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Abstract southern Greenland is characterized by a number of low-level high wind speed weather systems
that are the result of topographic flow distortion. These systems include barrier winds and katabatic flow that
occur along its southeast coast. Global atmospheric reanalyses have proven to be important tools in furthering
our understanding of these orographic winds and their role in the climate system. However, there is evidence
that the mesoscale characteristics of these systems may be missed in these global products. Here we show that
the Arctic System Reanalysis, a higher-resolution regional reanalysis, is able to capture mesoscale features of
barrier winds and katabatic flow that are missed or underrepresented in ERA-, a leading modern global reanalysis.
This suggests that our understanding of the impact of these wind systems on the coupled-climate system can be
enhanced through the use of higher-resolution regional reanalyses or model data.

1. Introduction

Moore and Renfrew [2005] used scatterometer winds to show that the southeast coast of Greenland was a
region where high wind speed flow parallel to the coast frequently occurred and argued it was due to barrier
flow. In addition, they identified two local maxima in the occurrence frequency of barrier winds along the
Denmark Strait (please refer to Figure S1 in the supporting information for locations of interest described in this
paper). Harden and Renfrew [2012] and Moore [2012] noted that these two maxima were collocated with steep
coastal topography. Furthermore, Harden and Renfrew [2012] used idealized model simulations to argue that
the enhanced wind speeds were the result of cross-isobar acceleration arising from the flow impinging on these
topographic barriers as well as downslope acceleration through the excitation of mountain waves. Southeast
Greenland also experiences strong katabatic wind events that are channeled into the region’s large fjords
resulting in strong northwesterly flow known locally as piterags [Rasmussen, 1989; Oltmanns et al., 2014].

These winds play an important role in the regional weather [Rasmussen, 1989; Renfrew et al., 2008; Oltmanns
et al,, 2014]. In addition, the elevated air-sea fluxes of heat, moisture, and momentum associated with
these winds impact the regional oceanography [Haine et al., 2009; Harden et al., 2014a]. Furthermore,
Straneo et al. [2010] argued that barrier flow is important in the exchange of water between fjords and the
open ocean along the southeast coast of Greenland. These strong downslope wind events can also result
in the removal of a fjord’s ice mélange, a mixture of sea ice and icebergs that inhibits glacier calving,
thereby contributing to the destabilization of glaciers in the region [Oltmanns et al., 2014].

Southeast Greenland is a data sparse region, making it a challenge to investigate the structure and
dynamics of these winds as well as their climate impacts. Reanalyses provide a representation of the
atmosphere that is suitable for studying these systems [Moore, 2003; Vage et al., 2009; Harden et al., 2011;
Moore, 2012; Oltmanns et al., 2014]. However, these weather systems are mesoscale phenomena that have
horizontal length scales on the order of 200 km [Heinemann and Klein, 2002; Moore and Renfrew, 2005;
Petersen et al., 2009]. As a consequence, they may be underresolved in current global reanalysis products
that typically have effective horizontal resolutions on the order of 400 km or greater, i.e., 5-7 times the grid
size [Skamarock, 2004; Condron and Renfrew, 2013].

As a consequence, there is a need to develop climatologies of these topographic weather systems that captures
their mesoscale structure. The recent completion of the Arctic System Reanalysis (ASR) [Bromwich et al., 2015]
offers the possibility of achieving this goal. The ASR used the Polar Weather Research and Forecasting (WRF)
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Table 1. Comparison of Observed and Reanalysis Winds at Stations in the Vicinity of the Sermilik and Kege Bugt Fjords During the Winter Months (December-
January-February, DJF) 2000-2012%

Tasiilaq (65°36'N, 37°37'W)

Coast Station (65°40.8'N, 37°55'W)

lkermit (64°47'N, 40°18'W)

Wind Speed

Observations
ERA-I

ASR

mean =4.8m/s
mean =7.7 m/s
r=0.53
rmse =4.6 m/s
mean =8.3 m/s
r=0.52
rmse = 6.8 m/s

