the non-dimensionalization here. The
advantage of using dimensional units is that the link to the
laboratory annulus is immediate and clear. The disadvantage
is that the non-dimensional parameters need to be computed
separately.

We now list the assumptions that were required in order
to derive Eqs. (14)–(19). It is important to bear these ap-
proximations in mind, since they limit the applicability of
the model. We assume:

– incompressible fluids;

– vertically-columnar fluid interiors;

– inviscid fluid interiors (i.e. Reynolds number�1);

– linear Ekman pumping and suction;

– η�H , dbot�H , dtop�H ;

– |∇η|�1, |sbot|�1, |stop|�1;

– Ekman layer depths�H ;

– ξi�f (i.e. Rossby number�1);

– hydrostatic balance (i.e. Duz/Dt�g);

– g′�g;

– FI�1;

– passive Stewartson layers that do not exchange fluid
with the interior; and

– Stewartson layer widths�b−a.

The final two assumptions are not discussed until Sect.3.3,
but are included here for completeness.
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There is an equilibrium solution to Eqs. (14)–(19) of the
form ui, r=0 andui, θ=r1�i . Substituting allows us to de-
termine the interior solid-body rotation rates,

1�1

1�
=

2+ χ

2(1+ χ)
(20)

and

1�2

1�
=

1

2(1+ χ)
, (21)

whereχ=
√
ν2/ν1. The corresponding interface height (to

within an additive constant) is given by Eq. (13) to be

η =
�2r2

2g

(
1−

1�/�

g′/g

)
. (22)

Equations (20)–(22) describe the basic equilibrium state
upon which baroclinically-unstable perturbations may grow.
We refer to this state as the mean flow and we label the corre-
sponding streamfunctions and PPVsψi(r) andqi(r), respec-
tively.

Governing equations for perturbations,ψ ′i(r, θ, t) and
q ′i(r, θ, t), to the mean flow are obtained by substitut-
ing ψi=ψi(r)+ψ

′

i(r, θ, t) and qi=qi(r)+q
′

i(r, θ, t) into
Eqs. (14)–(19) to obtain(

D

Dt

)
1′
q ′1 = −

√
�ν1

H

[
∇

2ψ ′1+ χ2∇
2(ψ ′1− ψ

′

2)
]

−1�1
∂q ′1

∂θ

+
f 2

2H

(
�

g
−
1�

g′

)
∂ψ ′1

∂θ

−
f stop

rH

∂ψ ′1

∂θ
(23)

and(
D

Dt

)
2′
q ′2 = −

√
�ν2

H

[
∇

2ψ ′2+ χ1∇
2(ψ ′2− ψ

′

1)
]

−1�2
∂q ′2

∂θ

−
f 2

2H

(
�

g
−
1�

g′

)
∂ψ ′2

∂θ

+
f sbot

rH

∂ψ ′2

∂θ
, (24)

where

q ′1 = ∇
2ψ ′1+

f 2

g′H
(1+ δ2

m∇
2)(ψ ′2− ψ

′

1) (25)

and

q ′2 = ∇
2ψ ′2−

f 2

g′H
(1+ δ2

m∇
2)(ψ ′2− ψ

′

1) . (26)

The total derivatives in Eqs. (23) and (24) advect according
to the perturbation streamfunctions, i.e.(

D

Dt

)
i′
=
∂

∂t
−

1

r

∂ψ ′i

∂θ

∂

∂r
+

1

r

∂ψ ′i

∂r

∂

∂θ
(27)

≡
∂

∂t
+ J (ψ ′i , ∗) .

Equations (23)–(26) are the nonlinear model equations, dis-
cretized versions of which QUAGMIRE solves numerically.
The constant forcing term in Eq. (14), which represents forc-
ing of the full flow by the lid rotation, has been replaced in
Eqs. (23) and (24) with more complicated non-constant forc-
ing terms, which represent forcing of the perturbation flow by
the equilibrium state and the bottom and top topography. An
analytical assessment of the stability of small perturbations
could begin by linearizing Eqs. (23) and (24), i.e. discarding
the advection terms, but we retain all of the nonlinear terms
in QUAGMIRE.

The perturbation velocity fields are given in terms of the
perturbation streamfunctions by

u′i, θ =
∂ψ ′i

∂r
(28)

and

u′i, r = −
1

r

∂ψ ′i

∂θ
, (29)

which are the perturbation forms of Eqs. (9) and (10). The
perturbation interface height field is given (to within an ad-
ditive constant) by

η′ =
f

g′
(1+ δ2

m∇
2)(ψ ′2− ψ

′

1) , (30)

which is the perturbation form of Eq. (13).

3.2 Normal mode decomposition of the diagnostic equa-
tions

Given ψ ′i and q ′i at any time, we may evaluate∂q ′i/∂t at
that time using the prognostic equations, (23) and (24).
There are contributions to the PPV tendency from advection
(J (ψ ′i , q

′

i)), forcing (∂/∂θ ) and dissipation (∇2). We may
use the tendency to determineq ′i at a short time in the future.
We may then invert the diagnostic Helmholtz equations, (25)
and (26), in order to obtainψ ′i at the future time. Finally, we
may begin the loop again using the updated fields. This is
how QUAGMIRE integrates the model equations.

The Helmholtz equations, (25) and (26), are coupled. The
inversion is made easier by first re-writing them in vertical
normal mode form in order to remove the coupling. We take
the sum and difference of the equations to obtain, respec-
tively,

∇
2(ψ ′1+ ψ

′

2) = q
′

1+ q
′

2 (31)
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and

∇
2(ψ ′2− ψ

′

1)− Citcc
2f 2

g′H
(ψ ′2− ψ

′

1) = Citcc(q
′

2− q
′

1) , (32)

whereCitcc is an interfacial tension correction coefficient
given by

Citcc =
1

1− (2f 2δ2
m)/(g

′H)
. (33)

We know thatf 2δ2
m/g

′H�1 (Sect.3.1), and soCitcc is
slightly larger than unity, and is exactly equal to unity if the
interfacial tension is zero.

Defining the barotropic (bt) and baroclinic (bc) vertical
normal mode variables to be

9 ′bt = ψ
′

1+ ψ
′

2 , (34)

9 ′bc = ψ
′

2− ψ
′

1 , (35)

Q′bt = q
′

1+ q
′

2 , (36)

Q′bc = Citcc(q
′

2− q
′

1) , (37)

then Eqs. (31) and (32) both become uncoupled Helmholtz
equations of the form

∇
29 ′m − λm9

′
m = Q

′
m , (38)

where m=bt,bc. The eigenvalues areλbt=0 and
λbc=2Citccf

2/g′H .
We now perform a second normal mode decomposition,

this time in the azimuthal dimension, in order to further sim-
plify the solution of the Helmholtz equations. At each time
step, we expand

9 ′m(r, θ) =

∞∑
n=−∞

9̂ ′nm(r)e
√
−1nθ (39)

and

Q′m(r, θ) =

∞∑
n=−∞

Q̂′nm(r)e
√
−1nθ . (40)

Since9 ′m(r, θ) andQ′m(r, θ) are real, the complex functions
9̂ ′nm and Q̂′nm satisfy 9̂ ′nm=(9̂

′−n
m )∗ and Q̂′nm=(Q̂

′−n
m )∗,

where the asterisk represents complex conjugation. Then=0
term is the mean flow correction, which is a correction to the
mean flow that is generated by nonlinear self interactions of
the waves. It is equal to the zonal average of the perturba-
tion quantities, as can be seen from the zonal integration of
Eqs. (39) and (40). Then 6=0 terms represent wave (or eddy)
components. Substituting Eqs. (39) and (40) into (38) gives
the radial structure equation,

d29̂ ′nm

dr2
+

1

r

d9̂ ′nm
dr
−

(
λm +

n2

r2

)
9̂ ′nm = Q̂

′n
m(r) . (41)

This complex ordinary differential equation must be solved
for each combination of vertical modes,m∈{bt,bc}, and az-
imuthal modes,n∈{0,±1,±2, . . .}, in order to determine

9̂ ′nm(r) when givenQ̂′nm(r). The inversion process required
in order to obtainψ ′i(r, θ) from q ′i(r, θ) is therefore summa-
rized (with the relevant equation numbers in brackets) as:

q ′i
(36)& (37)
−→ Q′m

(40)
−→ Q̂′nm

↓ (41)

ψ ′i
(34)& (35)
←− 9 ′m

(39)
←− 9̂ ′nm

We could finally perform a third normal mode decomposi-
tion, this time in the radial dimension, by projecting9̂ ′nm(r)
andQ̂′nm(r) onto the eigenfunctions of the linear operator on
the left side of Eq. (41). The baroclinic eigenfunctions are
modified Bessel functions of ordern in the scaled radial co-
ordinate,r̃=

√
λbc r (Boas, 1983) and the barotropic eigen-

functions are of the formr±n. However, this approach would
force the streamfunction and PPV to satisfy the same bound-
ary conditions, for which there is no justification. QUAG-
MIRE therefore solves the radial structure equation directly
rather than projecting onto the radial modes.

