512 research outputs found
Trapping cold atoms using surface-grown carbon nanotubes
We present a feasibility study for loading cold atomic clouds into magnetic
traps created by single-wall carbon nanotubes grown directly onto dielectric
surfaces. We show that atoms may be captured for experimentally sustainable
nanotube currents, generating trapped clouds whose densities and lifetimes are
sufficient to enable detection by simple imaging methods. This opens the way
for a novel type of conductor to be used in atomchips, enabling atom trapping
at sub-micron distances, with implications for both fundamental studies and for
technological applications
Magnetic-film atom chip with 10 m period lattices of microtraps for quantum information science with Rydberg atoms
We describe the fabrication and construction of a setup for creating lattices
of magnetic microtraps for ultracold atoms on an atom chip. The lattice is
defined by lithographic patterning of a permanent magnetic film. Patterned
magnetic-film atom chips enable a large variety of trapping geometries over a
wide range of length scales. We demonstrate an atom chip with a lattice
constant of 10 m, suitable for experiments in quantum information science
employing the interaction between atoms in highly-excited Rydberg energy
levels. The active trapping region contains lattice regions with square and
hexagonal symmetry, with the two regions joined at an interface. A structure of
macroscopic wires, cut out of a silver foil, was mounted under the atom chip in
order to load ultracold Rb atoms into the microtraps. We demonstrate
loading of atoms into the square and hexagonal lattice sections simultaneously
and show resolved imaging of individual lattice sites. Magnetic-film lattices
on atom chips provide a versatile platform for experiments with ultracold
atoms, in particular for quantum information science and quantum simulation.Comment: 7 pages, 7 figure
Antioxidantes naturales: efecto sobre la estabilidad oxidativa del aceite de nuez (<i>Juglans regia</i> L.)
Por su elevado nivel de insaturación (> 68%), el aceite de nuez es altamente susceptible al deterioro termo y foto-oxidativo. En este trabajo se propone analizar el efecto de algunas sustancias naturales y sintéticas sobre la estabilidad oxidativa y la conservación del aceite de nuez. Las condiciones de iluminación empleadas (luz fluorescente, intensidad 800 Lux) promovieron la formación de productos de oxidación primarios, aún en los aceites aditivados; los antioxidantes evaluados resultaron poco eficaces como inhibidores de oxidación fotosensibilizada. En ausencia de luz, todos los tratamientos con agregado de antioxidantes fueron igualmente eficaces para inhibir la formación de productos de oxidación durante el periodo de almacenamiento. La valoración de la capacidad antirradicalaria de los aceites aditivados permitió determinar que: a) TBHQ es un efectivo inhibidor de radicales libres en el aceite de nuez, b) su actividad no resulta afectada por la luz, pero es dependiente de la concentración, c) el extracto de romero y el palmitato de ascorbilo no ejercen un efecto aditivo sobre la actividad del TBHQ.Centro de Investigación y Desarrollo en Criotecnología de Alimento
Properties of electrons scattered on a strong plane electromagnetic wave with a linear polarization: classical treatment
The relations among the components of the exit momenta of ultrarelativistic
electrons scattered on a strong electromagnetic wave of a low (optical)
frequency and linear polarization are established using the exact solutions to
the equations of motion with radiation reaction included (the Landau-Lifshitz
equation). It is found that the momentum components of the electrons traversed
the electromagnetic wave depend weakly on the initial values of the momenta.
These electrons are mostly scattered at the small angles to the direction of
propagation of the electromagnetic wave. The maximum Lorentz factor of the
electrons crossed the electromagnetic wave is proportional to the work done by
the electromagnetic field and is independent of the initial momenta. The
momentum component parallel to the electric field strength vector of the
electromagnetic wave is determined only by the diameter of the laser beam
measured in the units of the classical electron radius. As for the reflected
electrons, they for the most part lose the energy, but remain relativistic.
