We describe the fabrication and construction of a setup for creating lattices
of magnetic microtraps for ultracold atoms on an atom chip. The lattice is
defined by lithographic patterning of a permanent magnetic film. Patterned
magnetic-film atom chips enable a large variety of trapping geometries over a
wide range of length scales. We demonstrate an atom chip with a lattice
constant of 10 μm, suitable for experiments in quantum information science
employing the interaction between atoms in highly-excited Rydberg energy
levels. The active trapping region contains lattice regions with square and
hexagonal symmetry, with the two regions joined at an interface. A structure of
macroscopic wires, cut out of a silver foil, was mounted under the atom chip in
order to load ultracold 87Rb atoms into the microtraps. We demonstrate
loading of atoms into the square and hexagonal lattice sections simultaneously
and show resolved imaging of individual lattice sites. Magnetic-film lattices
on atom chips provide a versatile platform for experiments with ultracold
atoms, in particular for quantum information science and quantum simulation.Comment: 7 pages, 7 figure