3.3 Perturbation streamfunction boundary conditions for
the continuous equations

We must now choose boundary conditions to apply to the
perturbation streamfunction when integrating Eq. (41). The
equation was derived under the assumption of inviscid flow.
Therefore, it cannot describe the thin, viscous Stewartson
layers of widthδS that exist at the lateral boundaries, and
applies only to the fluid interior,a+δS<r<b−δS . We as-
sume thatδS�a and δS�b so that we may still write the
integration range asa≤r≤b, but now when we refer tor=a
or r=b we mean the boundary between the fluid interior and
Stewartson layer rather than the sidewall.

There are a number of possible boundary conditions. To
impose passive Stewartson layers that do not anywhere ex-
change fluid with the interior, we would apply the im-
permeability condition to the radial perturbation velocity,
i.e. u′i, r |r=a, b=0, ∀ θ, i, which in the normal mode vari-
ables corresponds to Dirichlet boundary conditions,

9̂ ′nm|r=a, b = 0, ∀ n 6= 0, m . (42)

The mean flow correction velocity (n=0) is purely zonal
and so automatically satisfies impermeability. Impermeabil-
ity alone is therefore not a sufficient condition to uniquely
specify a solution. No-slip boundary conditions for the zonal
perturbation velocity, i.e.u′i, θ |r=a, b=0, ∀ θ, i, correspond
in the normal mode variables to the Neumann conditions,

d9̂ ′nm
dr

∣∣∣∣
r=a, b

= 0, ∀ n,m . (43)
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The equilibrium solid-body rotation flow about which we
perturb satisfies impermeability but does not satisfy the no-
slip condition.

Since we are solving a second-order differential equa-
tion, only two independent boundary conditions are required.
We cannot therefore impose both impermeability and no-slip
flow at both boundaries, as that would require four indepen-
dent conditions. The over-constrained nature of the PPV
inversion in Q-G models has been discussed byWilliams
(1979). A comprehensive study of the comparative effects
of using no-slip boundary conditions, rather than the more
traditional free-slip conditions, is described byMundt et al.
(1995).

We must use a reduced set of boundary conditions, but we
must choose carefully and consistently which conditions to
retain and which to abandon, in order to avoid non-physical
behaviour. We are, of course, free to employ different bound-
ary conditions for the different normal mode components
specified bym andn.

The debate over suitable lateral Q-G boundary conditions
has had a long and contentious history in the literature.
In the classic periodic channel models ofPhillips (1954,
1956), Eq. (42) is applied to the wave (n6=0) components
and Eq. (43) is applied to the mean flow correction (n=0)
component. The latter condition is not imposed (but the for-
mer is retained) byPhillips (1963) andPedlosky(1964), but
McIntyre (1967) shows that relaxing the mean flow correc-
tion boundary condition leads to a spurious, unspecified en-
ergy flux through the sidewalls. The condition is included
again byPedlosky(1970), but replaced inPedlosky(1971)
and Pedlosky(1972) with an ad-hoc condition chosen for
mathematical convenience.Smith(1974) points out that the
resulting non-physical energy source might invalidate Ped-
losky’s results, and repeats Pedlosky’s calculations with the
proper boundary condition retained (Smith and Pedlosky,
1975; Smith, 1977). More recent studies (Appleby, 1982;
Yoshida and Hart, 1986; Lewis, 1992; Stephen, 1998) have
avoided the spurious energy flux by applying both conditions
in full, as done byPhillips (1954, 1956).

An informative interpretation of Phillips’ mean flow cor-
rection boundary condition has been given byDavey(1978).
For non-zero zonal perturbation velocities,u′i, θ |r=a, b, at the
boundary between the interior and a Stewartson layer, there
will be a corresponding return volume flux between the Ek-
man layers and the Stewartson layer due to the asymmetry of
the Ekman spiral (Pedlosky, 1987), which will have a non-
zero radial component proportional tou′i, θ |r=a, b. We can
therefore ensure that there is no net build-up of mass in the
Stewartson layers by setting∫ 2π

0
u′i, θ |r=a, b dθ = 0 ∀ i . (44)

This condition is automatically satisfied for the wave (n 6=0)
components, and is equivalent to Eq. (43) with n=0, which
is the condition used by Phillips. With this condition, there is

nonetexchange of fluid due to the perturbation flow between
each Ekman layer and the Stewartson layers, althoughlocal
exchange is allowed.

Next, we derive a consistent and plausible set of bound-
ary conditions for the quasi-geostrophic annulus, which do
not lead to non-physical behaviour, by considering inte-
gral properties of the prognostic (Sect.3.3.1) and diagnostic
(Sect.3.3.2) model equations.

3.3.1 Integral properties of the prognostic equations

Consider the area-integral of the perturbation PPV tenden-
cies over the annular domain,∫ 2π

θ=0

∫ b

r=a

∂q ′i

∂t
r dr dθ , (45)

as given by the prognostic equations, (23) and (24). The forc-
ing (∂/∂θ ) terms integrate to give zero unconditionally. The
advection (J (ψ ′i , q

′

i)) terms integrate to give zero (Salmon
and Talley, 1989) if

∂ψ ′i

∂θ

∣∣∣∣
r=a, b

= 0 . (46)

The dissipation (∇2) terms integrate to give zero if∫ 2π

0

∂ψ ′i

∂r

∣∣∣∣
r=a, b

dθ = 0 . (47)

The conditions (46) and (47) are equivalent to impermeabil-
ity for the waves and no-slip for the mean flow correction,
as originally used byPhillips (1954, 1956). With these con-
ditions, the horizontal-mean PPV in each layer is conserved
by the continuous equations and there is no spurious energy
flux. We choose to apply these conditions in QUAGMIRE,
except that the latter condition leads to an ill-posed PPV in-
version for the special case ofn=0 andm=bt, as we will now
see.