Wind Direction Wind Speed Wind Direction Wind Speed Wind Direction
mean =7° mean =6.7 m/s mean = 37° mean =10.2 m/s mean = 328°
mean = 38° mean = 6.4 m/s mean = 27° mean=7.8m/s mean = 347°
r=0.68 r=0.22 r=0.59 r=0.73 r=0.95
rmse = 99° rmse=4.1m/s rmse = 63° rmse =5.1m/s rmse = 49°
mean =57° mean =6.5m/s mean =42° mean=7.8m/s mean = 347°
r=0.77 r=0.23 r=048 r=0.84 r=0.97
rmse =79° rmse =5.9m/s rmse =78° rmse =4.3m/s rmse = 37°

For the observed and reanalysis winds, the mean wind speed and direction are shown. Also shown are the correlation coefficient (r) and root-mean-square
error (rmse) between the observed and reanalysis wind speed and direction.

numerical weather prediction system to generate a regional reanalysis of the Arctic for the period 2000-2012
with a horizontal grid resolution of 30 km. Polar WRF contains a number of modifications to the standard
Weather Research and Forecasting (WRF) model that are optimized for use in polar regions [Hines et al,, 2011].
A comparison using data from middle and high latitudes of the Northern Hemisphere for a 1 year period
indicated that the annual mean biases in surface and 500 mb meteorological fields in the Interim Reanalysis
from the European Center for Medium-Range Forecasts (ERA-I) [Dee et al,, 2011] and ASR are comparable, but
that the ASR typically has smaller root-mean-square errors and higher correlations [Bromwich et al., 2015].

In this paper, we will compare and contrast the representation of barrier winds and katabatic flow along
the southeast coast of Greenland in the ERA-I with that from the ASR. The higher horizontal resolution of
the ASR allows it to better define the topography including an improved representation of the ridges
known as the Watkins Range and Schweizer Land that are situated between southeast Greenland’s major
fjords as well as the topographic gradient along the margin of the inland ice (Figure S1 in the
supporting information).

2. Observations

Figure S2 shows the topography in the immediate vicinity of the Sermilik and Kege Bugt Fjords, a region
along Greenland’s southeast coast that is relatively well instrumented with three automatic weather stations.
There are two Danish Meteorological Institute (DMI) stations; one is situated outside of the Sermilik Fjord in
the town of Tasiilag, while the other at lkermit is situated offshore of the Kege Bugt Fjord [Carstensen and
Jorgensen, 2010]. In addition, the Coast Station is situated within the Sermilik Fjord [Mernild et al., 2008]. As a
consequence of the complex topography in the region, the wind regimes at the three stations are quite
different (Figure S3). Even though the Coast Station is only 16 km from Tasiilaq, it experiences a higher mean
wind speed, 5.2 m/s versus 2.6 m/s, and directional constancy, 0.74 versus 0.23, during the winter [Oltmanns
et al., 2014]. Indeed, the correlation between the wind speed during the winter at these two sites is ~0.4, a
value similar to that between the two DMI stations that are ~160 km apart.

Table 1 shows the correlation coefficients and root-mean-square errors between the observations and the
two reanalyses for the wind speed and direction at the three sites during the winter. At Tasiilag and Coast
Station, neither reanalysis is able to capture the observed variability. This is not unexpected given the
different wind regimes, as noted above, at these two nearby sites. The situation is quite different at lkermit
where both reanalyses are able to better capture the temporal variability in wind speed and direction. The
location of this station, on an island away from the Greenland coast, contributes to the improved representation
of the wind field. However, the ASR has higher correlations and lower root-mean-square errors as compared to
the ERA-I at this station.

3. Results

With the caveat that variability of the wind field in regions of complex topography may not be fully captured
in either reanalysis, we present in Figure 1 the winter climatological 10 m wind speed in southeast Greenland
from the two reanalyses. The ERA-I has a broad region of low wind speed that extends southward from the
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Figure 1. The winter mean (DJF) 10 m wind speed (contours and shading: m/s) fields as depicted in the (a) ERA-l and

(b) ASR for the period 2000-2012. The thick blue contour represents the 50% sea ice contour in the respective reanalysis.
The four main fjords in the region, the Kage Bugt Fjord (KBF), the Sermilik Fjord (SF), the Kangerdlugssuaq Fjord (KF), and
the Scoresby Sund Fjord (SSF), are indicated.