There is a reflection law for these electrons that relates the incident and the
reflection angles and is independent of any parameters.Comment: 12 pp, 3 fig
MAGE-A cancer/testis antigens inhibit MDM2 ubiquitylation function and promote increased levels of MDM4
Melanoma antigen A (MAGE-A) proteins comprise a structurally and biochemically similar sub-family of Cancer/Testis antigens that are expressed in many cancer types and are thought to contribute actively to malignancy. MAGE-A proteins are established regulators of certain cancer-associated transcription factors, including p53, and are activators of several RING finger-dependent ubiquitin E3 ligases. Here, we show that MAGE-A2 associates with MDM2, a ubiquitin E3 ligase that mediates ubiquitylation of more than 20 substrates including mainly p53, MDM2 itself, and MDM4, a potent p53 inhibitor and MDM2 partner that is structurally related to MDM2. We find that MAGE-A2 interacts with MDM2 via the N-terminal p53-binding pocket and the RING finger domain of MDM2 that is required for homo/hetero-dimerization and for E2 ligase interaction. Consistent with these data, we show that MAGE-A2 is a potent inhibitor of the E3 ubiquitin ligase activity of MDM2, yet it does not have any significant effect on p53 turnover mediated by MDM2. Strikingly, however, increased MAGE-A2 expression leads to reduced ubiquitylation and increased levels of MDM4. Similarly, silencing of endogenous MAGE-A expression diminishes MDM4 levels in a manner that can be rescued by the proteasomal inhibitor, bortezomid, and permits increased MDM2/MDM4 association. These data suggest that MAGE-A proteins can: (i) uncouple the ubiquitin ligase and degradation functions of MDM2; (ii) act as potent inhibitors of E3 ligase function; and (iii) regulate the turnover of MDM4. We also find an association between the presence of MAGE-A and increased MDM4 levels in primary breast cancer, suggesting that MAGE-A-dependent control of MDM4 levels has relevance to cancer clinically
A Novel Fast Neutron Detector For Nuclear Data Measurements
International audienceAccelerator driven system will use a heavy element target such as lead. Many calculations are available to simulate high-energy spallation neutron induced reactions, but little data are available for comparison with the simulations. In order to constrain the simulation tools we have measured (n,Xn) double differential cross section on different targets at The Svedberg Laboratory, Uppsala, Sweden. For neutron energy above 40 MeV, we have developed a novel detector, CLODIA, based on proton recoil and drift chambers to determine neutron energy. CLODIA (Chamber for LOcalization with DrIft and Amplification) is able to track recoil protons with energy up to 90 MeV with spatial resolution of about one millimeter and a detection efficiency of 99% for each drift chamber. Using CLODIA coupled with the SCANDAL set-up, we have been able to measure double differential (n,Xn) cross section on lead and iron for incident neutron energy in the 40-95 MeV energy region
Social Enterprise Evaluation : Implications for Tourism Development
The evaluation of social enterprise projects has focused mainly on devising effective performance measurement methods and processes to justify the investment of resources and time committed to such activities. With increasing demands for accountability, effectiveness, evidence of return on investment and value-added results, evaluation activities have been driven by imperatives of objectivity in assessments and the development of tools that monetize the social outcomes and impacts of social enterprise projects. These traditional approaches to evaluation have also been widely adapted in tourism based social enterprises that seek to attain goals of poverty alleviation, empowerment of local communities, and improved livelihoods for those marginalized from mainstream tourism economic activities. This chapter argues that traditional approaches to evaluation may be limited in supporting social entrepreneurship projects with development objectives of empowerment and societal change. It is proposed that social enterprise projects involving community participation may be better positioned to achieve their developmental objectives by incorporating more of the principles of Participatory Evaluation (PE) and Empowerment Evaluation (EE) in the quest to harness the economic prowess of tourism for human development
Cross-Species Analyses Identify Dlgap2 as a Regulator of Age-Related Cognitive Decline and Alzheimer\u27s Dementia.
Genetic mechanisms underlying age-related cognitive decline and dementia remain poorly understood. Here, we take advantage of the Diversity Outbred mouse population to utilize quantitative trait loci mapping and identify Dlgap2 as a positional candidate responsible for modifying working memory decline. To evaluate the translational relevance of this finding, we utilize longitudinal cognitive measures from human patients, RNA expression from post-mortem brain tissue, data from a genome-wide association study (GWAS) of Alzheimer\u27s dementia (AD), and GWAS results in African Americans. We find an association between Dlgap2 and AD phenotypes at the variant, gene and protein expression, and methylation levels. Lower cortical DLGAP2 expression is observed in AD and is associated with more plaques and tangles at autopsy and faster cognitive decline. Results will inform future studies aimed at investigating the cross-species role of Dlgap2 in regulating cognitive decline and highlight the benefit of using genetically diverse mice to prioritize novel candidates
- …