3.3.2 Integral properties of the diagnostic equations

Equation (41) for the barotropic mean flow correction is

d29̂ ′0bt

dr2
+

1

r

d9̂ ′0bt

dr
= Q̂′0bt . (48)

Sinceλbt=0 andn=0 for this case, one of the terms in the
radial structure equation has vanished, making the left side
an exact derivative. Equation (48) can therefore be integrated
analytically betweenr=a andr=b to give

b
d9̂ ′0bt

dr

∣∣∣∣
r=b

− a
d9̂ ′0bt

dr

∣∣∣∣
r=a

=

∫ b

a

Q̂′0bt r dr . (49)

In QUAGMIRE, we choose initial conditions for which the
horizontal-mean barotropic PPV is zero, and it is then guar-
anteed to remain zero at all times, as shown in Sect.3.3.1.
This means that we need only explicitly set

d9̂ ′0bt

dr

∣∣∣∣
r=a

= 0 (50)
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Table 1. Summary of boundary conditions applied to the stream-
function when integrating the continuous equations. Because the
diagnostic Helmholtz equation is second order, two conditions (one
at each boundary) are required for each combination of vertical and
azimuthal normal modes, denoted bym andn respectively.

n = 0 n 6= 0

d9̂ ′nm
dr

∣∣∣∣∣
r=a

= 0 9̂ ′nm|r=a = 0

m = bt
9̂ ′nm|r=b = 0 9̂ ′nm|r=b = 0

d9̂ ′nm
dr

∣∣∣∣∣
r=a

= 0 9̂ ′nm|r=a = 0

m = bc

d9̂ ′nm
dr

∣∣∣∣∣
r=b

= 0 9̂ ′nm|r=b = 0

and we will automatically have

d9̂ ′0bt

dr

∣∣∣∣
r=b

= 0 , (51)

from Eq. (49). If we explicitly impose both (50) and (51)
when solving (48), we will have an underconstrained and ill-
posed problem. We need an additional constraint to close the
solution.

We have defined two streamfunctions in the model – one
per layer, or equivalently, one per vertical normal mode –
and each of these has an integration constant associated with
it (Sect.3.1). Just because these two arbitrary constants have
no physical meaning does not mean that they do not need to
be defined in the numerical model. Now that we know that
Eqs. (50) and (51) are not independent boundary conditions,
and therefore that to explicitly impose both would lead to
an underconstrained PPV inversion, we choose to explicitly
impose only Eq. (50). We then take the opportunity to use
the remaining degree of freedom associated with the solution
of Eq. (48) to define one of the streamfunction integration
constants, by arbitrarily setting

9̂ ′0bt|r=b = 0 , (52)

which completes the set of two boundary conditions for the
m=bt, n=0 component, and gives a well-posed problem.

Incidentally, the second streamfunction integration con-
stant is defined by requiring the mean interface perturbation
to be zero using Eq. (13), which follows from volume conser-
vation for either layer. This requirement is imposed off-line,
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anteed to remain zero at all times, as shown in Section 3.3.1.
This means that we need only explicitly set

dΨ̂′0
bt

dr

∣

∣

∣

∣

r=a

= 0 (50)

and we will automatically have

dΨ̂′0
bt

dr

∣

∣

∣

∣

r=b

= 0 , (51)

from equation (49). If we explicitly impose both (50)
and (51) when solving (48), we will have an undercon-
strained and ill-posed problem. We need an additional con-
straint to close the solution.

We have defined two streamfunctions in the model —
one per layer, or equivalently, one per vertical normal mode
— and each of these has an integration constant associated
with it (Section 3.1). Just because these two arbitrary con-
stants have no physical meaning does not mean that they do
not need to be defined in the numerical model. Now that
we know that equations (50) and (51) are not independent
boundary conditions, and therefore that to explicitly impose
both would lead to an underconstrained PPV inversion, we
choose to explicitly impose only equation (50). We then take
the opportunity to use the remaining degree of freedom asso-
ciated with the solution of equation (48) to define one of the
streamfunction integration constants, by arbitrarily setting

Ψ̂′0
bt|r=b = 0 , (52)

which completes the set of two boundary conditions for the
m = bt, n = 0 component, and gives a well-posed problem.

Incidentally, the second streamfunction integration con-
stant is defined by requiring the mean interface perturbation
to be zero using equation (13), which follows from volume
conservation for either layer. This requirement is imposed
off-line, by adding a suitably-chosen constant to one of the
streamfunction fields when model diagnostics are plotted,
and not as a boundary condition during the inversion.

A summary of the boundary conditions which we must ex-
plicitly set when integrating equation (41) is given in Table 1.
With these conditions, the sidewall boundaries are imperme-
able to each component of the flow, i.e. the solid-body rota-
tion equilibrium flow, the mean flow correction and the wave
components. The boundaries are slippery to the solid-body
rotation flow and the wave components, but no-slip to the
mean flow correction.

4 Discretized equations

We derived in Section 3 a set of partial differential equations
and boundary conditions which are both physically sensible
and well-posed. We now discretize the equations so that they
are suitable for numerical integration on a computer. We
must take great care to ensure that the discretized equations

Table 1. Summary of boundary conditions applied to the stream-
function when integrating the continuous equations. Because the
diagnostic Helmholtz equation is second order, two conditions (one
at each boundary) are required for each combination of vertical and
azimuthal normal modes, denoted bym andn respectively.

n = 0 n 6= 0

dΨ̂′n
m

dr

˛

˛

˛

˛

˛

r=a

= 0 Ψ̂′n
m|r=a = 0

m = bt

Ψ̂′n
m|r=b = 0 Ψ̂′n

m|r=b = 0

dΨ̂′n
m

dr

˛

˛

˛

˛

˛

r=a

= 0 Ψ̂′n
m|r=a = 0

m = bc

dΨ̂′n
m

dr

˛

˛

˛

˛

˛

r=b

= 0 Ψ̂′n
m|r=b = 0

∆ r / 2

r(i) ∆θ

∆ r

i = N rad

j = N azim

∆ r / 2

i = 1

i = 3

j = 1

j = 2

i = 2

Fig. 3. Definition of the numerical grid. Grid points are denoted
by crosses. Grid boxes are denoted by dashed lines. The two cylin-
drical boundaries (r = a andr = b) are denoted by solid lines.
The dimensions of typical grid boxes, both in the interior and at the
boundaries, are shown.

and boundary conditions retain the important properties pos-
sessed by the continuous equations. In particular, it is im-
portant that they satisfy discretized analogues of the integral
properties discussed in Section 3.3.

Fig. 3. Definition of the numerical grid. Grid points are denoted
by crosses. Grid boxes are denoted by dashed lines. The two cylin-
drical boundaries (r=a andr=b) are denoted by solid lines. The
dimensions of typical grid boxes, both in the interior and at the
boundaries, are shown.

by adding a suitably-chosen constant to one of the stream-
function fields when model diagnostics are plotted, and not
as a boundary condition during the inversion.

A summary of the boundary conditions that we must ex-
plicitly set when integrating Eq. (41) is given in Table1. With
these conditions, the sidewall boundaries are impermeable to
each component of the flow, i.e. the solid-body rotation equi-
librium flow, the mean flow correction and the wave compo-
nents. The boundaries are slippery to the solid-body rotation
flow and the wave components, but no-slip to the mean flow
correction.

4 Discretized equations

We derived in Sect.3 a set of partial differential equations
and boundary conditions that are both physically sensible and
well-posed. We now discretize the equations so that they
are suitable for numerical integration on a computer. We
must take great care to ensure that the discretized equations
and boundary conditions retain the important properties pos-
sessed by the continuous equations. In particular, it is im-
portant that they satisfy discretized analogues of the integral
properties discussed in Sect.3.3.

4.1 The numerical grid

The regular grid on which we discretize the equations is
shown in Fig.3. The grid consists ofNrad points in the ra-
dial dimension (including one point on each boundary,r=a
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andr=b) andNazim points in the azimuthal dimension. We
define

1r =
b − a

Nrad− 1
(53)

and

1θ =
2π

Nazim
, (54)

and then we have

r(i) = a + (i − 1)1r , i = 1,2, . . . , Nrad (55)

and

θ(j) = j1θ , j = 1,2, . . . , Nazim . (56)

The point(i, Nazim+1) is identical to the point(i,1). We
define the perturbation streamfunctionψ ′(i, j, k) and PPV
q ′(i, j, k) at each of these points in each layer (k=1,2),
so thatψ ′ and q ′ are co-located on the grid. The area
of the grid box with coordinates(i, j) is approximately
[1−1

2δi, 1−
1
2δi, Nrad]r(i)1r1θ , whereδ∗,∗ is the Kronecker

delta function.