Scoresby Sund Fjord to the Kangerdlugssuaq Fjord as well as another local minimum in the vicinity of the
Sermilik Fjord. In the ASR, the northern feature is separated into two distinct minima that are separated by a
region of higher wind speed along the ridge between the two fjords. In addition, the minima in the ASR
associated with the Sermilik and Kangerdlugssuaq Fjords extend offshore, suggesting that there is some
sheltering by the upwind topography. The ASR has a local maximum in the 10 m wind speed inland of the
Koge Bugt Fjord that is absent from the ERA-I. Both reanalyses have a gradient in wind speed across the
marginal ice zone that is most likely the result of the rougher surface of the sea ice as compared to the open
ocean [Liu et al., 2006; Petersen and Renfrew, 2009]. In the ASR, the gradient is stronger, perhaps as a result of
its higher resolution or a different surface exchange parameterization. The wind speed in the vicinity of the
Denmark Strait is also different with the ASR indicating the presence of a saddle point in the center of the
strait that may be the result of an improved representation of the topographic flow distortion around
Iceland’s Westfiords Peninsula. Indeed, the ASR has more detail regarding the 10 m wind field around Iceland
as compared to the ERA-L

The ability of the ASR to represent mesoscale flow features is confirmed in Figure 2, which shows the power
spectrum of the 10 m wind speed as represented in the two reanalyses. Spectra were calculated along every
longitudinal section in Figure 1 during the winter months 2000-2012 for each reanalysis and then averaged
over latitude and time. Also shown are spectra characteristic of 3-D turbulence [Skamarock, 2004] and
midlatitude scatterometer winds [Patoux and Brown, 2001]. As discussed by previous authors [Condron and
Renfrew, 2013; Moore, 2014], the ERA-I has reduced power and a steeper slope as compared to the 3-D
turbulence and scatterometer spectra at length scales below its effective horizontal resolution of ~400 km
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Figure 2. Power spectra of the 10 m wind speed in the vicinity of threshold criterion for nort.heasterly
southeast Greenland. The black line shows the spectrum for the ASR flow was set at 15 m/s, while that for
winds, while the blue line shows that for the ERA-l winds. The spectra  horthwesterly flow was set at 12 m/s.
are averages over the domain of Figure 1 for the months of December,  Other criteria produced similar results.
January, and February during 2000-2012. Also shown are spectra . . .
representative of 3-D turbulence (k~>'> ) and scatterometer winds With regard to barrier flow (Figures 3a
(k2. and 3b), both reanalyses capture the two

Denmark Strait locations where high
speed winds are observed in QuikSCAT data [Moore and Renfrew, 2005]. As discussed by previous authors
[Harden and Renfrew, 2012; Moore, 2012], the northern location is in the vicinity of the steep ridge associated
with the Watkins Range, while the southern location is in the vicinity of the high topography of Schweizer
Land. In addition, the northern maximum in the ASR is located over the open water with an enhanced
gradient along the ice edge as well as an extension inland over the steep topography of the Watkins Range,
while this maximum is more diffuse in the ERA-I. The ASR occurrence frequency in the southern location has a
pronounced inland extension over the steep coastal topography to the north of Sermilik Fjord that is absent
in the ERA-I.

Considering northwesterly flow, one again sees that there is more detail in the ASR (Figure 3d) as compared to
that from the ERA-I (Figure 3c). In general, the occurrence frequencies for northwesterly flow in the ASR are
higher than those in the ERA-I. Along the steep topographic gradient to the east of the North Dome, the ERA-I
has a meridionally oriented region where there is an elevated occurrence frequency for northwesterly flow.
The feature extends southward to the Kangerdlugssuaq Fjord. In the ASR, this feature is broken into two
distinct segments by the topography of Watkins Land. Both reanalyses indicate that the highest occurrence
frequency for katabatic flow occurs in the vicinity of the Kege Bugt Fjord. The ASR indicates that there is an
offshore extension of the maximum in occurrence frequency that is muted in the ERA-I.