4.2 Prognostic equations

In the continuous case, we chose perturbation streamfunc-
tion boundary conditions such that each of the three con-
tributions (advection, forcing and dissipation) to the area-
integrated perturbation PPV tendency was zero. We would
now like to choose discretizations of these contributions, to-
gether with discretizations of the boundary conditions, for
which this statement still holdsexactly. If our discretization
only conserves the mean PPV approximately, then there is
the possibility of a non-physical and explosive increase in the
PPV, even if the error is small, due to the compound effects
of many time steps. Following Sect.3.3.1, we therefore next
examine the discretizations and boundary conditions neces-
sary to ensure that

Nrad∑
i=1

Nazim∑
j=1

[1−
1

2
δi,1−

1

2
δi,Nrad] f (i, j, k)r(i)1r1θ = 0 (57)

for k=1,2, wheref (i, j, k) is, in turn, the discretized az-
imuthal derivative, Jacobian and Laplacian.

The centred, second-order discretization of the azimuthal
derivative,

f (i, j, k) =
ψ ′(i, j + 1, k)− ψ ′(i, j − 1, k)

21θ
, (58)

satisfies Eq. (57) unconditionally, as in the continuous case.
The second-orderArakawa(1966) discretization of the Ja-

cobian satisfies Eq. (57) if

ψ ′(i, j + 1, k)− ψ ′(i, j, k)

1θ
= 0 ∀ j, k, i = 1, Nrad , (59)

which is a discretized version of the condition, (46), for the
continuous case.

It is tedious but straightforward to show that the five-point
discretization of the Laplacian (whose continuous definition
is given in Eq. (17) for reference),

f (i, j, k)

=
ψ ′(i + 1, j, k)− 2ψ ′(i, j, k)+ ψ ′(i − 1, j, k)

(1r)2

+
ψ ′(i + 1, j, k)− ψ ′(i − 1, j, k)

2r(i)1r

+
ψ ′(i, j + 1, k)− 2ψ ′(i, j, k)+ ψ ′(i, j − 1, k)

[r(i)1θ]2
, (60)

with ghost point values,ψ ′(0, j, k) andψ ′(Nrad+1, j, k),
given by linear extrapolation,

ψ ′(2, j, k)− ψ ′(1, j, k) =

ψ ′(1, j, k)− ψ ′(0, j, k) (61)

and

ψ ′(Nrad+ 1, j, k)− ψ ′(Nrad, j, k) =

ψ ′(Nrad, j, k)− ψ
′(Nrad− 1, j, k) , (62)

satisfies Eq. (57) if

Nazim∑
j=1

ψ ′(2, j, k)− ψ ′(1, j, k)

1r
= 0 ∀ k (63)

and

Nazim∑
j=1

ψ ′(Nrad, j, k)− ψ
′(Nrad− 1, j, k)

1r
= 0 ∀ k , (64)

which are discretized versions of the condition, (47), for the
continuous case. There will be a small error in the value
of the calculated discretized Laplacian at the boundaries due
to the assumption of linearly-extrapolated ghost points, but
there is apparently no other way to discretize the Laplacian in
such a way that analogues of its integral properties are fully
preserved. The assumption of linearly-extrapolated ghost
points appears to be inconsequential, because we find good
agreement between model and laboratory flows (see Sect.6).

4.3 Diagnostic equations

The discretized versions of Eqs. (39) and (40) are

9 ′m(i, j) =

Nazim−1∑
n=0

9̂ ′nm(i)e
2π
√
−1nj/Nazim (65)

and

Q′m(i, j) =

Nazim−1∑
n=0

Q̂′nm(i)e
2π
√
−1nj/Nazim . (66)
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The summations have been truncated, compared to Eqs. (39)
and (40), because there are onlyNazim independent Fourier
components associated with the discrete Fourier transform of
a series ofNazim numbers.

Because9 ′m(i, j) is real, we have

9̂ ′Nazim−n
m (i) = [9̂ ′nm(i)]

∗ (67)

for n=1,2, . . . , Nazim−1. We choose Nazim to
be even, and then we need only explicitly solve
Eq. (41) for n=0,1,2, . . ., Nazim/2. Solutions for
n=Nazim/2+1, Nazim/2+2, . . ., Nazim−1 are given in
terms of solutions forn=Nazim/2−1, Nazim/2−2, . . .,1 by
Eq. (67), halving the processing time required for the PPV
inversions. The maximum resolvable wavenumber is the
Nyquist wavenumber,Nazim/2.

In terms of the normal mode variables, the discretized
boundary conditions, (59), (63) and (64), reduce on substi-
tution into Eq. (65) to

9̂ ′nm(1) = 0
9̂ ′nm(Nrad) = 0

}
∀ m, n 6= 0 (68)

and

9̂ ′0m(1) = 9̂ ′0m(2)
9̂ ′0m(Nrad) = 9̂

′0
m(Nrad− 1)

}
∀ m . (69)

We now consider the discretization of the radial structure
equation, (41). Using centred three-point finite differences at
the interior points,i=2,3, . . ., Nrad−1, we obtain

9̂ ′nm(i − 1)− 29̂ ′nm(i)+ 9̂
′n
m(i + 1)

(1r)2

+
9̂ ′nm(i + 1)− 9̂ ′nm(i − 1)

2r(i)1r

−

[
λm +

n2

[r(i)]2

]
9̂ ′nm(i) = Q̂

′n
m(i) . (70)

Re-grouping terms according to grid points gives

α−(i)9̂ ′nm(i − 1) + γ (i)9̂ ′nm(i)+ α
+(i)9̂ ′nm(i + 1)

= Q̂′nm(i)(1r)
2 , (71)

where the dimensionless quantitiesα± andγ are given by

α±(i) = 1±
1r

2r(i)
(72)

and

γ (i) = −2−

[
λm +

n2

[r(i)]2

]
(1r)2 . (73)

In Cartesian geometry we would haveα±(i)=1.

The Nrad−2 equations, (71), together with 2 boundary
conditions, complete the set ofNrad equations in theNrad un-
knowns,9̂ ′nm(i) for i=1,2, . . ., Nrad. These linear equations
may be written in matrix form,

bdy bdy · · ·

α−(2) γ (2) α+(2) · · ·

α−(3) γ (3) α+(3) · · ·

α−(4) γ (4) α+(4) · · ·
α−(5) γ (5) · · ·

...
...

...
...

...
. . .



×



9̂ ′nm(1)
9̂ ′nm(2)
9̂ ′nm(3)
9̂ ′nm(4)
9̂ ′nm(5)
...


=



0
Q̂′nm(2)(1r)

2

Q̂′nm(3)(1r)
2

Q̂′nm(4)(1r)
2

Q̂′nm(5)(1r)
2

...


, (74)

where the zero elements in the tridiagonalNrad×Nrad ma-
trix have been left blank. The two elements labelled “bdy”
are boundary condition elements, dependent uponm andn.
There are two further such elements in the right-most two
columns of the bottom row.

4.4 Perturbation streamfunction boundary conditions for
the discretized equations

In the continuous case, we found that the boundary con-
ditions for the barotropic mean flow correction component
(m=bt, n=0) were ill-posed as originally stated, and re-
mained so until we replaced a redundant boundary condition
with an equation to define an integration constant. This hap-
pens in the discretized case, too: the square matrix in Eq. (74)
is singular for the barotropic mean flow correction, when the
boundary condition elements (labelled “bdy”) are(−1,1) in
the top row and(1,−1) in the bottom row. The analytical
proof of this, which involves showing that a certain linear
combination of rows is zero, is tedious but straightforward.
By analogy with the continuous case, we replace the two
boundary condition elements in the bottom row with(0,1)
to define the integration constant by setting the streamfunc-
tion for this component to zero on the outer boundary, and
then the matrix is no longer singular.