To elucidate the structure of barrier wind and katabatic flow in the two reanalyses, winter events during
which high speed northeasterly (barrier) flow was observed at Tasiilaq in addition to those during which high
speed northwesterly (katabatic) flow occurred at the Coast Station were identified. Based on the 95th
percentile wind speed at the two sites, cutoffs of 10 m/s and 15 m/s were respectively used to identify events.
A manual inspection of the AWS data identified distinct events that were separated from each other by at
least 24 h. In addition, the Coast Station wind rose (Figure S3) indicated the prevalence of northerly wind
events and so the criterion for northwesterly flow was adjusted to include events where the wind direction
was between 270° and 10°. With this approach, 50 barrier and 21 katabatic wind events were identified
during the period 2000-2012. For the ERA-l compositing, the time of the events was rounded to the nearest
6-hourly time, while for the ASR the rounding was to the nearest 3-hourly time. No appreciable difference in
the ASR composites was noted if the rounding was to the nearest 6-hourly time.

Figure 4 shows the composite 10 m wind fields for both classes of events as represented in the two reanalyses.
With respect to the northeasterly events, the ASR (Figure 4b) is able to capture the high wind speeds over the
steep coastal topography that have been proposed to be the result of downslope acceleration associated
with mountain waves [Harden and Renfrew, 2012]. This feature is absent in the ERA-l composite. As a result, the
10 m wind speeds in the vicinity of the Sermilik Fjord are higher in the ASR composite as compared to those in
the ERA-I composite (Figure 4a). At Tasiilaq, the observed composite wind speed during these events was
13.3m/s, while in the ERA-l and ASR it was 16.9 and 21.2 m/s, respectively. By not resolving the downslope
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Figure 3. The frequency of occurrence (%) of northeasterly 10 m winds in excess of 15 m/s during the winter (DJF) 2000-2012 as represented in the (a) ERA-l and
(b) ASR. The frequency of occurrence (%) of northwesterly 10 m winds in excess of 12 m/s during the winter (DJF) 2000-2012 as represented in the (c) ERA-l and
(d) ASR. The thick pink line represents the winter mean 50% sea ice concentration contour in the respective reanalyses. The thick blue lines represent the 500, 1000,
1500, 2500, and 3000 height contours in the respective reanalyses.

acceleration, the ERA-l is, paradoxically, in better agreement with the observations. It is possible that there is
some sheltering by the complex topography in the region, unresolved in the ASR, that results in the low wind
speeds at Tasiilaq during barrier wind events. The dramatic difference in the wind climate at Tasiilag and
Coast Station, stations that are only 16 km apart, is consistent with this interpretation.

With respect to the northwesterly events, both the ERA-I (Figure 4c) and ASR (Figure 4d) composites
indicate that the highest wind speeds during outflow events within the Sermilik Fjord occur in the vicinity
of the Kege Bugt Fjord where the maximum wind speed for these events was larger in the ASR, ~20 m/s, as
compared to the ERA-Il, ~16 m/s. The ASR places the maximum in the vicinity of the steep topography
inland of the fjord, while the maximum is more diffuse in the ERA-I. The ASR also has a jet-like extension of
the region of high wind speed over the ocean that is muted in the ERA-I

4. Discussion

Barrier winds and katabatic flows that occur in southeast Greenland play an important role in the regional
weather and climate. The data sparse nature of the region makes it a challenge to observe them, and as a
result, atmospheric reanalyses have played a crucial role in their characterization. We have shown that a
higher-resolution regional reanalysis exhibits more mesoscale variability as compared to a typical global
reanalysis. This is likely to impact how we view the role of these orographic winds in the climate system.

Harden and Renfrew [2012] proposed that the excitation of mountain waves along the steep topographic
ridges of southeast Greenland during barrier wind events could result in a downslope acceleration of the
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Figure 4. The composite 10 m wind (m/s: vectors) and 10 m wind speed (m/s: contours and shading) of northeasterly wind events at Tasiilaq (denoted by the blue
cross) that exceed 15 m/s during the winter (DJF) 2000-2012 as represented in the (a) ERA-l and (b) ASR. The composite 10 m wind (m/s: vectors) and 10 m wind
speed (m/s: contours and shading) of northwesterly wind events at Coast Station (denoted by the blue asterisk) that exceed 10 m/s during the winter (DJF)
2000-2012 as represented in the (c) ERA-l and (d) ASR. The thick red lines represent the composite 50% sea ice concentration contour in the respective reanalysis.

wind. The composite barrier flow event considered here had a markedly different structure in the two
reanalyses, with the ASR composite containing a region of high surface wind speed along the topography to
the north of the Sermilik Fjord—a feature that was absent from the ERA-I composite. We propose that this
region of high wind speed is a signature of downslope wind acceleration providing a confirmation of the
dynamics proposed by Harden and Renfrew [2012].

As a result, wind speeds over the ocean in the vicinity of the Sermilik Fjord are higher in the ASR composite as
compared to those in the ERA-I. If confirmed, this shift in strength and dynamics of the wind maximum
associated with barrier flow should yield new insight into the location and strength of ocean forcing that
occurs along the southeast coast. This would aid the development of ideas surrounding downwelling [Harden
et al., 2014a] and fjord-shelf exchange [Straneo et al., 2010; Harden et al., 2014b] that have currently been
developed in the absence of such high-resolution atmospheric reanalysis.
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The interaction of katabatic flow with the major fjord systems in the region can result in high-speed outflow
events or piterags. The focus of interest with respect to these events in southeast Greenland has been in
the vicinity of the Sermilik and Kangerdlugssuaq Fjords, where historical records and observations exist
[Manley, 1938; Rasmussen, 1989; Mernild et al., 2008; van As et al., 2014]. The results presented in this paper
indicate that in both the ERA-I and ASR, the highest occurrence frequency of these events occurs in
the vicinity of the Kage Bugt Fjord. This fjord’s outlet glaciers have also recently undergone retreats
[Murray et al., 2010]. However, the role that katabatic flow may have played in this change has not been
investigated. Although Oltmanns et al. [2015] showed that even a horizontal resolution of 30 km is still
insufficient to fully resolve katabatic flow in this region, a move toward a higher-resolution reanalysis
is clearly vital to examine the role these winds play in driving long-term changes to the Greenland'’s
marine-terminating glaciers.

The results presented suggest that some of the very intense piterags observed in the vicinity of Sermilik Fjord
may have been stronger farther to the south near the Kege Bugt Fjord. In addition, the wind speeds in the
ASR composite katabatic flow event were higher and more tightly focused in the region of steep coastal
topography inland of this fjord than was the case for the ERA-I composite. This may be the result of the ASR’s
enhanced ability to resolve the downslope acceleration associated with breaking mountain waves as
compared to the ERA-I [Doyle et al., 2005; Oltmanns et al., 2014]. Support for this idea comes from Moore
[2013] who used an interim version of the ASR to show that high surface wind speeds in the lee of Novaya
Zemlya were the result of downslope winds resulting from the critical level absorption of mountain waves.

The results presented in this paper suggest that the ASR is able to more fully resolve the mesoscale structure
of these wind systems thereby improving our ability to characterize their climate impact. However, there
are likely features of these wind systems that are not resolved by the ASR. An example is the mismatch
between the wind speed observed at Tasiilag during barrier wind events with that in the ASR. In addition,
caution must be expressed because many features of these weather systems are strongly influenced by the
parameterizations that are part of the underlying numerical models and that without a control for these
influences, it is a challenge to assess the improvement in the representation of these weather systems that
arises from increased horizontal resolution alone.
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