In the continuous system, we set then=0, m=bt nor-
mal streamfunction derivative to zero at one boundary and
found that, if the mean barotropic PPV was zero, the stream-
function derivative would automatically be zero at the other
boundary. Importantly, in contrast with the continuous sys-
tem, this statement does not hold exactly for the discretized
system. This is becausêQ′nm(1) andQ̂′nm(Nrad) do not ap-
pear in Eq. (74): we do not apply the discretized differential
equation at the boundaries, because we need to use these two
degrees of freedom to impose the boundary conditions.
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Table 2. Summary of the boundary conditions applied to the
streamfunction when integrating the discretized equations. The
analogous conditions for the continuous case are given in Table1.
†After the inversion,9̂ ′0bt(Nrad) is redefined by9̂ ′0bt(Nrad) −

9̂ ′0bt(Nrad− 1)=0, as discussed in the text.

n = 0 n 6= 0

9̂ ′nm(2)− 9̂
′n
m(1) = 0 9̂ ′nm(1) = 0

m = bt
9̂ ′nm(Nrad) = 0† 9̂ ′nm(Nrad) = 0

9̂ ′nm(2)− 9̂
′n
m(1) = 0 9̂ ′nm(1) = 0

m = bc
9̂ ′nm(Nrad)− 9̂

′n
m(Nrad− 1) = 0 9̂ ′nm(Nrad) = 0

The error corresponding to this PPV leak is small, but
even small errors can grow to dominate the solution after
a large number of time steps. To fix this problem with
the barotropic mean flow correction, we discard the outer
boundary streamfunction,̂9 ′0bt(Nrad), obtained through in-
version of Eq. (74) and define a new value for it by set-
ting 9̂ ′0bt(Nrad)=9̂

′0
bt(Nrad−1). This ensures that the bound-

ary conditions, (69), required for conservation of horizontal-
mean PPV are satisfied exactly. The consequence is that the
discretized differential equation, (70), is not exactly satisfied
at the pointNrad−1. The imposed boundary conditions are
summarized in Table2.

4.5 Relaxation

Instead of (or in addition to) the mechanical forcing imposed
by the differentially rotating lid, QUAGMIRE includes the
option of relaxing the flow towards specified perturbation
streamfunction or perturbation potential vorticity fields. If
relaxation to a specified perturbation streamfunction is acti-
vated, then the perturbation streamfunctionminusthe relax-
ation perturbation streamfunction is used in the computation
of the diffusion and hyperdiffusion terms. If relaxation to a
specified perturbation potential vorticity is activated, then the
perturbation potential vorticity is relaxed towards the relax-
ation perturbation potential vorticity at a prescribed rate.

4.6 Numerical methods

We now discuss the time-stepping scheme (Sect.4.6.1), the
need for time-lagged diffusion (Sect.4.6.2), and the approxi-
mate representation of unresolved features using hyperdiffu-
sion (Sect.4.6.3) and stochastic forcing (Sect.4.6.4).

4.6.1 Time stepping

For the time stepping we use a leapfrog scheme with aRobert
(1966) three-level time filter applied at each time step, to sup-
press the computational mode splitting between even and odd
steps (Mesinger and Arakawa, 1976). At each step, of size
1t , q t+1 is determined at each grid point using the leapfrog
scheme,

q t+1
= q t−1

+ 21t q ttendency, (75)

and then the value ofq t is adjusted in such a way as to move
it closer to the mean ofq t−1 andq t+1, according to

q t → q t + R

(
q t−1
+ q t+1

2
− q t

)
. (76)

The old value ofq t is abandoned and the new, filtered value
is used in its place. The Robert filter parameter,R>0, is
chosen to be as small as possible whilst still suppressing the
leapfrog decoupling.

4.6.2 Time-lagged diffusion

Numerical solutions of the simple diffusion equation, us-
ing the leapfrog scheme for the time discretization and a
time-centred, three-point finite difference for the space dis-
cretization, are unconditionally unstable due to a computa-
tional mode (Haltiner and Williams, 1980). To avoid this in
QUAGMIRE, we time-lag the diffusion terms by one time
step when evaluating the right sides of the discretized ana-
logues of Eqs. (23) and (24). This means that, when evaluat-
ing the PPV tendency, we calculate the forcing (∂/∂θ ) and
advection (J (ψ ′i , q

′

i)) terms using the fields at the current
time step, but we calculate the diffusion (∇2) terms using
the fields at the previous time step.

4.6.3 Hyperdiffusion

To represent sub-gridscale effects we add a hyperdiffusion
term to the right sides of the prognostic equations, (23) and
(24), as is usual in numerical models (e.g.Lewis, 1992).

At first, a fourth-order streamfunction hyperdiffusion
term, νhyper∇

4ψ ′i , was tested, but significant gridscale fea-
tures were always found to form at the lateral boundaries
whenever the model was run. This is because during the
PPV inversion, any gridscale features in the PPV field will
give rise to corresponding gridscale features in the perturba-
tion streamfunction field, and then theνhyper∇

4ψ ′ contribu-
tion to the PPV tendency will tend to damp out these fea-
tures in the PPV field. Unfortunately this does not happen at
the boundaries in the discretized system, because boundary
values of the PPV are not used when performing the inver-
sion: as already discussed,Q̂′nm(1) andQ̂′nm(Nrad) are miss-
ing from Eq. (74). Values of PPV are able to feed back into
the PPV tendency field only at interior points, and there is
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nothing to suppress gridscale features in the PPV field at the
boundaries.

To avoid this, we instead use second-order hyperdiffusion
applied to the PPV, by adding a termνhyper∇

2q ′i to the prog-
nostic equations. This term is also time-lagged by one time
step, as discussed above. The hyperdiffusion term does not
exactly satisfy Eq. (57), but the error is very small: the con-
tribution of the hyperdiffusion term to the horizontal-mean
PPV tendency is typically 10−10 s−2. In order to keep the
model solutions as close as possible to the exact solutions,
we periodically reset the horizontal-mean PPV to zero in
QUAGMIRE, by adding a very small constant whose value
is chosen to satisfy this requirement.

4.6.4 Stochastic parameterization of sub-gridscale effects

As an alternative method for representing sub-gridscale ef-
fects, there is the option of a simple stochastic parameteri-
zation in QUAGMIRE. Such parameterizations are increas-
ingly used in numerical models, with the recognition that the
additional degrees of freedom they introduce may be able
to compensate, at least partially, for the degrees of freedom
missing from filtered models. Stochastic forcing is neces-
sary to capture regime transitions between different baro-
clinic wave modes (nominally due to sub-gridscale inertia-
gravity waves), which are apparently not captured by the hy-
perdiffusion approach (e.g.Williams et al., 2004).

We choose the simplest possible form for the noise terms.
At each grid point and at each time step, a random number
is drawn from the uniform distribution on the interval[0,1],
and then shifted to the interval[−amp,amp] before being
used as an additive contribution to the PPV tendency. At each
grid point and at each time step, the added random number
is equal and opposite in the upper and lower layers, nomi-
nally representing pure-baroclinic inertia-gravity waves. The
constant, amp, is a given amplitude with units s−2, which
may change linearly with time in the model. The noise con-
tains no correlations in either time or horizontal position. The
horizontal-mean random number field is enforced to be zero
in both layers.

4.7 Initial conditions

A feature of the leapfrog time-stepping scheme is that ini-
tial condition fields are required at two consecutive times,
in order to begin the integration. We choose to specify the
PPV fields as initial conditions. We use small amplitude ran-
dom noise for these fields, seeding the system to permit the
growth of unstable perturbations of any azimuthal and radial
wavenumber. We generate random numbers from a uniform
distribution, which we then shift to a chosen symmetrical in-
terval centred on zero. We then subtract the mean PPV in
each layer at both time steps, which makes the fields sat-
isfy the zero-horizontal-mean barotropic PPV condition of
Sect.4.4.

4.8 Summary of numerical scheme

Flow charts summarizing the details of the QUAGMIRE nu-
merical integration scheme are shown in Figs.4 and5. Given
the PPV fields at timest−1 and t , we invert to obtain the
streamfunction fields at those times, which then allows us to
calculate all the contributions to the PPV tendency. We per-
form a leapfrog time integration to obtain the PPV field at
time t+1, and then modify the PPV field at timet by apply-
ing a Robert filter. Once we have obtainedq ′(t) andq ′(t+1)
from q ′(t−1) andq ′(t), we discardq ′(t−1) andψ ′(t−1),
we writeq ′(t) andψ ′(t) to disk if required, then we re-label
t→t−1 and begin the loop again. Note that the streamfunc-
tion and PPV must be kept in memory at three consecutive
time steps.

The system state is completely determined byψ ′. Note
that the system state is also completely determined byq ′

together with the boundary conditions, because Eqs. (25)
and (26) are uniquely invertible. It is not necessary to write
bothψ ′ andq ′ to disk in order to have a complete descrip-
tion of the system, therefore. Nevertheless, we choose to
save both fields, in order to reduce the need for further cal-
culations when plotting model diagnostics.

4.9 Suitable values for the numerical parameters

QUAGMIRE employs Fast Fourier Transform (FFT) rou-
tines, which are much faster if the only prime factors of
Nazim are 2, 3 and 5. A typical grid might be defined by
Nazim=25

×3=96 andNrad=24
=16, as shown in Fig.6. A

suitable Robert filter parameter is usually aroundR=0.01.
For given� and1�, we recommend taking the amplitude
of the random initial PPV perturbation to be1�/100, so
that the growth of very small perturbations is assessed; tak-
ing the time step,1t , to be such that the bulk azimuthal
Courant number,121�1t/1θ , is 0.01; and taking the hy-
perdiffusion coefficient,νhyper, to be such that the e-folding
time, 1/(νhyperk

2
Nyquist), for damping of mid-radius gridscale

waves with the Nyquist wave vector,kNyquist=Nazim/(a+b),
is equal to one lid rotation period, 2π/1�.

By default, double numerical precision (retaining 16 sig-
nificant figures) is used for the calculations and the pick-up
dumps to disk, and single numerical precision (retaining 8
significant figures) is used for the regular dumps to disk. The
factor by which relative errors in the perturbation stream-
function are greater than relative errors in the PPV, following
solution of Eq. (74), is known as the condition number of the
tridiagonal matrix in that equation. Some typical condition
numbers for the matrices in Eq. (74) are shown in Table3.
The largest condition number in the system has a value of a
few hundred, implying that only the last two significant fig-
ures of the inferred perturbation streamfunctions will be un-
certain, and that errors due to rounding are therefore small.

In order to demonstrate insensitivity to the numerical pa-
rameters, comparative runs have been done with (separately)
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Calculate Jacobian
Advection

Forcing
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INPUT: q′(t+ 1)
OUTPUT:ψ′(t+ 1)

INPUT: q′(t), ψ′(t)

INPUT: q′(t+ 1), q′(t), ψ′(t+ 1), ψ′(t)
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tend
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tend
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INPUT: q′(t), ψ′(t), q′

tend
(t)

Fig. 4. Organigram giving an overview of how the model integrationsprogress.
Fig. 4. Organigram giving an overview of how the model integrations progress.

the hyperdiffusion coefficient decreased by a factor of 10, the
Robert filter parameter decreased by a factor of 10, and the
gridspacing doubled in both directions, but all other param-
eters unmodified (Williams, 2003). The equilibrated wave
number was the same in each case, and the mid-radius wave
amplitude and phase speed differed by at most 0.3%. We
have therefore demonstrated that both rounding errors and
discretization errors are small, and that the equilibrated state
is insensitive to the values of the numerical parameters, im-

plying that the model output gives an accurate representation
of the true solutions of the continuous model equations.

5 Technical details

The model is available as a zip file, which contains
the source code and makefile (Sect.5.1), the namelist
(Sect. 5.2), a shell script (Sect.5.3) and a comprehen-
sive Matlab diagnostics suite (Sect.5.4). The zip file can
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Fig. 5. Organigram showing in detail how the model integrations progress, starting with initial conditionsq′(0) andq′(1). Each time step
has inputsq′(t− 1) andq′(t) and outputsq′(t) andq′(t+ 1), shown shaded.J(ψ′, q′) = [(∂ψ′/∂r)(∂q′/∂θ) − (∂ψ′/∂θ)(∂q′/∂r)]/r is
the Jacobian.

In order to demonstrate insensitivity to the numerical pa-
rameters, comparative runs have been done with (separately)
the hyperdiffusion coefficient decreased by a factor of 10, the
Robert filter parameter decreased by a factor of 10, and the
gridspacing doubled in both directions, but all other param-
eters unmodified (Williams, 2003). The equilibrated wave

number was the same in each case, and the mid-radius wave
amplitude and phase speed differed by at most 0.3%. We
have therefore demonstrated that both rounding errors and
discretization errors are small, and that the equilibratedstate
is insensitive to the values of the numerical parameters, im-
plying that the model output gives an accurate representation

Fig. 5. Organigram showing in detail how the model integrations progress, starting with initial conditionsq ′(0) andq ′(1). Each time step
has inputsq ′(t−1) andq ′(t) and outputsq ′(t) andq ′(t+1), shown shaded.J (ψ ′, q ′)=[(∂ψ ′/∂r)(∂q ′/∂θ)−(∂ψ ′/∂θ)(∂q ′/∂r)]/r is the
Jacobian.

be downloaded fromhttp://www.geosci-model-dev.net/2/13/
2009/gmd-2-13-2009-supplement.zip.

5.1 Source code

The source code is written in Fortran 95. Routines from
the Numerical Algorithms Group (NAG) library are em-
ployed: nag fft for the transformations between phys-
ical and spectral space described by Eqs. (65) and (66);
nag gen bnd lin sys for solving the complex band ma-
trix equation, (74), Nazim+2 times each time step; and
nag math constants for the value ofπ .

The source code consists of 15.f90 subroutines in the
src/ directory. In total, there are 1200 lines of code in
these subroutines, many of which are comments. Brief de-
scriptions of the subroutines are now given:

– modules.f90 declares the global variables, catego-
rized into five modules: precision (the numeri-
cal precisions for the calculations and dumps to disk);
dyn vars (the dynamical state arrays, i.e. streamfunc-
tion and PPV, which are updated once per time step);
solver vars (the permanent solver arrays, calcu-
lated once at the start of the model run);phys params
(the physical parameters, including system dimensions
and rotation rates); andgrid params (the numerical
parameters, including grid spacings and time steps).

– main.f90 is the highest-level routine in the
model, making one-off calls toinit model.f90 ,
init solver.f90 and init state.f90 , and
then calling in turn, from within the time step-
ping loop, jacobian.f90 , forcing.f90 ,
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Fig. 6. Typical grid point positions for a typical laboratory annulus.
In this case, there are 96 points in the azimuthal direction and 16
points in the radial direction, giving grid boxes which are approx-
imately square near the inner boundary. This figure was produced
using option 11 of the Matlab diagnostics package (Section 5.4).

Table 3. Estimates of the condition numbers (in the infinity-norm)
of the tridiagonal matrices in equation (74), corresponding to the
first 10 azimuthal modes for both of the vertical modes. Values
given are rounded to the nearest integer, for typical run parameters.

m = bt m = bc

n = 0 389 59
n = 1 112 35
n = 2 99 33
n = 3 82 31
n = 4 67 29
n = 5 54 26
n = 6 44 24
n = 7 36 21
n = 8 31 19
n = 9 26 17

of the true solutions of the continuous model equations.

5 Technical details

The model is available as a zip file, which contains the source
code and makefile (Section 5.1), the namelist (Section 5.2),
a shell script (Section 5.3) and a comprehensive Matlab di-
agnostics suite (Section 5.4). The zip file can be downloaded
from PUBLISHERS INSERT URL HERE.

5.1 Source code

The source code is written in Fortran 95. Routines from
the Numerical Algorithms Group (NAG) library are em-
ployed: nag fft for the transformations between physi-
cal and spectral space described by equations (65) and (66);
nag gen bnd lin sys for solving the complex band ma-
trix equation, (74),Nazim + 2 times each time step; and
nag math constants for the value ofπ.

The source code consists of 15.f90 subroutines in the
src/ directory. In total, there are 1200 lines of code in
these subroutines, many of which are comments. Brief de-
scriptions of the subroutines are now given:

– modules.f90 declares the global variables, catego-
rized into five modules:precision (the numeri-
cal precisions for the calculations and dumps to disk);
dyn vars (the dynamical state arrays, i.e. streamfunc-
tion and PPV, which are updated once per time step);
solver vars (the permanent solver arrays, calcu-
lated once at the start of the model run);phys params
(the physical parameters, including system dimensions
and rotation rates); andgrid params (the numerical
parameters, including grid spacings and time steps).

– main.f90 is the highest-level routine in the
model, making one-off calls toinit model.f90,
init solver.f90 and init state.f90, and
then calling in turn, from within the time step-
ping loop, jacobian.f90, forcing.f90,
dissipation.f90, step q.f90, solver.f90
andsave fields.f90.

– init model.f90 initializes the model by reading the
namelist (Section 5.2), and then allocating and evaluat-
ing the parameters declared in thephys params and
grid params modules.

– init solver.f90 initializes the solver by allo-
cating and evaluating the arrays declared in the
solver vars module.

– init state.f90 initializes the model state by al-
locating and evaluating starting values for the ar-
rays declared in thedyn vars module. This sub-
routine makes calls toread pu fields.f90 and
read forcing fields.f90.

– jacobian.f90 calculates the advection (J(ψ′
i, q

′
i))

term in cylindrical polar co-ordinates, storing the result
as a PPV tendency. The formula is written to minimise
the number of multiplications, which are computation-
ally more expensive than additions.

– forcing.f90 calculates the forcing (∂/∂θ) terms
(forcing of perturbations by the mean flow, topographic
forcing, stochastic forcing and optional relaxation to a

Fig. 6. Typical grid point positions for a typical laboratory annu-
lus. In this case, there are 96 points in the azimuthal direction and
16 points in the radial direction, giving grid boxes that are approx-
imately square near the inner boundary. This figure was produced
using option 11 of the Matlab diagnostics package (Sect.5.4).
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dissipation.f90 , step q.f90 , solver.f90
andsave fields.f90 .

– init model.f90 initializes the model by reading the
namelist (Sect.5.2), and then allocating and evaluat-
ing the parameters declared in thephys params and
grid params modules.

– init solver.f90 initializes the solver by allo-
cating and evaluating the arrays declared in the
solver vars module.

– init state.f90 initializes the model state by al-
locating and evaluating starting values for the ar-
rays declared in thedyn vars module. This sub-
routine makes calls toread pu fields.f90 and
read forcing fields.f90 .

– jacobian.f90 calculates the advection (J (ψ ′i , q
′

i))
term in cylindrical polar co-ordinates, storing the result
as a PPV tendency. The formula is written to minimise
the number of multiplications, which are computation-
ally more expensive than additions.

– forcing.f90 calculates the forcing (∂/∂θ ) terms
(forcing of perturbations by the mean flow, topographic
forcing, stochastic forcing and optional relaxation to a
specified PPV field), adding the result to the PPV ten-
dency. This subroutine makes calls todtheta.f90 .

– dissipation.f90 calculates the dissipation (∇2)
terms (Ekman layers at the upper and lower bound-
aries, Ekman layers at the internal interface and
second-order PPV hyperdiffusion), adding the result
to the PPV tendency. This subroutine makes calls to
laplacian.f90 .

– step q.f90 uses the PPV tendency to perform the
time stepping, with a Robert three-level time filter, and
thereby updates the PPV field.

– solver.f90 solves the Helmholtz equation in cylin-
drical polar co-ordinates, to update the streamfunction
field given the updated PPV field.

– save fields.f90 dumps the model state (stream-
function and PPV) to disk. The current state (regular
dump) and/or the current and previous states (pickup
dump) are saved as unformatted binary data.

– read pu fields.f90 reads the initial model state
from a pickup file, if required.

– read forcing fields.f90 reads the forcing
fields (PSI relax.bin and QGPVrelax.bin )
from disk, if required.

– dtheta.f90 is the azimuthal derivative operator for
calculating the forcing terms in the PPV equations.

– laplacian.f90 is the Laplacian operator in cylin-
drical polar co-ordinates for calculating the dissipation
terms in the PPV equations.

A Makefile is also included in thesrc/ directory, to
build the executable from the source code files. The Makefile
contains four environment variables (FC, FFLAGS, LIBS,
and LM LICENSE FILE), which specify directory paths,
flags and other information required by the Fortran compiler
and NAG library. This information is site-specific and the
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default settings, in the supplied Makefile, are those appropri-
ate to the AOPP machines at Oxford University. The default
settings must be changed according to the local installations
of the compiler and library, before the model is built at the
user’s site. Then, by typingmake at a command prompt,
each.f90 source file is compiled to produce a correspond-
ing .o object file, and then the 15 object files (plus object
files from the NAG library) are linked to build the executable,
with filenameqgam.

The azimuthal derivative (dtheta.f90 ), Laplacian
(laplacian.f90 ) and advection (jacobian.f90 ) rou-
tines were each tested using input fields consisting of ran-
dom numbers satisfying the boundary conditions. The mean
PPV tendency due to each contribution was found to be zero
to within numerical precision, which is a necessary (but not
sufficient) condition for the code for these routines to be free
from errors.

The Helmholtz solver routines (init solver.f90 and
solver.f90 ) were tested by first using the forward formu-
lae (25) and (26) with our discretized Laplacian (60)–(62) to
calculate the PPV fields corresponding to given random per-
turbation streamfunction fields, and then using the routines
to reconstruct the streamfunction fields from the calculated
PPVs. The root-mean-square difference between the original
and reconstructed streamfunction fields was around 0.1%,
which is consistent with the solver code also being free from
errors. The reason that the agreement is not exact, to within
numerical precision, is that we assume linearly-extrapolated
ghost points to evaluate the Laplacian in the forward formu-
lae, an assumption that is not made during the inversion.

5.2 Namelist

The namelist,qgam.data , should be copied to the working
directory (i.e. the directory in which the model output is to
appear) and then edited to alter the physical and numerical
details for the run. The entries in the namelist, which fall
into five categories, are as follows.

– GRID DEFINITION:

– N rad (INTEGER) =Nrad = number of grid points
in the radial direction, including one point on each
of the boundaries,r=a andr=b

– N azim (INTEGER) = Nazim = number of grid
points in the azimuthal direction

– N layer (INTEGER) = number of layers (must be
2 in v1.3)

– TIME STEPPING:

– delta t (REAL) =1t = time step (s)

– start step (INTEGER) = first step in the inte-
gration – set to 1 to internally compute the initial
condition using random numbers, otherwise picks

up from a previous calculation using the file la-
belledstart step

– end step (INTEGER) = last step in the integra-
tion

– Robert filter parameter (REAL) = R =
strength of Robert time-filtering – must be between
0.0 (no filtering) and 1.0 (full filtering)

– dump period (INTEGER) = number of steps be-
tween successive regular dumps to disk

– pickup dump period (INTEGER) = number
of steps between successive pickup dumps to disk

– debug (INTEGER) = debug messages switched
on? (set to 1 for “yes”)

– SYSTEM DIMENSIONS:

– a (REAL) = a = radius of inner boundary (m)

– b (REAL) = b = radius of outer boundary (m)

– H (REAL) =H = depth of each layer (m)

– s top (REAL) = stop = radial slope of lid (dimen-
sionless)

– s bot (REAL) = sbot = radial slope of base (di-
mensionless)

– FLUID PROPERTIES:

– rho (REAL) = ρ = density of each layer (kg m−3)
from top to bottom, i.e. vector of lengthN layer
with elements of increasing size

– S (REAL) = S = interfacial tension between each
pair of adjacent layers (N m−1) from top to bottom,
i.e. vector of lengthN layer −1

– new (REAL) = ν = kinematic viscosity of each
layer (m2 s−1) from top to bottom, i.e. vector of
lengthN layer

– FORCING AND DISSIPATION:

– initial amplitude (REAL) = amplitude of
initial PPV perturbation (s−1) – only used if
start step is set to 1

– omega (REAL) = � = angular velocity of base
(rad s−1) – must be positive

– lid delta omega (REAL) = 1� = differential
angular velocity of lid relative to base (rad s−1) –
can be either positive (prograde) or negative (retro-
grade)

– g (REAL) = g = acceleration due to gravity (m s−2)

– new hyper (REAL) = νhyper = second-order PPV
hyperdiffusion coefficient (m2 s−1)

– relax rate (REAL) = inverse time scale for re-
laxation to specified PPV field (s−1) – only used if
relax type is set to 2 or 3
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– relax type (INTEGER) = set to 1 to relax to a
specified streamfunction field (PSI relax.bin ),
set to 2 to relax to a specified PPV field
(QGPVrelax.bin ), or set to 3 to do both 1 and
2

– reset period (INTEGER) = number of steps
between successive resetting of the mean PPV to
zero – set to 1 to reset at each step

– internal ekman (INTEGER) = internal Ekman
layers switched on? (set to 1 for ’yes’)

– noise amp (REAL) = (starting value of) stochas-
tic forcing amplitude (s−2)

– d dt noise amp (REAL) = rate of change of
stochastic forcing amplitude (s−3)

5.3 Shell script

A shell script,run qgam, is included with the model. To
launch the model, typerun qgamat the command line from
a directory containing a namelist file. This deletes any data
files already present, copies the current version of the exe-
cutable to the local directory, creates a temporary uncom-
mented namelist file, creates a file of parameter values in
a form suitable to be read by the Matlab diagnostic script,
runs the model (piping system messages to the output file,
qgam.out ), and finally deletes the local version of the exe-
cutable and the temporary namelist.

To avoid deleting pre-existing data files (e.g. for a pick-up
run), userun qgam pu.

5.4 Matlab diagnostics

A comprehensive Matlab diagnostics package
(diagnostic.m , diagnostic read.m and
gradient imp.m ) is supplied with the model, con-
sisting of 2100 lines of code. The package allows the model
data and many other derived quantities to be plotted in
cylindrical geometry. To run the package, launch Matlab
from the data directory and typediagnostic . The data
file created by the shell script is read, and the following
options are offered.

– 0 = exit

– 1 = contour plot of perturbation streamfunction

– 2 = contour plot of perturbation potential vorticity

– 3 = contour plot of perturbation interface height

– 4 = vector plot of perturbation velocity field

– 5 = contour plot of full streamfunction

– 6 = contour plot of full potential vorticity

– 7 = contour plot of full interface height

– 8 = vector plot of full velocity field

– 9 = time-series of mid-radius interface height wave am-
plitude

– 10 = multiple cartesian diagnostics

– 11 = plot of gridpoint positions

– 12 = time-series of mid-radius interface height

– 13 = option 1 over-plotted with option 4

– 14 = option 5 over-plotted with option 8

– 15 = time-series of radially-averaged zonal perturbation
velocity

– 16 = mid-radius perturbation potential vorticity
Hovmüller diagram

– 17 = mid-radius perturbation streamfunction Fourier
spectrum

– 18 = contour plot of Lighthill Radiation Term magni-
tude

– 19 = contour plot of Brown’s CAT indicator

– 20 = vector plot of full velocity shear field

– 21 = time-series of 1/4 and 3/4-radius interface height
wave amplitude

– 22 = contour plot of local Richardson number in inter-
facial Ekman layer

– 23 = time series of minimum local Richardson number
in interfacial Ekman layer

– 24 = contour plot of turbulent energy dissipation rate

– 25 = interface height profiles as a function of theta

– 26 = time series of system energy

– 27 = 3-D image of full interface height

– 28 = multiple radiation diagnostics

– 29 = contour plot of horizontal divergence

– 30 = mid-radius interface height Hovmüller diagram

– 31 = zonally-averaged zonal velocity as a function of
radius

– 32 = time-radius Hovm̈uller plot of zonally-averaged
zonal velocity

The user should select the option required and follow the
on-screen instructions to display the plot on the screen. To
save or print a figure, first produce it using the appropriate
option, then exit the diagnostics package using option 0 and
issue the appropriate Matlab print command.
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5.5 Historical development

The historical development of QUAGMIRE has proceeded as
follows. QUAGMIRE v1.0 did not include topographic forc-
ing or stochastic forcing, and there were only 21 plot options
in the Matlab diagnostics software. In QUAGMIRE v1.1,
stochastic forcing was introduced, and 9 further options were
added to the diagnostics software. In QUAGMIRE v1.2,
topographic forcing was introduced, and 2 further options
were added to the diagnostics software. Finally, in QUAG-
MIRE v1.3, many improvements to the source code, shell
script and diagnostics software have been made. QUAG-
MIRE v1.3 is the first version to be released for public use.

5.6 Software licensing

QUAGMIRE v1.3 is made freely available under the MIT
license, the terms of which are as follows.

Copyright (c) 2009 P. D. Williams, T. W. N. Haine,
P. L. Read, S. R. Lewis, and Y. H. Yamazaki.

Permission is hereby granted, free of charge,
to any person obtaining a copy of this software and
associated documentation files (the “Software”), to
deal in the Software without restriction, including
without limitation the rights to use, copy, modify,
merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to
whom the Software is furnished to do so, subject
to the following conditions:

The above copyright notice and this permission
notice shall be included in all copies or substantial
portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”,
WITHOUT WARRANTY OF ANY KIND, EX-
PRESS OR IMPLIED, INCLUDING BUT NOT
LIMITED TO THE WARRANTIES OF MER-
CHANTABILITY, FITNESS FOR A PARTIC-
ULAR PURPOSE AND NONINFRINGEMENT.
IN NO EVENT SHALL THE AUTHORS OR
COPYRIGHT HOLDERS BE LIABLE FOR
ANY CLAIM, DAMAGES OR OTHER LIABIL-
ITY, WHETHER IN AN ACTION OF CON-
TRACT, TORT OR OTHERWISE, ARISING
FROM, OUT OF OR IN CONNECTION WITH
THE SOFTWARE OR THE USE OR OTHER
DEALINGS IN THE SOFTWARE.

6 Summary

The QUAGMIRE model described herein has been run ex-
tensively, and a detailed comparison between model and lab-
oratory flows has been carried out (Williams, 2003; Williams
et al., 2003, 2004, 2005). The code is very efficient: on a

desktop Linux workstation with a 1.4 GHzAMD Athlonpro-
cessor and 100% of the CPU usage, and withNazim=96 and
Nrad=16, a model integration speed of 120 time steps per
second is attained. With these specifications, simulated time
runs ten times faster than elapsed time.

Waves in the model, which grow due to baroclinic instabil-
ity if the Froude number is supercritical but otherwise decay,
have phase speeds, equilibrated amplitudes and wavenum-
bers that agree well with those determined from the corre-
sponding laboratory experiments. For Froude numbers that
are higher still, more complicated model flows result, such as
amplitude vacillations with reasonable amplitudes and peri-
ods and, ultimately, flow that is highly irregular and appears
to be chaotic. The good agreement between model and labo-
ratory provides an important validation of the model, and in-
dicates that the numerical techniques employed are reliable.

As with any numerical model, many improvements could
be made to version 1.3 of QUAGMIRE. The most obvious
would be to generalize the model to apply to an unspeci-
fied number of superposed fluid layers of unspecified relative
depths, rather than the implementation in version 1.3 of two
layers of equal resting depths. There are plans to implement
this improvement, and others, in future versions of QUAG-
MIRE.
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